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Abstract
Under-resourced languages encounter substantial obstacles in speech recognition owing to the
scarcity of resources and limited data availability, which impedes their development and widespread
adoption. This paper presents a representation learning model that leverages existing frameworks
based on self-supervised learning techniques—specifically, Contrastive Predictive Coding (CPC),
wav2vec, and a bidirectional variant of CPC—by integrating them with multilingual learning ap-
proaches. We apply this model to three African languages: Wolof, Swahili, and Fongbe. Our
evaluation of the resulting representations in a downstream task, automatic speech recognition, uti-
lizing an architecture analogous to DeepSpeech, reveals the model’s capacity to discern language-
specific linguistic features. The results demonstrate promising performance, achieving Word Error
Rates (WER) of 61% for Fongbe, 72% for Wolof, and 88% for Swahili. These findings underscore
the potential of our approach in advancing speech recognition capabilities for under-resourced lan-
guages, particularly within the African linguistic landscape.

Keywords
Self-supervised learning ; Multilingual representation learning ; Automatic speech recognition ;
Under-resourced languages.

I INTRODUCTION

Speech recognition technology has seen significant advancements in recent years, leading to
numerous applications such as virtual assistants, transcription services, and voice command
systems. However, these advancements have predominantly benefited languages with abundant
resources, extensive datasets, and well-developed linguistic models. In contrast, many African
languages, classified as under-resourced, have been largely sidelined in the development of
speech recognition systems due to the limited availability of high-quality data and resources.

Developing effective speech recognition systems for under-resourced languages like Wolof,
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Fongbe, and Swahili is crucial for broadening access to technology and ensuring these lan-
guages are digitally preserved. The scarcity of large labeled datasets presents a unique challenge
for applying traditional supervised learning methods to these languages.

In recent years, self-supervised learning, particularly the contrastive learning approach [7], has
emerged as a promising paradigm for learning representations from unlabeled data. Contrastive
learning is a general framework that aims to construct a feature space wherein related points are
brought into proximity while unrelated points are distanced. Several methods have been devel-
oped within this framework, including Wav2Vec [8], Contrastive Predictive Coding (CPC) [6],
and Bidirectional CPC [10]. CPC, in particular, represents an unsupervised machine learning
approach that seeks to derive meaningful, higher-level semantic representations from unpro-
cessed data such as text and audio.

Nevertheless, these methods remain data-intensive for learning high-quality representations,
posing a significant challenge for languages with limited resources. Kawakami et al. [10]
addressed this issue by employing multilingual learning, an approach that aims to learn a shared
representation of speech from data originating from diverse languages. They demonstrated the
efficacy of learning representations with a large amount of multilingual data (predominantly
English) and then evaluating the transferability of these representations to other under-resourced
languages, including Wolof, Swahili, and Fongbe, yielding promising results.

In this work, we aim to construct a representation model specifically tailored to African lan-
guages, capable of capturing the underlying features unique to each language. To this end, we
leverage CPC, wav2vec, and bidirectional CPC within the context of multilingual learning. Our
study focuses on three under-resourced languages: Wolof, Fongbe, and Swahili. This approach
allows us to augment the available training data and investigate how these methods capture
the distinctive characteristics of each language by evaluating them in the context of automatic
speech recognition tasks.

The fundamental question we address is whether combining under-resourced languages that
share similar linguistic and phonetic characteristics enhances the quality of features extracted
for each language individually. Our objective is to improve speech processing tasks for these
languages.

The remainder of this paper is structured as follows: Section II presents an overview of the
self-supervised learning approaches employed in our framework. Section III delineates the
contrastive stacking model for multilingual learning with three African languages. Section IV
is devoted to our experiments and the presentation of results. Finally, we conclude and discuss
future directions in Section V.

II RELATED WORK

Self-supervised learning has emerged as a revolutionary paradigm in machine learning, enabling
algorithms to extract meaningful representations from unlabeled data [9]. This approach is par-
ticularly valuable in contexts where labeled data is scarce or expensive to obtain, such as in the
domain of under-resourced languages. Self-supervised learning leverages the inherent structure
of the data to generate its own supervisory signals, distinguishing it from traditional unsuper-
vised learning methods that primarily seek to uncover hidden patterns or structures within the
data itself.

