
Application of the multilingual acoustic representation model XLSR for
the transcription of Ewondo

Yannick Yomie Nzeuhang*1, Paulin Melatagia Yonta1,2, Benjamin Lecouteux3

1Department of Computer Sciences, University of Yaounde I, Cameroon
2IRD, UMMISCO, F-93143, Bondy, France

3Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

*E-mail : Yannick.Yomie yynzeuhang@gmail.com

DOI : 10.46298/arima.13621
Submitted on 20, May, 2024 - Published on 9, September, 2024

Volume : Volume 42 - Special issue CRI 2023 - 2024 - Year : 2024
Special Issue : Volume 42 - Special issue CRI 2023 - 2024

Editors : Paulin-1 Melatagia-1, René-2 Ndoundam-2, Kamel-2 Barkaoui-2, Blaise Omer-2 Yenke-2

Abstract
Recently popularized self-supervised models appear as a solution to the problem of low data avail-
ability via parsimonious learning transfer. We investigate the effectiveness of these multilingual
acoustic models, in this case wav2vec 2.0 XLSR-53 and wav2vec 2.0 XLSR-128, for the transcrip-
tion task of the Ewondo language (spoken in Cameroon). The experiments were conducted on 11
minutes of speech recorded from 103 read sentences. Despite a strong generalization capacity of
multilingual acoustic model, preliminary results show that the distance between XLSR embedded
languages (English, French, Spanish, German, Mandarin, . . . ) and Ewondo strongly impacts the
performance of the transcription model. The highest performances obtained are around 69% on
the WER and 28.1% on the CER. An analysis of these preliminary results is carried out and then
interpreted; in order to ultimately propose effective ways of improvement.
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I INTRODUCTION

Self-supervised learning is a deep learning method for learning robust representations from un-
labeled data. the main idea is to automatically generate labels for a simple pretext task, enabling
the model to better understand the given structure, and then to use this learned information for a
more complex target task. This method has recently been widely illustrated in speech process-
ing, notably by the multilingual acoustic model wav2vec 2.0 XLSR-53 [8] and also XLSR-128
[10], which deliver impressive results for automatic speech recognition (ASR) tasks, even on
small datasets. By these fact XLSR presents itself as a solution for low ressources languages
for which automatic speech processing tasks are difficult to address by deep learning, due to
the lack of large dataset. Ewondo, language from central Cameroon falls into this category of
language.
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Our aim is to evaluate effectiveness of multilingual acoustic model on Ewondo, which has the
particularity of being tonal. To achieve this goal, we have built several ASR models based on
wav2vec 2.0[7] in various configurations, we have evaluated the performance on word error
rate (WER) and character error rate (CER). Our contribution in this paper is twofold: 1) The
construction of a basic speech recognition model for Ewondo 2) Preliminary performance eval-
uation of a multilingual acoustic model for Ewondo, which allows us to outline paths for the
construction of a robust model.

The rest of the paper is organized as follows. In section 2 we briefly introduce and discuss the
background related to this work. Section 3 presents our approach. In section 4 we describe the
experiments and discuss the results. Finally, we conclude in section 4.

II BACKGROUND

2.1 Ewondo language

Ewondo is a bantue language of central Cameroon, it is spoken by the Ewondo people in
Cameroon, predominantly in the central and southern regions. It derived from the Fang-Beti
language, which belong to the extensive Bantu language family, known for its diversity and
widespread presence across sub-Saharan Africa.

The linguistic and cultural landscape of Ewondo is deeply rooted in the traditions and heritage
of the Ewondo people. This language serves as a vital means of communication within the
community, reflecting the rich history and social intricacies of its speakers. With its prevalence
in urban areas, particularly in the capital city, Yaoundé, Ewondo plays a crucial role in daily
interactions, commerce, and cultural expression.

