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Abstract
Epidemiological modelling and epidemic threshold analysis in the networks are widely used for
the control and prediction of infectious disease spread. Therefore, the prediction of the epidemic
threshold in networks is a challenge in epidemiology where the contact network structure funda-
mentally influences the dynamics of the spread. In this paper, we design and experiment a new
general structural and spectral prediction approach of the epidemic threshold. This more captures
the full network structure using the number of nodes, the spectral radius, and the energy of graph.
With data analytic and data visualization technics, we drive simulations overall on 31 different
types and topologies networks. The simulations show similar qualitative and quantitative results
between the new structural prediction approach of the epidemic threshold values compared to the
earlier MF, HMF and QMF widely used benchmark approaches. The results show that the new
approach is similar to the earlier one, further captures the full network structure, and is also accu-
rate. The new approach offers a new general structural and spectral area to analyse the spreading
processes in a network. The results are both fundamental and practical interest in improving the
control and prediction of spreading processes in networks. So these results can be particularly
significant to advise an effective epidemiological control policy.

Keywords
Epidemic threshold ; Energy of graph ; Eigenvalues ; Network structures ; Complex networks ;
Infectious disease.

I INTRODUCTION

Networks are everywhere. Several real phenomena such as disease spreading, behaviour con-
tagion, and rumour propagation are described as a spreading process in the complex system

African Journal of Research in Computer Science and Applied Mathematics Page 1 of 11

mailto:
https://doi.org/10.46298/arima.11186


Symbol Short description
A The adjacency matrix of the network.
⟨k⟩, ⟨k2⟩ The first (average connectivity) and second moment (connec-

tivity divergence) of the degree distribution.
λmax The spectral radius (largest eigenvalue) of the matrix A.
β The infection rate: rate of infection or transmission from an in-

fected individual to a susceptible individual per effective con-
tact.

γ The recovery rate: rate that an infected individual will recover
per unit time (in continuous-time models) or per time step (in
discrete time models).

λ The transmissibility: the infection rate scaled by γ−1 so that
λ = β/γ.

λc The epidemic threshold, critical infection rate.
G A connected network G = (V,E) with n nodes in V and m

edges or links in E.

Table 1: Notations

[14]. These processes are widely modelled using networks or graphs. Therefore, networks are
greatly interesting and constitute fertile, and flexible tools for scientific modelling and analysis
of complex systems [17] such as an infectious disease spread over a contact network.

In the study of infectious disease spread, the basic reproduction number R0 is the average of
expected secondary infection number caused by a primary infectious individual introduced in
a fully susceptible host population. R0 is strongly correlated to the likelihood and extent of an
epidemic. Critically R0 depends not only on the disease but also on the host population structure
[11]. Therefore, network-based models of epidemiological contact have emerged as an impor-
tant tool in understanding and predicting the spread of infectious disease [4]. Understanding
the network structure allows for better control of the micro and macro propagation [11], [1],
and even improves the predictions. Thus, we need more sophisticated tools for analysis and
visualization of the network structure: one of these tools is the spectral theory of graph [3],
[4]. Hence, predicting whether a disease will die out or become an epidemic is known as the
epidemic threshold.

Epidemic threshold τ denotes the incidence of a disease at which it can be considered as an
epidemic. An epidemic threshold τ is the critical β/γ ratio value beyond which an infection
becomes an epidemic [21]. Nevertheless, τ is commonly linked to the R0 that allows the defini-
tion of the epidemic threshold concept [7]. τ depends not only on the transmission and recovery
rates of a disease but, also fundamentally on the network structure [21]. Therefore, the accuracy
of the prediction and understanding of epidemic thresholds on complex networks is a challenge
in the field of network science. To clarify some basic concepts of this work, Table 1 defines
some basic notations used in this work.

The aim of this paper is to design and experiment a new general structural and spectral pre-
diction approach of the epidemic threshold. This should be substantially similar to those in
the literature and accurately captures the full network structure but is not limited by it. There-
fore, we propose a new general and spectral approach to analyse the spreading processes in a
network.
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The layout of this paper is organised as follows: Section 2 reviews the previous approaches
and their limitations. Section 3 presents the issue of epidemic threshold, energy of graph, and
spectral theory of the graph. Section 4 describes the proposed new approach while section 5
presents the experimentation, results, and discussions. We conclude in section 6.

