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Abstract
Dynamic programming is a technique widely used to solve several combinatory optimization
problems. A well-known example is the minimum cost parenthesizing problem (MPP), which
is usually used to represent a class of non-serial polyadic dynamic-programming problems. These
problems are characterized by a strong dependency between subproblems. This paper outlines
a coarse-grained multicomputer parallel solution using the four-splitting technique to solve the
MPP. It is a partitioning technique consisting of subdividing the dependency graph into subgraphs
(or blocks) of variable size and splitting large-size blocks into four subblocks to avoid communi-
cation overhead caused by a similar partitioning technique in the literature. Our solution consists
in evaluating a block by computing and communicating each subblock of this block to reduce the
latency time of processors which accounts for most of the global communication time. It requires
O
(
n3/p

)
execution time with O

(
k
√
p
)

communication rounds. n is the input data size, p is the
number of processors, and k is the number of times the size of blocks is subdivided.

Keywords
coarse-grained multicomputer ; dynamic programming ; dynamic graph ; irregular partitioning ;
four-splitting

I INTRODUCTION

Given a chain of symbols (characters, numbers, matrices, or objects), the minimum cost paren-
thesizing problem (MPP) consists in finding the parenthesizing that will minimize the cost of the
computations involved on this chain. This problem appears in the literature under several vari-
ants depending on the kind of entities in the chain to parenthesize and the treatment to perform.
The most popular variant is the matrix chain ordering problem consisting in finding the paren-
thesizing that minimizes the cost of the product of a chain of matrices [4]. Moreover, the MPP is
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typically used in the literature to represent a class of non-serial polyadic dynamic-programming
problems that can be modeled by Equation (1). Godbole [1] proposed the so-called generic
sequential algorithm to solve this problem in O (n3) time and O (n2) space.

Some research have investigated the parallelization of this sequential algorithm on different par-
allel computing models. On realistic models of parallel machines, Nishida et al. [6] presented
an efficient parallel implementation of the generic sequential algorithm on GPU architectures.
Ito and Nakano [8] accelerated this solution by partitioning the generic sequential algorithm into
many sequential kernel calls, selecting the best values for the size and the number of blocks for
each kernel call, and minimizing the memory access overhead. Shyamala et al. [11] acceler-
ated the computation time through C++ high-performance accelerated massive parallel code.
More recently, Diwan and Tembhurne [13] designed an adaptive generalized mapping method
to parallelize non-serial polyadic dynamic-programming problems that utilize GPUs, for effi-
cient mapping of subproblems onto processing threads in each phase. Biswas and Mukherjee
[14] proposed a new memory optimized technique and a versatile technique of utilizing shared
memory in blocks of threads to minimize time for accessing dimensions of matrices on GPU
architectures. On shared-memory architectures, Mabrouk [10] designed solutions based on
loop transformations. She showed that the associative expression evaluation technique with the
loop interchange transformation provides efficient parallel solutions. On distributed-memory
architectures, many researchers proposed their parallel solutions on the coarse-grained multi-
computer (CGM) model.

The CGM model introduced in [2] is the most suitable model to design parallel solutions that
are not too dependent on a specific architecture like the systolic and hypercube models. It
enables to formalize the performance of a parallel algorithm only with the input data size and
the number of processors. A CGM-based parallel algorithm consists in successively repeating a
computation round and a communication round until the problem is solved. In each computation
round, processors perform local computations on their data using the best sequential algorithm.
They exchange data through the network in each communication round. All information sent
from one processor to another is wrapped into a single long message to minimize the overall
message overhead. For designing a CGM-based parallel solution, the standard methodology
in the literature consists of subdividing the dependency graph into subgraphs (or blocks) of
same size, then fairly distributing these blocks among processors, and finally computing them
in a suitable evaluation order. Designers’ efforts tend to reduce the number of communication
rounds and the overall computation time to produce an efficient parallel solution [2].