The phonetics of Ewondo involve a set of distinctive consonants and vowels, contributing to its
unique sound system. Pronunciation nuances, intonation patterns, and rhythmic elements are
integral to conveying meaning accurately in spoken Ewondo. The language also incorporates a
range of tones, a common feature in many Bantu languages, which further adds depth and com-
plexity to its oral expression. In fact Ewondo is a tonal language, meaning that word meanings
differ according to pitch, even if the consonants and vowels are the same [1] (Table 2 shows
pairs of words of this type). The Ewondo language has 8 tones (Table 1), divided into punctual
tones, which are tones for which the pitch remains invariable from the beginning to the end of
the pronunciation, and modular tones, which vary in pitch.

Efforts to document and preserve Ewondo, both in written and oral forms, contribute to safe-
guarding the linguistic diversity of Cameroon. Like all Cameroonian languages, Ewondo uses
the GACL1 [4] alphabet (general alphabet of Cameroonian languages) based on the Latin al-
phabet. As with many endanged languages, Ewondo faces challenges such as globalization,
urbanization, and the dominance of major languages. However, initiatives to promote language
education, cultural exchange, and community engagement are crucial for the continued vitality
of Ewondo and its significance in the mosaic of Cameroon’s linguistic heritage; this work is also
in line with this aim. Despite of efforts and like all the languages of Cameroon, Ewondo remains
a low ressource language, i.e. numerical resources are almost non-existent. This constitutes a
major difficulty for deep learning approaches to solving tasks such as speech recognition. How-
ever, recent approaches based on self-supervised models make it possible to tackle this type of
language.

1https://www.silcam.org/fr/resources/archives/32295
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Pontuel tone Modular tone
Denomination Notation Denomination Notation
Low [Tb] [ v̀ ]
High [HT] [ v́ ] High-Low [HLT] [ v̂ ]
Medium [MT] [ v̄ ]
M-Low [MLT] [ v ]
Supra-High
[SHT]

[ v̋ ] Low-High [LHT] [ v̌ ]

Infra-Low [SIL] [ v ]

Table 1: Tones in Ewondo language

Words Translation Words Translation
minkud bag minkúd cloud

zám raffia zàm good taste
bám to scold bam to worry
bóg to pile up bog to extract
tag to rejoice tág to classify

Table 2: Words that differ only in tone

Figure 1: Left. Example of a BERT pre-training task with the sentence "m n abum" (I’m pregnant), the
word "n" is hidden and the model must predict it. Rigth. The same concept is applied to the audio signal,
where certain portions are masked and wav2vec 2.0 must predict them.

2.2 ASR with Self-supervised models

Self-supervised learning is a machine learning paradigm where a model learns to make predic-
tions about certain aspects of the input data without explicit supervision from labeled examples.
First the NLP (Natural language processing) plume this approach has gained popularity for its
ability to use large amounts of unlabeled data, often abundant in real-world scenarios. In fact,
in self-supervised learning, the learning algorithm creates its own supervision signal through a
carefully designed pretext task. The pretext task is a task that is generated from the input data
itself and doesn’t require external annotations. the model is trained to solve this pretext task,
and the acquired knowledge can then be transferred to downstream tasks where labeled data
might be scarce.

The literature is replete with a number of self-supervised acoustic models (for the review of
these model the reader can refers to [16]), but we have chosen to exploit the XLSR-53 a crosslin-
gual version of wav2vec 2.0 [7] for its promising results on languages with small amounts of
data. This model uses a pre-training task similar to BERT[6], illustrated in Fig 1. This pre-
training task consists of randomly masking words in sentences and asking the model to find the
correct words. In the case of speech, parts of the signal are masked.

III WAV2VEC2.0 FOR EWONDO

We can divide our model in two parts; the cross-lingual speech representations (XLSR) [8,
10] as a feature extractor and connectionist temporal classifier(CTC) [2] as a classifier. This
architecture is mainly inspired by that of [15], used to exploit self-supervised models for two
Creole languages, but also by [8, 10, 11] which used the same architecture to demonstrate
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the effectiveness of XLSR. This section present the overall design of the model and different
configurations used during experiments.