Contrastive learning aims to learn discriminative representations by distinguishing between
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pairs of similar (positive) examples and pairs of dissimilar (negative) examples [7]. A posi-
tive example typically constitutes a slightly different view (e.g., a minor transformation) of the
same original example. Negative examples are different examples drawn from the same dataset.
The objective is to learn robust representations that minimize the distance between positive ex-
amples in the representation space while maximizing the distance between negative examples.

Conversely, generative learning approaches train models to generate new data that resembles
the training dataset. These models attempt to capture the underlying distribution of the training
data, enabling the sampling of new, synthetic data points. Generative models find widespread
applications in text generation, image synthesis, and audio production..

A speech signal encodes more information than text, such as speaker identity and prosodic
features, which makes it harder to generate. However, to generate all details of the input, the
model must encode all information in the speech signal. Hence, a model that learns to perfectly
reconstruct its input may not necessarily have learned to isolate the features of interest and will
encode redundant information for a given downstream task[11]. Given these considerations, we
have opted for a contrastive approach in our work. This choice is motivated by the contrastive
method’s capacity to capture discriminating features in the data without the need for complete
signal reconstruction.

The InfoNCE metric is a commonly used measure in contrastive learning to assess the quality
of learned representations. It is based on the principle of maximizing the normalized mutual
information between positive pairs and negative pairs.

The mathematical formula for the InfoNCE metric is as follows:

InfoNCE =
1

N

N∑
i=1

log
exp(sim(xi, x

+
i ))

exp(sim(xi, x
+
i )) +

∑K
j=1 exp(sim(xi, x

−j
i ))

(1)

This cost function measures the probability that the positive example (x+) is closer to the orig-
inal example (x) than any negative example (x−). The rationale behind this formulation is that
the model should maximize the probability of selecting the positive among the negatives.

Aaron et al. [6] proposed contrastive predictive coding (CPC) (Figure 1), a self-supervised
machine learning method for extracting high-level semantic representations from raw data, such
as text or sound. In the case of sound, this refers to the audio waveform of the signal, meaning
the numerical features of the audio. It comprises two networks: an encoder that generates
latent representations and an autoregressive network that generates contextual representations.
The cost function used here is a mutual information (MI) lower bound called InfoNCE. This
approach has produced impressive results for speaker identification and phoneme classification
tasks. However, it was not used for speech recognition.

In general, CPC [6] work as follows: given x a signal sliced into frames, the encoder network
genc encodes the signal x at each time step t, yielding the latent representations zt. Then the
second autoregressive network gar produces the contextual representations ct, taking into ac-
count the previous representations up to time step t, and predicts the future zt+k from ct, while
maximizing the MI (Mutual Information) between ct and the predicted zt+k. Both representa-
tions, zt and ct, can be used as input for the automatic speech recognition model. In our case,
we specifically use the contextual representations, ct.
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Figure 1: Overview of CPC, the proposed representation learning approach. [6]

The Contrastive Predictive Coding (CPC) uses a lower bound of mutual information called
InfoNCE, formulated as follows:

Let Z = {z1, . . . , zN} be a set containing one positive sample from the probability distribution
p(zt+k|ct) and N − 1 negative samples from a "noise" distribution p(z), the approximate lower
bound is written as:

LN = Ez[log
fk(ct, zt+k)

1
N

∑
z̃∈Z fk(ct, z̃)

] (2)

Where fk(ct, zt+k) is a scoring function that measures the similarity between the representations
of c and z [6] given by:

fk(ct, z̃) = exp(cTt Wkz̃)

where ct is the context at time t, z̃ is a negative sample from p(z), and Wk is a specific weight
matrix at time shift k.