Kengne et al. [9] showed that there is a trade-off between the minimization of the number
of communication rounds and the load-balancing of processors when the dependency graph is
partitioned into blocks of the same size :

1. when it is subdivided into small-size blocks like in [5], the load difference between pro-
cessors is small if one processor has one more block than another (however, the number
of communication round will be high);

2. when it is subdivided into large-size blocks like in [7], the number of communication
rounds of the corresponding algorithm is reduced since there are few blocks (however,
the load of processors will be unbalanced).

Lacmou and Kengne [12] tackled this trade-off by proposing the irregular partitioning tech-
nique. It consists in subdividing the dependency graph into blocks of variable size. It ensures
that the blocks of the first steps (or diagonals) are large sizes to minimize the number of commu-
nication rounds. Thereafter, it decreases these sizes along the diagonals to increase the number
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of blocks in these diagonals and enable processors to stay active longer. These blocks are fairly
distributed over processors to minimize their idle time and balance the load between them. It
requires O (n3/p) total execution time with O

(
k
√
p
)

communication rounds, where n is the
input data size, p is the number of processors, and k is the number of times the size of blocks is
subdivided. Experimental results showed that the irregular partitioning technique significantly
reduced the total execution time compared regular partitioning techniques proposed in [5, 7, 9].

Nevertheless, this technique also induces an important latency time of processors which ac-
counts for most of the global communication time. In fact, it does not enable processors to start
evaluating small-size blocks as soon as the data they need are available; yet they are usually
available before the end of the evaluation of large-size blocks. To solve this issue, Lacmou et
al. [15] proposed the k-block splitting technique to reduce this latency time. This technique
consists in splitting the large-size blocks into a set of smaller-size blocks called k-blocks. Thus,
a single processor evaluates a block by computing and communicating each k-block contained
in this block to enable processors to start the evaluation of k-blocks as soon as possible. How-
ever, this technique induces a communication overhead when the number of fragmentations
rises. In fact, since the k-block are numerous and small when k increases, a huge amount of
communication must be done by processors to exchange data. Experimental results showed
that this shortcoming deteriorates the performance of the CGM-based parallel solution using
this technique as the communication overhead raises the latency time of processors.

In this paper, we propose the four-splitting technique to reduce the latency time of processors
caused by the irregular partitioning technique. This technique consists in splitting the large-
size blocks into four small-size blocks (or subblocks). Hence, evaluating a block by a single
processor will consist of computing and communicating each subblock contained in this block.
The goal is the same as the k-block splitting technique, that is, enables processors to start the
evaluation of blocks as soon as possible. Our CGM-based parallel solution requires O (n3/p)
total execution time with O

(
k
√
p
)

communication rounds. Experimental results showed a
good agreement with theoretical predictions. Our CGM-based parallel solution using this tech-
nique were better than those using the irregular partitioning technique and the k-block splitting
technique. These results also showed that when the number of fragmentations is small, it is
preferable to use k-block splitting technique than the four-splitting technique when the data
size and the number of processors become very high.

The remainder of this paper is structured as follows. Section 2 summarizes background knowl-
edge of the MPP (the dynamic-programming formulation, the Godbole sequential algorithm,
and the dynamic graph model of Bradford [3]). Then, Section 3 presents our CGM-based par-
allel solution using the four-splitting technique. Section 4 outlines the experimental results
archived, and finally Section 5 concludes this work.

II BACKGROUND

2.1 Dynamic-programming formulation

The dynamic-programming formulation of the MPP is defined by :

Cost[i, j] =

{
Init(i) if 1 ≤ i = j ≤ n,
min
i≤k<j

{Cost[i, k] + Cost[k + 1, j] + F (i, k, j)} if 1 ≤ i < j ≤ n. (1)
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Algorithm 1 Godbole’s sequential algorithm
1: for i = 1 to n do
2: Cost[i, i]← Init(i);
3: for d = 2 to n do
4: for i = 1 to n− d+ 1 do
5: j ← n− d+ 1;
6: Cost[i, j]←∞;
7: for k = i to j − 1 do
8: c← Cost[i, k] + Cost[k + 1, j] + F (i, k, j);
9: if c < Cost[i, j] then

10: Cost[i, j]← c;
11: Track[i, j]← k;

In Equation (1), n is the problem size. Cost[i, j] corresponds to the value of the optimal solution
of the subproblem (i, j). This value is obtained among the (j − i) possible combinations of the
subsubproblems on which the subproblem (i, j) depends. The value of a combination of two
subproblems (i, k) and (k + 1, j), where i ≤ k < j, is computed by adding the values of their
optimal solutions and the cost corresponding to the combination of these subproblems given
by the function F (i, k, j) called union function. The basic subproblems are initialized by the
function Init(i).