3.1 The Model

Our work is based on the Wav2Vec 2.0 [2] model. Overall, the Wav2vec 2.0 uses an auxil-
iary task similar to BERT [13], where certain parts of the signal are masked in order to be
reconstructed by the system, it is trained by predicting speech units for masked parts of the
audio. As shown in Figure 3 we use as feature extractor the cross-lingual speech represen-
tations (XLSR)[8] version which is a multilingual representation model pre-trained on many
languages. The multilingualism of the model increases its generalization capabilities, and this
need for generalization is further exacerbated in our context where the small amount of data
forces us to freeze the weights of the extraction model, i.e. the weights of XLSR will not be
modified during training. Our architecture is a same as [15], an encoder-decoder architecture
where XLSR acts like a encoder so it produce the latent representation of speech which is use
by a decoder, connectionist temporal classifier (CTC) in this case. The CTC decoder model is
a simple linear transformation followed by a softmax normalization. This layer should project
output vector of encoder into the dimensionality of the output alphabet for each position in the
output sequence. The main feature of this decoder is that it does not require strict alignment
between the audio signal and its transcription, i.e. it only needs the input vectors (produced by
XLSR) and the overall output sentence for training rather than a strict correspondence between
input vector segments and output sentence segments. Let’s take a closer look at the formal
description of each part of our model.

Encoder. This XLSR is a multilingual version of wav2vec 2.0 that consists of three parts:
firstly, the feature encoder, which contains a multilayer convolutional neural network to process
the raw waveform of audio speech. Secondly, the transformers, which are fed by the encoded
feature and learn a contextualized representation from it, and thirdly the quantization module
for selecting the speech unit to be learned from the latent representation space produced by the
feature encoder. As mentioned earlier, wav2vec uses a self-supervised strategy similar to BERT
[6] for learning. This strategy involves randomly masking part of the feature encoder’s output
before sending it to the transformer, but the learning objective is formulated in a constrastive
way and requires the identification of the correct representation, not of the encoded representa-
tion, but of the quantized latent audio representation qt in a set of K + 1 quantized candidate
representations q̃ ∈ Qt which include qt and K distractors for each masked time step.

To build a multilingual version of wav2vec 2.0, XLSR uses a shared quantization module on fea-
ture encoder representations, which means that feature encoder representations from different
languages can be associated with the same quantized speech units. The multilingual quantized
speech units produced by the quantization module are then used as targets for a transformer.
This process forces the model to learn how to share discrete tokens between languages, creating
a link between them that leads to a universalization of the acoustic representations obtained by
the model.

Decoder. The CTC algorithm was developped by Grave and al.[2] for labeling sequence
data task. As we previously said, it is alignment-free i.e in our case it doesn’t require an align-
ment between the input vector segments produce by XLSR and the output sentence segments.
However, to get the probability of an output given an input, CTC works by summing over the
probability of all possible alignments between the two. To define these possibles alignments,
Grave et al. [2] introduce the ϵ symbol as a blank character in the output alphabet. CTC merges
repeats characters between ϵ (Figure 2), so if an output has two of the same character in a row,
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Figure 2: (a) Steps taken by CTC to obtain the final transcription of the word "yaan" from one of its valid
alignments. Firstly, we merge the repeating characters that are not interspersed with ϵ and secondly, we
delete ϵ. (b) Examples of valid and invalid raw output for the word "fas". An alignment is valid when we
can obtain a correct final transcription after the operation described in (a)

.

then a valid alignment must have an ϵ between them (Figure 2). Based on previous description
of alignment in CTC, during the training phase the objective is to maximize

P (Y |X) =
∑
a∈A

T∏
t=1

p(at|X) (1)

where a is a possible aligment and p(at|X) is probability to have symbol at in time t in Y
knowing X . p(at|X) is given by the softmax at each time step. During inference phase CTC
pick up â = argmax

Y
(P (Y |a)) as a final alignment and give an output after merging and remove

operation.