The loss function to maximize is the sum of InfoNCE lower bounds (LN ) for each time step t
and each time shift k, i.e.,

∑
t

∑
k LN

Schneider et al [8] proposed Wav2Vec (Figure 2(a)), which is almost identical to CPC, but
they use NCE (Noice Contrastive Estimation) as loss function instead of InfoNCE (a lower
bound estimation of MI), and the encoder and context networks are made up of layers of causal
convolutions, unlike CPC which uses convolutional networks on the encoder and a layer of
GRU (Gated Recurrent Units) in the autoregressive network. Causal convolutional layers are
used to ensure that predictions at time t depend only on inputs up to time t, and not on future
inputs. This allows for properly modeling the sequential nature of audio signals. The model is
optimized to solve a next-time step prediction task. Apart from this, they took the experiments
further in the automatic speech recognition task. However, these experiments were conducted
only in English and were not used in the context of low-resource languages.

Bidirectional Contrastive Predictive Coding (Figure 2(b)) was used for multilingual learning
of speech representation, with the main aim of assessing the robustness of representations to
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(a) (b)

Figure 2: (a). Illustration of pre-training from audio data X which is encoded with two convolutional
neural networks that are stacked on top of each other [8]. (b). Bidirectional CPC Illustration [10]

domain changes and the transferability of representations to other poorly endowed languages.
For the BCPC which combines forward and backward directions, the InfoNCE loss is calculated
as the sum of InfoNCE in both directions:

LBCPC
N = Lfwd

N + Lbwd
N

where Lfwd
N and Lbwd

N are the forward and backward InfoNCE loss, respectively. They pre-
trained their model on 8,000 hours of multilingual audio data, mainly in English (95%). They
evaluated the transferability of learned representations to Wolof, Fongbe, and Swahili, but these
languages were not included in the data used for pre-training. The Word Error Rates (WER)
obtained for Wolof, Swahili, Fongbe and Amharic were 55%, 70%, 57%, and 65% respectively.

These advancements in self-supervised learning techniques have paved the way for improved
speech recognition capabilities, particularly in the challenging domain of under-resourced lan-
guages. Our work builds upon these foundations, adapting and extending these methods to
address the unique challenges posed by African languages with limited available data.

III STACKING CONSTRASTIVE MODELS

To address the challenge of limited data availability in acquiring high-quality representations,
we have devised and implemented a multilingual representation learning approach (Figure 3).
Our methodology leverages the self-supervised learning techniques proposed by Aaron et al.
[6], Schneider et al. [8], and Kawakami et al. [10]. Given that the original CPC and wav2vec
models were not initially designed for multilingual contexts, we have adapted the multilingual
representation learning approach proposed by Kawakami et al. [10] and applied it to all three
methods before their utilization in subsequent tasks.

Our study focuses on speech recognition datasets in three African languages, collected as part of
the ALFFA 1 (African Languages in the Field: Speech Fundamentals and Automation) project:
Fongbe (A. A Laleye et al. [5]), Swahili (Gelas et al. [1]), and Wolof (Gauthier et al. [4]).
These languages are characterized by unique phonological properties, including pitch harmony
and distinct phonetic inventories. It is noteworthy that these African languages are resource-
constrained, with less than 20 hours of transcribed speech data available for each.

1http://alffa.imag.fr
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Figure 3: Architecture of the model

Once we obtained these datasets, we followed the following steps for representation learning as
shown in Figure 3:

• The data was preprocessed and normalized to reduce noise and mitigate volume differ-
ences between the data. Preprocessing involves applying filters to reduce background
noise and normalize volume across recordings. This step ensures consistency in input
data for the learning model.

• We used the data set to train the representation learning algorithms, namely CPC, wav2vec,
and bidirectional CPC. We thus obtained three pre-trained models in all languages.

• To predict representations for a single language, we fed the data from that language into
one of the pre-trained models. The predicted representation vectors were then used to
train the automatic speech recognition (ASR) model.

Contrastive learning, using a mixture of audio from several languages, presents an interesting
opportunity for multilingual speech representation learning. This approach is based on the prin-
ciple that, according to the contrastive learning methodology, positive sampling is independent
of a specific language.

By combining data from diverse languages during the contrastive learning process (Figure 3),
the model is exposed to a rich variety of acoustic and linguistic structures. This exposure facil-
itates the emergence of general and shared representations. Consequently, the model can learn
to extract speech-relevant features from different languages while simultaneously capturing the
similarities and differences between them.