2.2 Godbole’s sequential algorithm

A solution based on the exhaustive search of all possible combinations will be poor because,
for a problem of size n, the number of combinations is exponential in n [4]. To solve the MPP,
Godbole [1] proposed the first polynomial-time sequential algorithm running inO (n3) time and
O (n2) space. It became the standard algorithm for solving all problems that can be formulated
by Equation (1) because the structure and the complexity of this algorithm are independent of
the functions F and Init. Algorithm 1 draws the big picture.

Computing Cost[1, n] involves the solution of all subproblems (i, j), such that 1 ≤ i ≤ j ≤ n.
Dependencies between these subproblems can be organized like a dependency graph (or task
graph), as shown in Figure 1(a) for a problem of size n = 4. This figure reveals, for example,
that the value of Cost[1, 4] is computed from the optimal solutions of the pairs of subprob-
lems ((1, 1), (2, 4)), ((1, 2), (3, 4)), and ((1, 3), (4, 4)). Indeed, Algorithm 1 uses a bottom-up
approach to compute the optimal solutions of subproblems. The values of these solutions are
stored in the DP table depicted in Figure 1(b).

2.3 Dynamic graph model

Bradford [3] showed that the MPP can be solved through the shortest path algorithms on
weighted dependency graph by designing a graph model called dynamic graph for the prob-
lem that can be formulated by Equation (1). For a problem of size n, this graph is denoted by
Dn. A square matrix of size n called shortest path matrix, and denoted by SP , is used to store
in the cell SP [i, j] the shortest path from node (0, 0) to (i, j). Bradford showed that the com-
putation of Cost[i, j] is equivalent to search in Dn the shortest path from node (0, 0) to (i, j).
Indeed, each path from the root to an edge node corresponds to one of the possible parenthesizes
in a dynamic graph. Thus, the shortest path corresponds to the optimal parenthesizing. Figure
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((a)) Task graph ((b)) Dynamic-programming table

Figure 1: Task graph and the dynamic-programming table used to compute Cost[1, 4]

((a)) Dynamic graph D4 ((b)) Dynamic graph D′
4

Figure 2: Dynamic graphs D4 and D′
4 for a problem of size n = 4

2(a) shows a dynamic graph Dn for n = 4. It has the same dependency graph form representing
the dependency between subproblems depicted in Figure 1(a), with an additional node (0, 0).

Given a dynamic graph Dn, Bradford [3] proved that if the shortest path from node (0, 0) to
(i, j) needs the edge from node (i, k) to (i, j), then there exists a dual shortest path with the
same cost needing the edge from node (k+1, j) to (i, j). This property is fundamental because
it helps to avoid redundant computations when looking for the value of the shortest path of Dn’s
vertices. Indeed, for any vertex (i, j), among all its shortest paths containing jumps, only those
that contain only horizontal jumps are evaluated. So, the input graph of our CGM-based parallel
solution is a subgraph of Dn denoted by D′

n, in which the set of edges from (i, k) to (i, j) and
from (k + 1, j) to (i, j) is removed. Figure 2(b) shows the dynamic graph D′

4.