II THE PREVIOUS APPROACHES AND THEIR LIMITATIONS

In the literature, there are many successful theoretical approaches of the epidemic threshold.
We denote various benchmarks generally used to provide an approximation of the epidemic
threshold related to the dynamic spreading in real networks. This includes the Mean-field (MF),
Degree-based mean-field (DBMF) or Heterogeneous mean-field (HMF) and Quenched (QMF)
also called Individual-based mean-field (IBMF).

2.1 The Mean-field (MF) approach

The Mean-field (MF) approach is based on the works of Kephart and White who adopted a mod-
ified homogeneous approach where directed graphs model the communication among persons
[12]. Formally, here, in a homogeneous network, the epidemic threshold is denoted by Eq. 1:

λMF
c =

1

⟨k⟩
(1)

where ⟨k⟩ is the first moment of the degree distribution. The MF assumes that all nodes in the
network are statistically equivalent: the interaction probabilities between any two nodes are the
same. Therefore, the contact network structure is not considered. However, MF approach can
be inaccurate when network degree distribution is asymmetric and heterogeneous.

2.2 The Heterogeneous mean-field (HMF) approach

To more capture network structure, [16] improved the homogeneous MF approach to obtain the
HMF by the assumption of the inability for a node (or person) to infect node that infected it.
Here, the epidemic threshold is given by Eq. 2:

λHMF
c =

⟨k⟩
⟨k2⟩ − ⟨k⟩

(2)

where ⟨k2⟩ is the second moment of the degree distribution. HMF is more used for uncorre-
lated networks [8]. It’s more useful under the mean-field assumption of independence between
node’s infectious states. Due to its parameters and assumptions, the HMF approach can be in-
accurate for the quenched connections among nodes. Moreover, the HMF neglects the dynamic
correlations among the states of neighbours.

2.3 The Quenched mean-field (QMF) approach

Because neither the MF nor the HMF approach can capture enough the contact network struc-
ture: the Quench mean-field (QMF) approach is developed using the adjacency matrix A. This
approach is widely used to study the spreading dynamics [20]. In [21], authors proposed a
discrete-time formulation to predict the epidemic threshold problem with any assumption of
homogeneous connectivity. However, the epidemic threshold is given by Eq. 3:

λQMF
c =

1

λmax

(3)
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where λmax is the largest eigenvalue of the adjacency matrix A. The QMF approach depends
only on the network structures. The QMF is an advanced approach that is more accurate than
the MF and HMF [20].

The QMF approach has many variants such as the N-intertwined approach [18]; the Dynami-
cal Message-Passing (DMP) using the non-backtracking matrix; the Simplified DMP (SDMP).
Nevertheless, in some specific situations, some research doubts the accuracy of the epidemic
threshold value predicted by the QMF approach [8].

As it happens, in the literature, there are many approaches to predict the epidemic threshold.
However, we are interested to develop a new general structural and spectral approach of predic-
tion that more captures the full network structure using structural and spectral properties of a
network such as a node number, adjacency matrix, spectral radius, and the energy of graph. This
new approach should be substantially similar to the earlier approaches. Moreover, it should be
also accurate. Therefore, the new approach offers a general and spectral approach to analyse
spreading processes in a network.

III THE EPIDEMIC THRESHOLD AND THE SPECTRAL THEORY OF GRAPH

The spectral theory of graph and network science are used to understand how network topology
can predict the dynamic processes [10] like an epidemic threshold in a complex system. It
analyses the relationships between the graph structure and its eigenvalues. Thus, the spectral
theory of graph plays a central role in the fundamental understanding of the network [6, 5, 4].
However, a large literature on algebraic aspects of spectral graph theory and these applications
are in several surveys, books or monographs such as [5], [6].

3.1 The eigenvalue of graph

The analysis of the eigenvalues allows us to get useful information about a graph that might
otherwise be difficult to obtain [5]. Eigenvalues have a strong relationship with the structures
of graphs. The largest eigenvalue of graph λ1 or λmax is called the spectral radius.

3.2 The energy of graph

It’s a graph-spectrum-based quantity. The original version of graph energy from the year 1978
is based on the eigenvalues of the adjacency matrix [9]: E(G) =

∑n
i=1 |λi|, where λi is the

ith eigenvalue. However, the energy of graph found unexpected large applications in areas of
science and engineering [10] such in [15] with the epidemiological applications.