In conclusion, the application of contrastive learning to a mixture of multilingual data offers a
promising approach for developing speech representations that are adaptable to different lan-
guages. This method maximizes the utilization of available data for resource-constrained lan-
guages, potentially leading to more robust and versatile speech recognition systems.

Once the representations are learned, we use the obtained models to predict the representation
vectors of the data (Figure 4), which will be used as inputs to the speech recognition algorithm
DeepSpeech2 Small (a reduced version of DeepSpeech2 [3]). DeepSpeech2 is an automatic
speech recognition model based on deep learning. It uses a recurrent neural network (RNN)
with long short-term memory (LSTM) to perform the task of transcribing speech into text. It
uses the spectrograms (numerical representation vector) as model inputs but in our case we have
replaced the spectrograms by the representation vectors predicted by the pre-trained models.
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Figure 4: Architecture of the model

During the training phase of the ASR model, the parameters of the representation models
were kept constant, while the parameters of the speech recognition models were supervised
and trained using one dataset at a time [10]. The models were evaluated using the standard
Word Error Rate (WER) metric on held-out test data. The WER is calculated as the number
of words incorrectly predicted divided by the total number of words. It measures the accuracy
of the model’s transcription, where a lower value indicates better performance of the automatic
speech recognition model. To evaluate the impact of multilingual learning, we also trained
monolingual representation learning models to formulate hypotheses and compare the results.

IV EXPERIMENTS AND RESULTS

4.1 Dataset details

ALFFA (African Languages in the Field: Speech Fundamentals and Automation) is a research
project aimed at collecting high-quality linguistic data for understudied African languages us-
ing speech recognition to enable speakers of these languages to access information in their lan-
guage. The ALFFA project has gathered data for several African languages, including Wolof,
Swahili, and Fongbe, available on GitHub2. These languages are considered low-resource,
hence the inherent interest in studying them. Moreover, from a more objective standpoint, these
languages were chosen because there existed significant and usable public data sources for each.

4.1.1 Wolof

The Wolof language, primarily spoken in Senegal, is represented in a dataset featuring 21 hours
of recorded speech from 18 distinct speakers. Wolof distinguishes itself with an extensive
vowel system and a unique possession indicator, "ñu." Noteworthy features include its nom-
inal class system and the use of specific prefixes based on these classes, contributing to Wolof’s
linguistic distinctiveness. This dataset is meticulously curated, drawing from diverse sources
such as proverbs, narratives by Kesteloot and Dieng (1989), transcriptions of healer debates, a
song titled "Baay de Ouza," and two dictionaries: "Dictionnary wolof-french" and "Dictionnary
french-wolof." Additionally, data from the Bible, Wikipedia, and the Universal Declaration of
Human Rights enrich the corpus (Table 1).

2ALFFA: https://github.com/besacier/ALFFA_PUBLIC
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Male Female Utterances Duration
Training 8 6 13998 16h49
Development 1 1 2000 2h12
Testing 1 1 2000 2h20
Total 10 8 17998 21h21

Table 1: Description of Wolof dataset

4.1.2 Fongbe

Fongbe, also known as Fon, is predominantly spoken in Benin, where it holds the status of a
national language. It boasts a tonal system influencing word meaning through varying pitch.
The Fongbe dataset consists of 9 hours of recorded speech from 29 different speakers (Table 2).
The textual corpus content includes primarily biblical texts, a variety of texts related to daily
life, the Universal Declaration of Human Rights, texts on education, songs, and folktales.

Speakers Utterances Duration
Training 25 8234 7h 35
Testing 4 2163 1h45
Total 29 10397 9h20

Table 2: Description of Fongbe dataset

4.1.3 Swahili

Swahili, spoken primarily in East Africa, serves as the national and official language in both
Kenya and Tanzania. It extends its influence to countries like Uganda, Rwanda, Burundi, and
parts of the Democratic Republic of the Congo. As a Bantu language, Swahili is character-
ized by an agglutinative structure, incorporating prefixes and suffixes for grammatical nuances.
The Swahili dataset consists of 12 hours (Table 3) of recorded speech from various speakers,
representing diverse socio-economic and educational backgrounds. Recordings originate from
web-based news broadcasts and Swahili text extracted from informational websites. Manual
transcriptions are available for each recording.