III OUR CGM-BASED PARALLEL SOLUTION

3.1 Dynamic graph partitioning

The irregular partitioning technique consists in subdividing the shortest path matrix into subma-
trices (blocks) of varying size to enable a maximum of processors to remain active longer. The
idea is to increase the number of blocks of diagonals whose this number is lower or equal to
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((a)) p ∈ {5, 6, 7, 8} and k = 1 ((b)) p ∈ {5, 6, 7, 8} and k = 2

Figure 3: Four-splitting technique of the shortest path matrix for n = 32, k ∈ {1, 2}, and p ∈ {5, 6, 7,
8}. SP is partitioned into nineteen blocks and thirty-six subblocks when k = 1, and into twenty-eight
blocks and seventy-two subblocks when k = 2

half of the first one through the block fragmentation technique. This technique aims to reduce
the block size by dividing it into four subblocks. To minimize the number of communication
rounds, it begins to subdivide the shortest path matrix with large-size blocks from the largest
diagonal (the first diagonal of blocks) to the diagonal located just before the one whose number
of blocks is half of the first one. Then, since the number of blocks per diagonal quickly becomes
smaller than the number of processors, to increase the number of blocks of these diagonals and
enable a maximum of processors to remain active, it fragments all the blocks belonging to the
next diagonal until the last one to catch up or exceed by one notch the number of blocks of
the first diagonal. It reduces the idle time of processors and promotes the load balancing. This
process is repeated k time, after which the block sizes are no longer modify, and the rest of the
partitioning becomes traditional because an excessive fragmentation would lead to a drastic rise
of the number of communication rounds. After performing k fragmentations, a block belonging
to lth level of fragmentation have been subdivided l times, 0 ≤ l ≤ k.

The four-splitting technique consists in splitting the large-size blocks into four smaller-size
blocks (or subblocks) after performing k fragmentations to reduce the latency time of proces-
sors. The subblocks of the blocks belonging to the lth level of fragmentation must have the
same size as the blocks belonging to the (l + 1)th level of fragmentation. The goal is to enable
processors to start the evaluation of blocks as soon as possible. Hence, evaluating a block by a
processor will consist of computing and communicating each subblock contained in this block.

By denoting f(p) = ⌈
√
2p⌉, θ(n, p) = ⌈n/f(p)⌉, and θ(n, p, l) = ⌈θ(n, p)/2l⌉, formally, we

subdivide the shortest path matrix SP into blocks (denoted by SM(i, j)), and split the large-size
blocks into four subblocks. Thus, a block SM(i, j) belonging to the lth level of fragmentation,
such that l < k, is a θ(n, p, l) × θ(n, p, l) matrix and is subdivided into four subblocks of size
θ(n, p, l + 1) × θ(n, p, l + 1). The blocks of the kth level of fragmentation are not splitting
into four as these are the smallest blocks. Figures 3(a) and 3(b) depict two scenarios of this
partitioning for n = 32, k ∈ {1, 2}, and p ∈ {5, 6, 7, 8}. The number in each block represents
the diagonal in which it belongs.
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((a)) Blocks’ dependency ((b)) Snake-like mapping

Figure 4: Dependencies of two blocks and snake-like mapping when p = 6 and k = 1

3.2 Blocks’ dependency and mapping onto processors

Figure 4(a) illustrates an example of dependencies of two blocks SM(i, j) and SM(h, l). The
most shaded blocks are required to evaluate them. It can be noticed that the evaluation of short-
est paths for blocks of the same diagonal can be carried out in parallel. Indeed, the dependency
relationship between blocks proved that those on the same diagonal are independent [12, 15].

We use a snake-like mapping scheme [7] to enable some processors to evaluate at most one
block more than the others. This scheme consists of assigning all blocks of a given diagonal
from the leftmost upper corner to the rightmost lower corner. We reiterate this process until all
processors are used, starting with processor 0 and traveling through the blocks with a "snake-
like" path. Figure 4(b) depicts a mapping scheme on six processors. This mapping enables
processors to remain active as soon as possible. It also ensures the load balancing because it
equally distributes small and large size blocks among processors. However, it does not optimize
communications.

3.3 Our CGM-based parallel algorithm

Our CGM-based parallel algorithm based on the four-splitting technique to solve the MPP is
given by Algorithm 2. This algorithm is a succession of f(p) + k × (⌈f(p)/2⌉ + 1) similar
steps in which the blocks are evaluated in a progressive fashion as in [5, 7]. Thus, evaluating
the shortest path cost of nodes of a block belonging to the diagonal d starts at the diagonal
⌈d/2⌉. After computing each subblock containing in a block, it is immediately communicated
to processors that need these subblocks for updating or for finalizing the computations of values
in next steps.