As mentioned earlier in our model, XLSR is frozen during the train process ie only the weights
of decoder are modified during the process. Once the model is trained, if we would like to use it
to find a likely transcription for a given new raw speech data (waveform), we proceed as follow:
encoded it by XLSR in a vector X , then CTC decoder tent to provide Ŷ = argmax

Y
(P (Y |X))

where P (Y |X) is the probability to have a sentence Y with X as input. Then greedy search is
used as an inference process to pick up Ŷ , meaning we take the letter with the highest probability
at each time step, until you receive the special token symbolizing the end.

3.2 Experiment setup

We have chosen three main axes experiments, corresponding to different configurations of the
features extractor model and data pre-processing.

Tokenization. If a token for speech recognition is the character, Rolando Coto-Solono’s
work[12] on Bribri (a Latin American language), has shown that it could be beneficial in a tonale
low ressources language context to make tones explicit in the transcriptions of texts to be recog-
nized. In fact, he proposes to introduce tones as explicit characters to be recognized. To verify
this aspect, in ours experiments we introduced two tokenization principles presented in Table
3: TonSep where tones are explicit symbols to be recognized by the model, and ALL+tones
where a tone was associated to a character and represented as one symbol to reconized. We also
used byte pair encoding (BPE)[5] , a popular machine translation technique for tokenization
that subdivides words into subunits to keep vocabulary as small as possible.
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Figure 3: ASR with self-supervised XLSR Model. Speech data is passed in wavform to XLSR, which
provides a vector representation of it. This representation is used by the CTC to predict a transcription.

Type of Tokenisation Example Tokenization
ToneSep ma wóg miǹtàg m|a| w|´|o|g |m|i| |̀n|t|‘ |a|g|
All+tones ma wóg miǹtàg m|a|w|ó|g|m|i|‘|n|t|à|g|

Table 3: Type of tokenization

Features extractor . We have very little labelized data, so the XLSR multilingual features
extraction model is frozen, which means that it provides vectors from the weights derived from
its pre-training. We propose to experiment with various XLRS pre-trained models. These
models are presented in the Table 4. Models named XLSR-300m2, XLSR-1b3 XLSR-2b4 are re-
spectivily the standard XLSR-128 model with 300 million, 1 bilion and 2 bilion of parameters;
XLSR-535 is the standar model [8], LeBench6 is the Wav2vec 2.0 LeBenchmark [14] trained on
data from the French language exclusively; the remaining models (XLSR-kw and XLSR-sw)
being produced from XLSR-53 by fine turning on a specified language, in fact these models
was built using standard model weights as initial weights, then pre-training was continued us-
ing unlabeled data of a specific language (kinyarwanda,and swahili). Following this method,
XLSR-kw7 is a specialized XLSR-53 model for the Kinyarwanda language and XLSR-sw8 is a
specialized XLSR-53 for the Swahili language, both of which are African bantue languages.

Language model. Previous ASR models required both a language model and a pronuncia-
tion dictionary to transform classified fragment sequences of audio recordings into a coherent
transcript. Recent end-to-end models have made this possible, but [7] has shown that the use of
a language model in conjunction with wav2vec 2.0 significantly improves ASR performance,
especially in low ressources contexts. As part of our experiments, we tested the ASR model
with the contribution of a bigram language model (this bigram is use to produce tables results
5,6,8 ) constructed from the transcriptions of the recordings in our dataset and also a 5-gram
(used to produce the result of table 9) constructed on new testament of the Bible .