Utterances Duration
Training 10180 10h
Testing 1991 2h
Total 12171 12h

Table 3: Description Swahili dataset

For implementation, we used an unofficial code from GitHub 3 for the CPC model that we
modified for our application case and the official implementation 4 of the Wav2Vec model for
our experiments. Since no bidirectional CPC model implementation was available, we modi-
fied the code of the Wav2Vec model to make it bidirectional5 (as mentioned in the article by

3https://github.com/jefflai108/Contrastive-Predictive-Coding-PyTorch
4https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
5https://shorturl.at/b7V2v
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Kawakami et al. [10]). Similarly for DeepSpeech, we used an implementation available on the
Keras framework site 6 that we adapted to use the numerical vectors predicted by our pre-trained
models rather than spectrograms.

4.2 Descriptions and parameters of the representation and ASR learning algorithms

The parameters of the algorithms we used to learn the representations are shown in Table 4.

CPC BCPC Wav2vec
Number of nega-
tive samplings

10 10 10

Timestep 12 12 12
Audio window
length (frames)

20480 150000 150000

Optimizer Adam Adam Adam
Initial learning
rate

0.0004 0.0001 with
gradient clipping,
maximum norm
of 5.0

0.0001

Batch size 8 128 8
Loss InfoNCE InfoNCE (sum

of backward and
forward)

InfoNCE

Encoder size 512 512 512
Encoder Layers convolutional

layers with kernel
size (10, 8, 4, 4,
4) and strides (5,
4, 2, 2, 2).

5 causal convolu-
tional layers with
kernel size (10, 8,
4, 4, 4, 1, 1) and
strides (5, 4, 2, 2,
2, 1, 1).

5 causal convolu-
tional layers with
kernel size (10,
8, 4, 4, 4) and
strides (5, 4, 2, 2,
2).

Decoder size 256 (fwd: 256, bwd:
256): concatena-
tion (c = [fwd,
bwd] => 512)

512

Decoder Layer An unidirectional
GRU layer

13 causal con-
volutional layers
with kernel size
1, 2, ..., 13 and
stride 1.

9 causal convolu-
tional layers with
kernel size 3 and
stride 1.

Table 4: Parameters of the models

For speech recognition, we used DeepSpeech2 Small. The features of this model are as follows:
the model features two 2d-convolutions with kernel sizes (11, 41) and (11, 21) and stride sizes
(2, 2) and (1, 2), as well as a one-way recurrent neural network (GRU) above the output of
the convolution layers. A linear transformation and a softmax function are applied to predict
frame-level character probabilities. Training is performed using a batch size of 8 and a learning
rate of 0.0001.

6https://keras.io/examples/audio/ctc_asr/
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We use WER, which is a popular metric for evaluating the performance of automatic speech
recognition algorithms because it takes into account errors such as word substitution, insertion,
and deletion, which are common types of errors in speech recognition. A lower WER value
indicates better performance, as it means fewer errors in the output generated by the speech
recognition system, and its value is expressed as a percentage.

The Word Error Rate (WER) is calculated as follows:

WER =
Substitutions + Insertions + Deletions

Total number of reference words

4.3 Monolingual learning

Table 5 presents the results of our experiments utilizing a single language for representation
learning, subsequently employed to train the automatic speech recognition model. The metric
used is the Word Error Rate (WER), expressed as a percentage.

CPC BCPC Wav2vec Kawakami et al.
WOLOF 80 85.7 80.1 55
FONGBE 83 81 68 57
SWAHILI 96 95 90 70

Table 5: WER for monolingual learning

The results demonstrate the relatively limited performance of the CPC, BCPC, and wav2vec
self-supervised approaches when applied to the low-resource languages Wolof, Fongbe, and
Swahili. For Wolof, CPC and wav2vec achieve comparable word error rates of 80%, while
BCPC exhibits slightly diminished performance at 85.7%. In the case of Fongbe, wav2vec
distinguishes itself with a WER of 68%, outperforming both BCPC (81%) and CPC (83%).
However, all three approaches encounter significant challenges with Swahili, yielding WERs
exceeding 90% (CPC 96%, BCPC 95%, wav2vec 90%).