Theorem 1:
Our CGM-based parallel solution based on the four-splitting technique to solve the MPP runs
in O (n3/p) execution time with O

(
k
√
p
)

communication rounds in the worst case.

Proof. Let S = f(p) = ⌈
√
2p⌉ and β = (S mod 2). A processor computes and communicates:

• three subblocks at the first diagonal of blocks;
• four subblocks from the diagonal of blocks 2 to ⌊S/2⌋ − 1;
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Algorithm 2 Our CGM-based parallel algorithm based on the four-splitting technique

1: d← f(p) + k × (⌈f(p)/2⌉+ 1);
2: for u = 1 to d do
3: for each subblock ρ belonging in the block SM(i, j) do
4: Finalization of the evaluation of the block SM(i, j) of diagonal u : compute the

shortest path costs to nodes of the subblock ρ;
5: Communication of the subblock ρ to the processors that detain upper blocks and

right blocks;
6: for each ρ′ ∈ SM(i′, j′) of diagonals (u+ 1, . . . ,min{2× (u− 1), d}) do
7: Update the shortest path costs to nodes of the subblock ρ′;

• four subblocks for each (⌈S/2⌉ + 1) diagonals of blocks belonging to the lth level of
fragmentation such that 1 ≤ l < k;

• one subblock for each (S + β) diagonals of blocks belonging to the kth level of fragmen-
tation.

During the computation rounds, evaluating each subblock of a block belonging to the lth level
of fragmentation requires O

(
n3

23(l+1)×(2p)3/2

)
= O

(
n3

8l+1×p
√
p

)
local computation time. So, the

evaluation of each diagonal of blocks required :

D = 3×O
(

n3

8× p
√
p

)
+ 4

(⌊
S

2

⌋
− 1

)
×O

(
n3

8× p
√
p

)
+ 4

(⌈
S

2

⌉
+ 1

)
×

O
(

n3

82 × p
√
p

)
+ 4

(⌈
S

2

⌉
+ 1

)
×O

(
n3

83 × p
√
p

)
+ · · ·+ 4

(⌈
S

2

⌉
+ 1

)
×

O
(

n3

8k × p
√
p

)
+

(⌈
S

2

⌉
+ 1

)
×O

(
n3

8k × p
√
p

)
+ (S + β)×O

(
n3

8k × p
√
p

)
= O

(
n3

p

)
The number of communication rounds is equal to :

E = 3 + 4

(⌊
S

2

⌋
− 1

)
+ 4(k − 1)

(⌈
S

2

⌉
+ 1

)
+ S + β = O (k

√
p)

Therefore, this algorithm requiresO (n3/p) execution time withO
(
k
√
p
)

communication rounds.

IV EXPERIMENTAL RESULTS

4.1 Experimental setups

We compare our new CGM-based parallel solution denoted by 4s with our previous best solu-
tion [15] denoted by kbyk. They have been implemented in C1 and executed on the operating
system CentOS Linux release 7.6.1810. We used the cluster dolphin of the MatriCS platform of
the University of Picardie Jules Verne2. Each compute node is made of two Intel Xeon Proces-
sor E5-2680 V4 (35M Cache, 2.40 GHz), and each of them consists of 14 cores. This cluster

1The source codes are available : https://github.com/compiii/CGM-Sol-for-MPP.
2https://www.matrics.u-picardie.fr

African Journal of Research in Computer Science and Applied Mathematics Page 8 of 12

https://github.com/compiii/CGM-Sol-for-MPP
https://www.matrics.u-picardie.fr


consists of 60 compute nodes interconnected with OmniPath links providing 100Gbps through-
put, and divided into 48 thin nodes with 48 × 128GB of RAM and 12 thick nodes with 12 ×
512GB of RAM. These algorithms have been executed on five thin nodes. The MPI library
(OpenMPI version 1.10.4) has been used for inter-processor communication. We present the
results following the different values of the triplet (n, p, k). n is the data size, with values in the
set {4096, . . . , 40960}. p is the number of processors, with values in the set {32, 64, 96, 128}.
k is the number of fragmentations of blocks performed, with values in the set {0, 1, 2, 3, 4}.
When k = 0, our solution is reduced to the one in [7]. kbyk and 4s are similar when k = 1.