2https://huggingface.co/wav2vec2-xls-r-300m
3https://huggingface.co/wav2vec2-xls-r-1b
4https://huggingface.co/wav2vec2-xls-r-2b
5https://huggingface.co/facebook/wav2vec2-large-xlsr-53
6https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large
7https://huggingface.co/lucio/wav2vec2-large-xlsr-kinyarwanda
8https://huggingface.co/Akashpb13/Swahili_xlsr
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Model Denomination Source
XLSR-300 Facebook XLSR-300m Hugging Face
XLSR-1B Facebook XLSR-300m Hugging Face
XLSR-2B Facebook XLSR-300m Hugging Face
XLSR-53 Facebook XLSR-53 Hugging Face
LeBench Wav2vec2 LeBenchmark Hugging Face
XLSR-kw XLSR kinyarwanda lan-

guage
Hugging Face

XLSR-sw XLSR for swahili language Hugging Face

Table 4: Features extractions models

IV EXPERIMENTS

The main objective of this work is to evaluate the performance of XLSR for speech recognition
of the Ewondo language. To achieve this goal, we collected and pre-processed speech data,
then implemented the architecture described in Section 3. the literature has helped us choose
the right tools to carry out these tasks. This section presents the details of these activities as
well as the evaluation results.

4.1 Implementation details

Dataset and preprocessing. The Ewondo language has no public dataset for the ASR task,
so we built a corpus from 103 sentences read by 5 speakers, including 4 men and one woman.To
ensure that there was no utterance for a sentence in both the training and test sets, we randomly
selected 10% of the sentences for the test (1min3s) and the remaining 90% of the sentences for
the training (9min51s). The data was recorded at the Computer Science Laboratory of Yaounde
I, with a dictaphone, we use audacity9 sofware for speech enhancement.

Architecture. We used the extraction models from the hugging face repository 10 [9] as well
as the recipes proposed on the same platform for the development of the ASR model 11. The
model hyperparameters are the same as [15]. We have used the KenLM[3] framework to build
the bigram language model using transcript texts only and 5-gram using a New Testament Bible;
this model simply stores the probabilities of word tuples appearing in the text.

4.2 Results and Discussions

Tables 5,6, and 7 show performances of the ASR model according to the different extraction
models, but also according to the use of the language model (LM/no.LM) during decoding. In
these tables, we can see that the performance associated with Lebench is by far the worst of all
configurations. This discrepancy can be explained by two facts: Lebench is a monolingual ex-
tractor trained only on French, a language linguistically distant from Ewondo. We can also see
from these tables that the use of the language model systematically increases the performance
of the ASR model, which is consistant with the results presented in [7]. This observation is
confirmed by the table 9, which shows an increase in the average performance of the 4 mod-
els tested with an LM (5-gram) built on a larger corpus. However, given the difference in the
amount of text used to produce the bigram and the 5-gram, we might have expected a more
significant difference in the performance of the models that exploit them. One hypothesis that
could explain these results is the context of the text corpus chosen to build the 5-gram (Bible),

9https://www.audacityteam.org
10https://huggingface.co
11https://huggingface.co/blog/wav2vec2-with-ngram
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WER CER
LM no.LM no.LM LM

XLSR-300m 789 85 41 36
XLSR-1b 78 84.1 46.2 41.8
XLSR-2b 78.9 91.7 46.1 41.3
XLSR-53 80 85.2 37.7 33.6
XLSR-rw 80 81.1 36.5 36.4
XLSR-sw 81.6 86.4 40.2 37.3
Lebench 97.3 1 1 93

Table 5: ASR model performance (%)
with different feature extractors. Type of
Tokenization = ALL+tones

WER CER
LM no.LM no.LM LM

XLSR-300m 69 72.4 31.5 28.1
XLSR-1b 77.8 78.9 36.2 36
XLSR-2b 79.4 82.1 36.9 33.5
XLSR-53 80 85.2 37.7 33.6
XLSR-rw 75.6 82.1 31.9 30
XLSR-sw 74 75.1 30.2 28.3
Lebench 97.3 1 1 93