IV THE PROPOSED NEW APPROACH

In the epidemic threshold study, one of the challenges is to capture the essence of the full
network structure with as few parameters as possible with accuracy. For any network, we
present a new general structural and spectral prediction approach of the epidemic threshold. Our
approach does not assume homogeneous connectivity or any particular topology in a discrete
time. We assume that during each time interval, an infected node i try to infect its neighbours
with probability β. At the same time, i may be cured with probability γ. Thus, formally, the
new epidemic threshold approach λc is denoted by Eq. 4:

λKSE

c =
kn

E(G)
e−1/λmax (4)
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Here, E(G) is the energy of graph, and k is a real scale parameter. The λKSE
c means K Spectral

Energy approach of the epidemic threshold prediction. In fact, λmax has several applications in
science such as chemistry, and computer science [6]. It’s proven that the more highly connected
a network is, the larger is λmax [19], and the smaller is 1/λmax as an epidemic threshold, which
is strongly related to the R0 concept. This can exhibit a basic exponential decay model ϕ,
where ϕ = e

−1
λmax

t, ϕ0 = 1, with the single parameter λmax. To consider each eigenvalue,
we are interested in the energy of graph concept according to its definition. Thus, about the
fraction of the energy of graph on each node, we define ∆ = E(G)

n
. In epidemic threshold

context, according to its salient features like critical or threshold values: we look at the simple
reciprocal model y = k( 1

x
), where x is a variable and k a constant or scale parameter. Hence,

the reciprocal of ∆ is: k( 1
E(G)

n

) = kn
E(G)

. Related to this reciprocal, we have the intuition to

observe the rate of ϕ at t = 1, over there: e−1/λmax × kn
E(G)

= λKSE
c . Thus, the new approach to

predict the epidemic threshold λKSE
c is an application that associates each adjacency matrix to a

specific decay relative composition eigenvalues relating to ∆.

V EXPERIMENTATION, RESULTS AND DISCUSSIONS

With data analytic and data visualisation technics on the experimental dataset in Figure 1; the
simulations are driven to answer the question of how the new prediction approach of the epi-
demic threshold is substantially similar and performs in real a good performance than earlier
approaches including the most used QMF.

The dataset describes in Figure 1 contains real networks of infectious disease spread, small-
world, random, and regular networks in spreading processes overall 31 different types and
topologies networks; 17 real social networks, 9 generated social networks, 3 random networks,
and 2 regular random networks. Here, Id refers to the network identifier, kmax refers to the max-
imum node degree in a network, k denotes the first moment of degree, k2 the second moment
of degree, den refers to the density of a network, and cc the clustering coefficient. However,
with data visualization technics based on numerical and graphical simulations overall these net-
works: different sets of predicted values MF, HMF, QMF and the new KSE epidemic threshold
are been computed, analysed, visualised, and discussed.

In Figure 2, we can show that the network Id 5, 9, 11, 12, 13, 14, 15, 17, 18, 19, and 21
have nearest predicted values of the epidemic threshold. Thus, the new proposed approach of
epidemic threshold KSE has substantially similar common features with the earlier approaches,
specifically with the widely most used accurate QMF. The summary descriptive statistics values
of the MF, HMF, QMF and the proposed KSE are built in Table 2. Here, for the widely used
QMF approach in the literature, we observed that the new proposed approach KSE has the 2nd

quantile (Q2) more similar. The new proposed approach KSE is similar for the major descriptive
statistic characteristics like the mean, std, Q2, Q3 and range related to the QMF. This means
that the new KSE approach is similar to the earlier and shares major features with the earlier,
specifically with the widely used accurate QMF. Theoretically, those results come from the
eigenvalues concept at the root of QMF and KSE approach.

Moreover, the area, curve and shape of each epidemic threshold value can be observed in Figure
3. Here, we can show that the area of all epidemic thresholds have a substantially similar area,
curve and shape over the range of the 31 different experimental networks in the dataset. They
share the same shape, curve and sense of variation. This means that the new proposed approach
KSE is similar to the earlier one.
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Figure 1: The summary of structural information about networks in the dataset

Figure 2: The scatter dashed line visualization of MF, HMF, QMF and the proposed KSE prediction
approach of the epidemic threshold
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MF HMF QMF KSE
count 31.000 31.000 31.000 31.000
mean 0.151 0.157 0.110 0.131
std 0.120 0.194 0.091 0.059
min 0.010 0.008 0.006 0.050
25% 0.061 0.034 0.027 0.107
50% 0.125 0.125 0.111 0.122
75% 0.199 0.159 0.149 0.148
max 0.497 0.977 0.333 0.383
IQ 0.138 0.124 0.120 0.040
range 0.487 0.970 0.327 0.332