4.2 Evolution of the global communication time

Figures 5(a) and 5(b) compare the global communication time of kbyk and 4s while solving the
MPP by performing one and two fragmentations. Figure 5(a) shows that from n = 4096 to
24576, the global communication time of kbyk and 4s is better when performing one fragmen-
tation than when performing two. Indeed, while solving the MPP, the evaluation of the small
subblocks requires less time than the large ones; and thus requires less latency time of proces-
sors. Therefore, decreasing the size of these subblocks by performing more fragmentations will
lead to increase the global communication time and minimize the overall computation time.
This will lead to a better total execution time when performing more than one fragmentation.
For example, on thirty-two processors when n = 24576 in Figure 6(a), the total execution time
is made up of 34.39% of computation time and 65.61% of communication time when k = 1,
and 15.30% of computation time and 84.70% of communication time when k = 2. Now when
comparing the global communication time of kbyk and 4s, it can be noticed that 4s is better than
kbyk. Indeed, it is necessary to split the blocks into at most four subblocks because their sizes
are not large enough. Excessive communications degrading the global communication time can
be achieved when there are more subblocks than necessary. Figure 5(a) also shows that from
n = 28800, the global communication time of kbyk when k = 2 is better than that of 4s when
k = 1 and k = 2. Indeed, large subblocks require more time to be evaluated; and thus, require
more than one fragmentation to minimize the latency time of processors (this observation is
not true in all cases because, for example on sixty-four processors in Figure 5(b), the global
communication time of kbyk and 4s when k = 1 is smaller than when k = 2). In addition,
it is necessary to split large-size blocks into more than four subblocks to enable processors to
start or continue evaluating their blocks as soon as possible. For example on thirty-two proces-
sors when n = 40960, kbyk decreases the global communication time on average by 56.97%
and 4s decreases it on average by 49.96% when k = 2. However, Figure 6(a) shows that 4s
decreases the global communication time on average by 59.87% when k = 3. This is due to
the fact that blocks belonging to the last level of fragmentation are quite large and require an
additional fragmentation when k = 2. In contrast, Figures 6(d), 6(e), and 6(f) show that from
sixty-four to one hundred and twenty-eight processors, the global communication time of kbyk
when k = 2 is better than that of 4s when k = 3. This is because increasing the number of
processors results in decreasing the size of blocks (as well as subblocks); therefore, applying a
third fragmentation results in minimizing the global communication time, which is not enough
to be better than kbyk when k = 2. Nevertheless, it would have been wise to split blocks into
more than four subblocks when k = 3 to decrease the latency time as much as possible.

Figures 6(a) and 6(b) show that in general the global communication time and the overall com-
putation time of 4s gradually decrease while solving the MPP by performing four fragmenta-
tions successively. Nevertheless, Figures 6(a) and 6(b) show that the global communication time
of 4s degrades from the fourth fragmentation because on thirty-two processors when n = 40960,
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Figure 5: Global communication time for n ∈ {4096, . . . , 40960}, p ∈ {32, . . . , 128}, and k ∈ {0, 1, 2}
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Figure 6: Comparison of the overall computation time and the global communication time for n ∈
{24576, 32768, 40960}, p ∈ {32, . . . , 128}, and k ∈ {1, . . . , 4}

it decreases in average by 48.17% when k = 1, in average by 49.96% when k = 2, in average
by 59.87% when k = 3, and in average by 56.12% when k = 4. This is due to the fact that
from a certain number of fragmentation, the small subblocks which are close to the optimal
solution (and thus require a high evaluation time using Godbole’s sequential algorithm) do not
need to be fragmented any more because they can lead to excessive communications; and thus
the latency time of processors will be increased instead of being reduced.

