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Abstract

One of the particularities of machine learning algorithms is that they are so efficient as the amount
of data used is large. However, sequential execution of these algorithms on large amounts of data
can take a very long time. In this paper, we consider the problem of training Recurrent Neural
Network (RNN) for hate (aggressive) messages detection task. We first compared the sequential
execution of three variants of RNN, we have shown that Long Short Time Memory (LSTM) pro-
vides better metric performance, but implies more important execution time in comparison with
Gated Recurrent Unit (GRU) and standard RNN. To have both good metric performance and re-
duced execution time, we proceeded to a parallel implementation of the training algorithms. We
proposed a parallel algorithm based on an implicit aggregation strategy in comparison to the exist-
ing approach which is based on a strategy with an aggregation function. We have shown that the
convergence of this proposed parallel algorithm is close to that of the sequential algorithm. The
experimental results on an 32-core machine at 1.5 GHz and 62 Go of RAM show that better results
are obtained with the parallelization strategy that we proposed. For example, with an LSTM on
a dataset having more than 100k comments, we obtained an f-measure of 0.922 and a speedup
of 7 with our approach, compared to a f-measure of 0.874 and a speedup of 5 with an explicit
aggregation between workers.
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I INTRODUCTION

The enormous amount of data generated by social media platforms is a boon for deep learning
algorithms. Indeed, the more the quantity of data used is important, the more the algorithm
is efficient. On the other hand, the sequential execution of these algorithms on these large
amounts of data can take a very high execution time [3]. It is possible through an appropriate
use of multi-core architectures to reduce this execution time. In this paper, we are interested to
identifying aggressive messages that can be disseminated on social networks using Recurrent
Neural Network (RNN) algorithms. In other words, we want to build a model to automatically
detect an aggressive message, paying attention not only to the performance of the model but
also to the time taken by the training algorithm to train the model. We propose an approach
based on the use of Mutex synchronization for the parallel implementation of RNN training
algorithms. The objective is to take advantage of multi-core hardware architectures to reduce
the execution time of training algorithms while preserving their metrics performance.

We firstly implemented and compared the result of sequential executions of standard RNN,
Long Short Time Memory (LSTM) and Gated Recurrent Unit (GRU) with the same datasets
containing 115,864 comments, including 101,082 comments labeled as non-aggressive and
14,782 comments labeled as aggressive. What we can learn from these sequential executions is
that the metric performances of the model obtained with an LSTM are quite better than those
obtained with a standard RNN or a GRU, but the time for training the model with an LSTM
is much bigger. We subsequently implemented each of the training algorithms in parallel, us-
ing and comparing two different approaches. One approach performing explicit aggregation
(arithmetic average) between the processing units for the update phase and another using mu-
tex software synchronization between processing units. Experimentation on a 32-core machine
shows better performance for our approach the parallelization (implicit aggregation).

The rest of this paper is organized as follows: section II presents the concepts necessary for
the understanding our work. Section III presents the existing work related to ours, Section IV
present and explain our parallel algorithm, Section V presents the experimental results, and
finally Section VI concludes and gives some perspectives.

I BACKGROUND

Recurrent Neural Network [10] are types of neural networks used for processing sequential
data like a text. Unlike the Feed-Forward Neural Network where information only propagates
in one direction, from front to back, RNNSs are neural networks with recurrent connections and
where the information is propagated in both directions. In this paper, we use and compare
03 variants of RNN namely: standard RNN, LSTM, and GRU. A standard RNN simulates a
discrete-time dynamical system. It is a system with an input z;, an output y; and a hidden state
h; formally defined like in equation 1, where f, and f, are parameterized state transition and
output functions respectively. As shown by Pascanu et al. [6] a standard RNN has difficulties in
practice to be able to handle very long sequences due to the problem of vanishing or exploding
gradient. Several solutions have emerged to overcome these anomalies, such as the use of
special architectures like LSTM and GRU both based on the use of a gate mechanism.

hy = fh(xhht—l)
v = fo(he)

oY)
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To handle long-term temporal dependencies in the data, an LSTM uses a memory cell (¢;) and
03 gates whose role is to control the flow of information in and out. We have the forgate gate
(f:) which allows to control the quantity of information to keep, the input gate (i;) allows to
select the information to add in ¢; and the output gate (0;) allows to obtain the hidden state h, as
a function of ¢;. Formally, to have the hidden state ~; with an LSTM, we proceed as in equation
2. Where All W denote the weight matrices and b are the biases (the model parameters). ¢,
designates the intermediate state of the secondary memory ¢; ( is the memory state before being
filtered by the gates).

fi = o(Wapze + Whphi—1 + by)
it = O'(Wm‘l’t + Whihtfl + bz)

C = tanh(chxt + thht71 + bc) (2)
c=fiOca 1+ OC

Oy = O'(onl't + Whoht—l + bo)
ht =0; ® tanh(ct)

The symbol © between represents the element-wise product: corresponding elements of two
vectors are multiplied together. The sigmoid (o) and hyperbolic tangent (tanh) activation func-
tions were respectively used to calculate the gates and the hiden state. The main difference
between LSTM and GRU is that, GRU has fewer parameters and use only two gates namely:
reset gate (r;) and update gate (z;). The reset gate regulates the flow of new input to the previ-
ous memory and the update gate determines how much of the previous memory to keep. The
calculation of hidden state h; with a GRU occurs as presented in equation 3.