Table 2: The summary of the descriptive statistic values of the MF, HMF, QMF and the proposed KSE
prediction approach of the epidemic threshold

Furthermore, the gap or difference between predicted values of the epidemic threshold related
to the new KSE is analysed. The summary of its descriptive statistics is shown in Table 3.
Here, for any p, q epidemic threshold, e_p_q means the Euclidian gap or difference of p to
q: p - q. In Table 3, the standard deviation of the gap or the difference between the QMF
and the KSE is 0.078. All the gaps are relatively low. Relatively low is related to the earlier
approaches particularly lowest to the most used QMF. Moreover, the new KSE approach shares
major common features with the earlier, specifically with the most used accurately QMF.

Figure 3: The area visualization of MF, HMF, QMF and the proposed KSE prediction approach of the
epidemic threshold
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e_MF_KSE e_HMF_KSE e_QMF_KSE
count 31.000 31.000 31.000
mean 0.019 0.026 -0.022
std 0.093 0.182 0.078
min -0.068 -0.279 -0.221
25% -0.056 -0.066 -0.074
50% 0.010 -0.022 -0.0350
75% 0.025 0.034 0.007
max 0.308 0.788 0.188
IQ 0.081 0.099 0.081
range 0.375 1.066 0.409

Table 3: The summary of the descriptive statistic values of the gap or difference between MF, HMF, QMF
prediction approach related to the KSE

sumsq df F PR(>F)
C(epidemic_threshold) 0.043670 3.0 0.913627 0.436623
Residual 1.911935 120.0 NaN NaN

Table 4: The ANOVA F and p-value using the Ordinary Least Squares to the MF, HMF, QMF prediction
approach related to the KSE

Furthermore, to analyse the statistical difference among these experimental sets of epidemic
threshold predicted values, we have used the univariate ANalysis Of VAriance (ANOVA) test
using the Ordinary Least Squares (OLS) model, or the Bioinfokit Python package. We obtain
the summarized output of ANOVA F and p-value in Table 4 where sumsq denotes the sum
of squares, df denotes the degree of freedom, F the F-statistic, and PR the P-value. Here, the
p-value 0.44 > 0.10. Hence, the null hypothesis is accepted. Thus, there is "not significant" sta-
tistical difference between different sets of epidemic threshold values. So, once again, ANOVA
shows that the new proposal KSE epidemic threshold is similar to the earlier generally used in
the literature.

Overall, we observed that the new KSE prediction approach of the epidemic threshold is sub-
stantially similar to the earlier in the literature. Both KSE and QMF perform better than the
other approaches in terms of « accuracy ». Moreover, KSE offers a new approach to predicting
the epidemic threshold using nodes number, spectral radius and energy of the graph. Hence it
constitutes a new general and spectral approach to analyse the spreading processes in a network
through structural and spectral properties of a network.

The potential advantages and benefits of the KSE new approach compared to the earlier
We established an analytical comparative study in Table 5. Here, the term relatively is related to
the context and dataset of this study. This term refers to the possible suggestive theoretical in-
terpretations, or missing formal proofs. Moreover, contextually in Table 5, the criteria accuracy
refers to the quality to capture the full network structure; Transparency, is the quality to assess
rule, and function of each parameter in the formula, even the assessment of the parameters in
relationship; Flexibility refers to the ability to change or be real scale easily; and parameter,
refers to the quality of parameter(s), its number, also their meaning in the relationship. Never-
theless, no model or approach is perfect; the new KSE can have a potential appropriate balance
of accuracy, transparency, flexibility, and parameter.
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Model Accuracy Transparency Flexibility Parameter
MF Relatively poor fit:

network structure
isn’t considered.

Relatively easy: sin-
gle parameter ⟨k⟩.

Relatively poor: due
to its assumptions.

The use of a single pa-
rameter ⟨k⟩.

HMF Relatively poor fit:
due to its parameters
can be inaccurate.

Relatively medium:
can assess the role of
⟨k⟩, ⟨k2⟩.

Relatively medium:
due to its assump-
tions.

The use of 2 parameters
⟨k⟩, ⟨k2⟩.