4.3 Evolution of the total execution time

Figures 6(a), 6(b), 6(c), 6(d), 6(e), and 6(f) show the total execution time of kbyk and 4s while
solving the MPP by performing one, two, three, and four fragmentations. The global communi-
cation time has a huge impact on the total execution time. The results are obvious while solving
the MPP:

• from n = 4096 to 24576 on thirty-two processors, the total execution time of 4s is better
than kbyk when performing two fragmentations;
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• from n = 28800 on thirty-two processors, the total execution time of kbyk is better than
that of 4s when performing two fragmentations;

• from n = 4096 to 40960 on thirty-two processors, the total execution time of 4s when
performing three fragmentations is better than that of kbyk when performing two frag-
mentations;

• when n = 36864 and n = 40960 on sixty-four to one hundred and twenty-eight proces-
sors, the total execution time of kbyk when performing two fragmentations is better than
4s when performing three fragmentations;

• from n = 4096 to 40960 on thirty-two to one hundred and twenty-eight processors, the
total execution time of 4s degrades from the fourth fragmentation.

In a nutshell, there is no better choice between kbyk and 4s to solve the MPP because in some
conditions 4s is better than kbyk and in other conditions it is the opposite. However, we rec-
ommend to use 4s to solve this problem since compared to kbyk, 4s minimizes communication
between processors and its performance does not abruptly degrade when the number of frag-
mentations increases.

V CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we presented a CGM-based parallel solution for solving the minimum cost paren-
thesizing problem using the four-splitting technique. This technique avoids communication
overhead while reducing the latency time of processors by splitting the large-size blocks into
four small-size blocks (or subblocks) after performing k fragmentations. It requires O (n3/p)
total execution time with O

(
k
√
p
)

communication rounds, where n is the input data size and p
is the number of processors. The experimental results archived showed a good agreement with
our theoretical predictions. It would be interesting to propose CGM-based parallel solutions us-
ing this four-splitting technique to solve other non-serial polyadic dynamic-programming prob-
lems such as the context-free grammar parsing problem and the Nussinov RNA folding prob-
lem. To our knowledge, there is no CGM-based parallel solutions that solve these problems. It
would be also interesting to apply our partitioning technique on shared-memory architectures
and GPU architectures.

REFERENCES

[1] S. S. Godbole. “On Efficient Computation of Matrix Chain Products”. In: IEEE Trans-
actions on Computers 100.9 (1973), pages 864–866.

[2] F. Dehne, A. Fabri, and A. Rau-Chaplin. “Scalable Parallel Geometric Algorithms for
Coarse Grained Multicomputers”. In: Proceedings of the Ninth Annual Symposium on
Computational Geometry. San Diego, California, USA, 1993, pages 298–307.

[3] P. G. Bradford. “Parallel Dynamic Programming”. Ph.D. Thesis. Indiana University,
1994.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
3rd. The MIT Press, 2009.

[5] M. Kechid and J. F. Myoupo. “A Coarse-Grain Multicomputer Algorithm for the Mini-
mum Cost Parenthesization Problem”. In: the 2009 International Conference on Parallel
and Distributed Processing Techniques and Applications. PDPTA’09. Las Vegas, Nevada,
USA, 2009, pages 480–486.

[6] K. Nishida, Y. Ito, and K. Nakano. “Accelerating the Dynamic Programming For the Ma-
trix Chain Product on the GPU”. In: Proceedings of the Second International Conference
on Networking and Computing. Osaka, Kansai, Japan, 2011, pages 320–326.

African Journal of Research in Computer Science and Applied Mathematics Page 11 of 12

http://dx.doi.org/10.1109/tc.1973.5009182
http://dx.doi.org/10.1145/160985.161154
http://dx.doi.org/10.1145/160985.161154
https://hal.archives-ouvertes.fr/hal-01007646
https://hal.archives-ouvertes.fr/hal-01007646
http://dx.doi.org/10.1109/icnc.2011.62
http://dx.doi.org/10.1109/icnc.2011.62


[7] T. V. Kengne and J. F. Myoupo. “An Efficient Coarse-Grain Multicomputer Algorithm
for the Minimum Cost Parenthesizing Problem”. In: The Journal of Supercomputing 61.3
(2012), pages 463–480.