Table 6: ASR model performance (%) with dif-
ferent feature extractors. Type of Tokenization
= TonSep

WER CER
LM no.LM no.LM LM

XLSR-300m 96.7 84.1 35.4 84.4
XLSR-1b 97.8 100 69.6 69.4
XLSR-2b 94.5 100 72.3 86.3
XLSR-53 97.8 100.0 63.9 70
XLSR-rw 97.2 100 61.1 63.0
XLSR-sw 97.2 100 74.2 67.1
Lebench 97.3 1 1 93

Table 7: ASR model performance
(%) with different feature extractors.
Type of Tokenization = BPE

WER CER
LM no.LM no.LM LM

ToneSep 79 82 43 40.3
ALL+tones 82.2 87 53.7 76.1
BPE 96 97 68 76

Table 8: Average results for each tokeniza-
tion methods

which is far removed from the transcription text and therefore not sufficiently helpful during
decoding. We also note the counter-intuitive results of the large XLSR-128 (XLSR-1b and
XLSR-2b), which performs less well than XLSR-300m. One explanation might be that the rep-
resentations produced by XLSR-1b, XLSR-2b are proportional to the width of the model, and
that the larger the representation, the more data is needed to finetune the decoder.

Table 8 shows the average performance of the various ASR models in relation to the type of
tokenization chosen. The BPE acts as the worst of all, suggesting that it is not suited to this
task; on the other hand, we can see that ToneSep is on average higher than ALL+tones., which
means that it’s better to recognize tones separately from characters in the low ressources case,
a result in line with the recommendations of [12]. On average, the XLSR-300m performs best
(69% for the WER and 28.1% for the CER), outperforming the specialized models, which can
be explained by the richness of their representation due to the great diversity of languages used
for pre-training. However it is following by the XLSR-sw (74% on WER and 28.3% on CER)
and XLSR-rw (75.6% on WER and 30% on CER) respectively, this can be explained by the
proximity of these two languages to Ewondo. Overall performance remains low compared
with the literature, which can be attributed to the extremely small amount of data available for
training but also the distance existing between the target language and the languages underlying
the pre-training of the acoustic model.

4.3 Conclusion

The aim of this paper was to apply the multilingual acoustic model wav2vec XLSR to the
Ewondo language for the transcription task. Preliminary results show overall poor performance
compared to the litterature in other languages (the best score being 69% on the WER and 28.1%
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WER CER
ALL+tones ToneSep BPE ALL+tones ToneSep BPE

XLSR-300m 83.2 70.8 91.8 37.6 28.1 90.4
XLSR-53 80 73.51 90.8 33.6 290 85.9
XLSR-rw 82.1 77.2 100 34.4 30.5 60.9
XLSR-sw 77.2 72.4 100 66.9 30.9 35

Table 9: ASR model performance (%) with different feature extractors. LM=5-gram

on the CER). These results can be explain by very small size of the dataset and the distance ex-
isting between the target language and the languages underlying the pre-training of the acoustic
model. Although some similar work has already been carried out on African languages, our
work reveals some singularities: firstly, the language of application, which to our knowledge
is the first to be the subject of such a study; and secondly, the extremely small size of the
dataset, which calls for greater finesse in pre-processing. In fact, in the literature working on
low-resource data, datasets extend over at least several hours. This extremely low resource has
enabled us to see the generalization limits of XLSR. Despite of the low performance, these
experiments have enabled us to sketch out, apart from the need for additional data collection,
some paths to follow in oder to improve the transcription model. The first is to pre-train a
multilingual wav2vec XLSR model on Ewondo recordings, in order to familiarize the model
with the language; the second is to pay particular attention to the explicitness of tones in tran-
scription, which has proved beneficial to the model; the third consists in building a more robust
linguistic model from a richer corpus of texts that is also close to the transcription corpus. To
further evaluate wav2vec in the Ewondo transcription task, a comparison with others features
extractors models is a particularly interesting prospect.
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