These findings underscore the formidable challenges posed by the scarcity of data for these
under-resourced languages. Simultaneously, they hint at performance disparities potentially
linked to the unique linguistic characteristics of each language. The superior performance of
wav2vec on Fongbe, for instance, may be attributed to its ability to better capture the tonal
features characteristic of this language.

4.4 Multilingual learning

Table 6 presents the results obtained using representations learned across all datasets for the
downstream task, trained with the previously described parameters:

CPC BCPC Wav2vec Kawakami et al
WOLOF 78.9 75.2 72.6 55
FONGBE 82 77.5 61 57
SWAHILI 95 93 88 70

Table 6: WER for multilingual learning
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The multilingual learning approach, wherein representations are learned jointly across several
languages, yields substantial performance gains. This improvement suggests an enrichment
of representations through the sharing of information across languages, enabling the model to
better capture both common and language-specific linguistic features.

Figure 5: The contribution of multilingual learning to automatic speech recognition in a low-resource
context.

Notably, wav2vec demonstrates remarkable improvement in the multilingual setting, achieving
WERs of 72.6% for Wolof, 61% for Fongbe, and 88% for Swahili. This significant enhance-
ment over its monolingual performance (80.1%, 68%, and 90% respectively) underscores the
potential of multilingual learning in low-resource scenarios.

The bidirectional CPC (BCPC) also shows considerable improvement in the multilingual con-
text, particularly for Wolof and Fongbe. This suggests that the bidirectional nature of BCPC
allows it to capture more comprehensive linguistic information when exposed to multiple lan-
guages simultaneously.

Interestingly, while all approaches benefit from multilingual learning, the magnitude of im-
provement varies across languages. Fongbe, a tonal language, appears well-modeled by mul-
tilingual wav2vec (61% WER), suggesting that this approach may be especially effective for
languages with complex tonal systems. However, the performance gap between Swahili and the
other two languages highlights that not all languages benefit equally from the same multilingual
framework.

Despite these improvements, it is important to note that there remain substantial performance
gaps between these results and state-of-the-art systems for well-resourced languages (typically
<5% WER). This disparity highlights the ongoing challenges in automatic speech recognition
for under-resourced languages and underscores the need for continued research and develop-
ment.

In comparing our results to those reported by Kawakami et al., we observe that while our
monolingual models generally underperform their reported figures (e.g., 55% WER for Wolof
compared to our best monolingual result of 80%), our multilingual learning results are more
competitive. This suggests that our approach to multilingual learning enables better capture
of common linguistic features and effectively compensates for the lack of monolingual data.
However, disparities persist in some languages such as Swahili.
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These results collectively demonstrate the potential of multilingual contrastive learning in im-
proving automatic speech recognition for under-resourced languages. They also highlight the
importance of considering language-specific characteristics in the development of speech recog-
nition systems for diverse linguistic contexts.

V CONCLUSION

This study demonstrates that pre-training on limited yet diverse datasets, consolidated within
multilingual models, can yield robust representations that effectively capture the common and
unique acoustic characteristics of individual languages. Our approach shows promise in build-
ing a single model for multiple languages, potentially streamlining the development process for
under-resourced languages.

While our work has made significant strides, there remain avenues for future exploration. Ex-
panding the training data corpus across a broader spectrum of African languages could lead to
even more diverse and tailored speech representations. Additionally, enhancing speech recog-
nition models with language-specific knowledge has the potential to yield more accurate tran-
scriptions, better reflecting the unique structures of each language.

In conclusion, this research demonstrates that self-supervised and multilingual learning ap-
proaches are promising solutions for overcoming the challenges of limited data in speech recog-
nition for under-resourced languages. With continued efforts to expand training data and refine
model architectures, we believe that these techniques will play a critical role in making speech
recognition systems more inclusive and accessible to speakers of all languages.
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