[8] Y. Ito and K. Nakano. “A GPU Implementation of Dynamic Programming For the Op-
timal Polygon Triangulation”. In: IEICE Transactions on Information and Systems E96-
D.12 (2013), pages 2596–2603.

[9] T. V. Kengne, J. F. Myoupo, and G. Dequen. “High Performance CGM-based Parallel
Algorithms for the Optimal Binary Search Tree Problem”. In: International Journal Grid
High Performance Computing 8.4 (2016), pages 55–77.

[10] B. B. Mabrouk. “Application de la Programmation Dynamique Parallèle Pour la Résolu-
tion de Problèmes D’Optimisation Combinatoire”. Ph.D. Thesis. Université de Tunis El
Manar, 2016.

[11] K. Shyamala, K. R. Kiran, and D. Rajeshwari. “Design and Implementation of GPU-
Based Matrix Chain Multiplication Using C++AMP”. In: Proceedings of the 2017 Sec-
ond IEEE International Conference on Electrical, Computer and Communication Tech-
nologies. Coimbatore, Tamil Nadu, India: IEEE, 2017, pages 1–6.

[12] Z. J. Lacmou and T. V. Kengne. “Speeding up CGM-Based Parallel Algorithm for Min-
imum Cost Parenthesizing Problem”. In: the 2018 International Conference on Paral-
lel and Distributed Processing Techniques and Applications. Las Vegas, Nevada, USA,
2018, pages 401–407.

[13] T. Diwan and J. Tembhurne. “A Parallelization of Non-Serial Polyadic Dynamic Pro-
gramming On GPU”. In: Journal of Computing and Information Technology 27.2 (2019),
pages 55–66.

[14] G. Biswas and N. Mukherjee. “Memory Optimized Dynamic Matrix Chain Multipli-
cation Using Shared Memory in GPU”. In: the 2021 International Conference on Dis-
tributed Computing and Internet Technology. Bhubaneswar, Odisha, India, 2021, pages 160–
172.

[15] Z. J. Lacmou, T. V. Kengne, and J. F. Myoupo. “High-Performance CGM-Based Parallel
Algorithms for Minimum Cost Parenthesizing Problem”. In: The Journal of Supercom-
puting 78.4 (2022), pages 5306–5332.

African Journal of Research in Computer Science and Applied Mathematics Page 12 of 12

http://dx.doi.org/10.1007/s11227-011-0601-9
http://dx.doi.org/10.1007/s11227-011-0601-9
http://dx.doi.org/10.1587/transinf.e96.d.2596
http://dx.doi.org/10.1587/transinf.e96.d.2596
http://dx.doi.org/10.4018/ijghpc.2016100104
http://dx.doi.org/10.4018/ijghpc.2016100104
http://dx.doi.org/10.1109/icecct.2017.8117870
http://dx.doi.org/10.1109/icecct.2017.8117870
https://hal.archives-ouvertes.fr/hal-01900171
https://hal.archives-ouvertes.fr/hal-01900171
http://dx.doi.org/10.20532/cit.2019.1004579
http://dx.doi.org/10.20532/cit.2019.1004579
http://dx.doi.org/10.1007/978-3-030-65621-8_10
http://dx.doi.org/10.1007/978-3-030-65621-8_10
http://dx.doi.org/10.1007/s11227-021-04069-9
http://dx.doi.org/10.1007/s11227-021-04069-9

	I Introduction
	II Background
	2.1 Dynamic-programming formulation
	2.2 Godbole's sequential algorithm
	2.3 Dynamic graph model

	III Our CGM-based parallel solution
	3.1 Dynamic graph partitioning
	3.2 Blocks' dependency and mapping onto processors
	3.3 Our CGM-based parallel algorithm

	IV Experimental results
	4.1 Experimental setups
	4.2 Evolution of the global communication time
	4.3 Evolution of the total execution time

	V Conclusion and future research directions