QMF Relatively medium
fit: captures network
structure using only
λmax

Relatively easy: due
to it single parameter
λmax.

Relatively good: due
to its assumptions.

The use of a single pa-
rameter λmax.

KSE Relatively high fit:
captures the full net-
work structure using
{λmax, E(G), n, k }.

Relatively medium:
parameter assess-
ment in relationship
can be complex.

Relatively im-
proved: due to its
assumptions, using
{λmax, E(G), n}
and a scale k.

The use of {λmax,
E(G), n, k} structural
and spectral parameters
in relationship.

Table 5: The potential advantages and benefits of the new approach over the earlier: a qualitative com-
parison between MF, HMF, QMF and the new KSE prediction approach of the epidemic threshold

Furthermore, according to the relationship between the epidemic threshold and R0, we have
driven some real case studies related to the previous work in the literature about the R0:

• The dataset used in [2]: small-world networks of the Newman Watts Strogatz model for
24 nodes, each of which is connected to 6 nearby nodes, where the probability of an extra
link is 1/6.

• The dataset used in [13]: β = 0.005, δ = 0.9, γ = 0.9. Authors have used these parame-
ters for the simulations, and their differential equations.

Table 6 shows the structural information of the used datasets. However, under the assumption

Id Network Type n m ⟨k⟩ ⟨k2⟩ den cc
1 Newman Watts Strogatz small-world 24 83 6.916 48.583 0.301 0.536

Table 6: The summary of structural information from the dataset

of a density-dependent transmission, by definitions: R0 = βn/γ, yet λc = β/γ; thus R0 =
λc×n . So, we obtain the following results in the Table 7. We can observe that the structural R0

Id λmax λQMF
c λKSE

c Rλ
QMF
c

0 R
λKSE
c

0 ROriginal
0

1 7.116 0.140 0.133 3.360 3.192 3.268

Table 7: Comparison between different structural λQMF
c , λKSE

c , and structural RλQMF
c

0 , RλKSE
c

0 related
to the original ROriginal

0 based on differential equations

denoted RλQMF
c

0 , RλKSE
c

0 respectively based on λQMF
c , and λKSE

c are very closed to the original
value of ROriginal

0 obtained using differential equations in [13, 2]. These results highlight the
similar accuracy of the KSE related to the earlier approach, specifically to the most used QMF.
Besides, these results bring nearer the network-based model for the structural approach of R0

and the mathematical modelling approaches of R0 using a system of differential equations.
This result emphasises the usefulness of network-based structural approach for the prediction
of some key epidemiological parameters such as λc, R0.
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VI CONCLUSION

In this paper, we address the accurate understanding and prediction of the epidemic threshold on
the complex networks in the spreading process context. Here, network structure fundamentally
influences the dynamics of the spreading processes with a boundary condition for spreading
processes over networks like the epidemic threshold. Therefore, to improve the structural pre-
diction approaches, we have designed and experimented a new general structural and spectral
prediction approach of epidemic threshold called KSE. The new approach further captures the
full network structure using nodes number, spectral radius, and the energy of graph. We have
driven simulations on 31 networks at different structures and topologies: 17 real social net-
works, 9 generated social networks, 3 random networks, and 2 regular random networks. With
data analysis and data visualization techniques, the simulations show that the new KSE approach
is similar to the earlier MF, HMF, QMF and shares major features with the earlier, specifically
with the most used accurate QMF approach. The new prediction approach of the epidemic
threshold offers a new general and spectral area to analyse the spreading processes over a net-
work. The results are both fundamental and practical interest in improving the control and
prediction of spreading processes over networks. Particularly meaningful to decision-makers in
public health who can use these results to improve the control of an infectious disease spread,
and also to inform policy to improve the successful mitigation and eradication strategies. Fu-
ture research can examine the temporal evolution of a specific infectious disease in a network.
As well as to enhance the proposed epidemic threshold approach with other spectral theory of
graph concepts.

REFERENCES

[1] Mohammed Alshahrani, Zhu Fuxi, Ahmed Sameh, Soufiana Mekouar, and Sheng Huang.
Efficient algorithms based on centrality measures for identification of top-k influential
users in social networks. Information Sciences, 527, 03 2020.

[2] Pierre Auger, Etienne Kouokam, Gauthier Sallet, Maurice Tchuente, and Berge Tsanou.
The ross–macdonald model in a patchy environment. Mathematical Biosciences,
216:123–131, 2008.

[3] Norman Biggs. Algebraic graph theory. Cambridge University Press, 1993. (2nd ed.),
Cambridge.

[4] Vladimir Bogachev and Oleg Smolyanov. Spectral Theory. Chapter of Real and Func-
tional Analysis, Moscow Lectures, pages 279–356. February 2020.

[5] F.R.K. Chung and CBMS Conference on Recent Advances in Spectral Graph Theory
(1994 : California State University (Fresno)). Spectral graph theory. CBMS-NSF re-
gional conference series in mathematics, no. 92. Conference Board of the Mathematical
Sciences, 1997.

[6] Dragos Cvetkovic, Michael Doob, and Horst Sachs. Spectra of graphs – theory and appli-
cation. July 1980. New York.

[7] Odo Diekmann, Hans Heesterbeek, and Tom Britton. Mathematical tools for understand-
ing infectious disease dynamics. Princeton University Press, January 2013.

African Journal of Research in Computer Science and Applied Mathematics Page 10 of 11



[8] Silvio Ferreira, Claudio Castellano, and Romualdo Pastor-Satorras. Epidemic thresholds
of the susceptible-infected-susceptible model on networks: A comparison of numerical
and theoretical results. Physical Review E, Statistical, nonlinear, biological, and soft mat-
ter physics, 86, October 2012.

[9] Ivan Gutman. The energy of a graph. Ber. Math. Statist. Sekt. Forschungsz. Graz, 103:1–
22, 1978.

[10] Ivan Gutman and Harishchandra Ramane. Research on graph energies in 2019. MATCH
Communications in Mathematical and in Computer Chemistry, 84:277–292, July 2020.

[11] Matt Keeling and Pejman Rohani. Modeling Infectious Diseases in Humans and Animals.
Princeton University Press, September 2011.

[12] Jeffrey Kephart and Steve White. Directed-graph epidemiological models of computer
viruses. In Proceedings of the 1991 IEEE Computer Society Symposium on Research in
Security and Privacy, pages 343–359, January 1991.

[13] Etienne Kouokam, Pierre Auger, Hassan Hbid, and Maurice Tchuente. Effect of the num-
ber of patches in a multi-patch sirs model with fast migration on the basic reproduction
rate. Acta Biotheor, 56:75–86, 2008.

[14] Keegan Kresge and Natalie Petruzelli. Analyzing epidemic thresholds on dynamic net-
work structures. SIAM Undergraduate Research Online, 14, June 2021.

[15] Piet Van Mieghem and Ruud Van de Bovenkamp. Accuracy criterion for the mean-field
approximation in susceptible-infected-susceptible epidemics on networks. Physical Re-
view E, Statistical, nonlinear, biological, and soft matter physics, 91, March 2015.

[16] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in scale-free
networks. Physical Review Letters, 86:3200–3203, May 2001.

[17] Lorenzo Pellis, Frank Ball, Shweta Bansal, Ken Eames, Thomas House, Valerie Isham,
and Pieter Trapman. Eight challenges for network epidemic models. Epidemics, 10:58–
62, August 2015.

[18] Bastian Prasse and Piet Van Mieghem. Time-dependent solution of the nimfa equations
around the epidemic threshold. Journal of mathematical biology, 81, December 2020.

[19] Keith J. Tinkler. The physical interpretation of eigenfunctions of dichotomous matrices.
Transactions of the Institute of British Geographers, 55:17–46, 1972.

[20] Wei Wang, Ming Tang, Harry Eugene Stanley, and Lidia Braunstein. Unification of theo-
retical approaches for epidemic spreading on complex networks. Reports on Progress in
Physics, 80, December 2016.

[21] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. Epidemic
spreading in real networks: An eigenvalue viewpoint. 22nd International Symposium on
Reliable Distributed Systems (SRDS 2003). Proceedings, pages 25–34, November 2003.

African Journal of Research in Computer Science and Applied Mathematics Page 11 of 11


	I Introduction
	II The previous approaches and their limitations
	2.1 The Mean-field (MF) approach
	2.2 The Heterogeneous mean-field (HMF) approach
	2.3 The Quenched mean-field (QMF) approach

	III The epidemic threshold and the spectral theory of graph
	3.1 The eigenvalue of graph
	3.2 The energy of graph

	IV The proposed new approach
	V Experimentation, results and discussions
	VI Conclusion