Zr = O’(szxt -+ thhtfl + bz>
Tt = O'(Wzrl't + Whrht—l + b,«)

" 3
hy = tanh(Wypxy + Wip(re © he—1) + bp)

ht:Ztth_l‘l‘(l—Zt)@Et

Learning algorithm with RNN like others neural networks is based on iterative execution of
two phases, the forward and the back-forward phase. In the forward phase we compute the
outputs as shown in equations 1, 2 and 3. In the back forward phase we compute the partial
derivatives of each parameter of the model in order to update them [8]. Algorithm II.1 presents
the sequential training of RNN that we use for text classification. Gradient descent in its mini-
batch version was used as an optimization procedure, choosing the cross-entropy loss as the
error function. It is an error function used for multi-class classification problems (as in our
case), which allows to quantify the difference between the predicted vector output (y) and the
expected one (). It is defined as in equation 4 for one instance of the dataset.

Uy 9) == 7,log(yy) (4)
j=1
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Algorithm II.1 Sequential training algorihtm

Input. (X,Y), A\, M, epoch: maximal numbers of epoch

1

2 Output. ©: the set of model parameters

3 Start

4 © <« InitializeParameters( ) // initialize the © parameters
5 (xtrain , ytrain) (xtest, ytest) < splitData(X, Y)
6 B + getBatch(M,xtrain, ytrain )

7 e +— 1

8 while e < epoch

9 for b; € B

10 loss <0

11 d®© <« Zerolnitialize( )

12 for (x,y) € b;

13 Ypred < Forward(x, ©)

14 loss < loss + lossEntropy(y, Ypred)

15 d© < d© + Backforward(©, X, y, Ypred, 10ss)
16 enfor

17 update(©,dO, A\, M)

18 enfor

19 e +—e+1
20 endwhile
21 Return ©
22 End

The parameter update is carried out as in equation 5, where A (the learning rate) is a parameter
fixed before the start of learning and which may change or not throughout the learning. For
the mini batch version of the gradient descent, the derivative % is calculated by considering
the error on M elements of the dataset, where M (the batch size) is a parameter which is also
fixed before the start of the training. Finally, it is important to specify that the words in natural
language constituting the text are first transformed into a vector used in the algorithm. For our

study, we simply used a word2vec algorithm provided by gensim ! python library.

Considering the iterative execution of the forward and backforward phase in algorithm 1, and
setting: 1. the maximum number of epochs, ngq the number of elements of the dataset, n;, the
number of neurons in the hidden layer, n, the size of the input vector representing a word,
n, the size of the output vector, and ny the maximum sentence size, then the worst-case time
complexity for a standard RNN are given by O(ngne(nonp, + nsny(ny + ny)) and for LSTM and
GRU are given by O(ngne(nsny + ns(ny + np(ny +ny))). The main goal in this paper is to
provide a parallel implementation of this algorithm in order to reduce the execution time and
maintain as much as possible the prediction performance.

Thttps://radimrehurek.com/gensim/models/word2vec.html
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III' RELATED WORK

Several works have been carried out on the parallel implementation of neural networks algo-
rithms. By analyzing this works, we mainly observe two parallelization approaches, namely
model parallelization where the structure of neural network computations is exploited to speed
up the calculation of the minibatch gradient [5] and data-level parallelization where the compu-
tation of the gradient is distributed over many workers synchronously or asynchronously. We
have for example Martin Abadi et al. [7] who in their work present the Synchronous Parallel
Stochastic Gradient Descent (S-PSGD) algorithm. It is a parallel implementation of stochastic
gradient descent exploiting data-level parallelization. The algorithm is synchronous in the sense
that Each processing unit is responsible for training a copy of the model with a subset of data,
it then synchronizes to aggregate their gradient and finally update the global model.

Jeffrey Dean et al. [3] who have developed a software framework called DistBelief that can
use computing clusters with thousands of machines to train large models. They present in this
framework the DownPour SGD algorithm which combines model parallelization and data-level
parallelization asynchronously. The principle is that each processing unit is responsible for
updating a subset of model parameters. This approach is asynchronous in the sense that, the
processing units operate independently of each other.

Zhiheng Huang et al. [4] provide a parallel RNN training algorithm for language modeling. For
their implementation, each processing unit contains in memory a complete copy of the model,
but also a subset of the dataset. The difference with the S-PSGD algorithm is that, here, each
processing unit updates its local model. This time, the synchronization step aggregates the
parameters of the different local models to form the overall model.

The common point of the works that we have just cited is the fact that they all use data-level
parallelization. The main difference is made on the strategy used for updating the global model.
We propose in this paper a parallel algorithm based on a strategy using implicit aggregation
thanks to mutex synchronization between processing units to perform updates. We compare
this strategy with the one where the processing units update the model by using an explicit
aggregation function.

IV  RECURRENT NEURAL NETWORK PARALLELIZATION

In this part of the paper, we first present our parallelization strategy at Section 4.1. Then we
present the parallel algorithm based to this strategy at Section 4.2 and we finish with the pre-
sentation of algorithms convergence analysis at Section 4.3

4.1 Parallelization strategy

Stochastic gradient descent (SGD) is the most used optimization procedure when training deep
learning model. Unfortunately, its traditional formulation is inherently sequential which makes
it difficult to use with very large volumes of data [3]. This is because the time required to tra-
verse the data fully sequentially can be expensive. An effective solution to reduce the training
time of a neural network is the use of parallel programming. The main approach to parallelize
the training of a neural network is to distribute the computation of the derivatives over several
processing units by exploiting data-level parallelization [4]. By following this approach, we
propose in this paper a parallel implementation strategy performing a mutex software synchro-
nization between the processing units for update the global model. The principle is that, each
processing unit is assigned a local copy and a subset of the dataset (see figure 1). They each use
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their local copy of the model to calculate the derivatives (VP) of the parameters. After calcu-
lating the derivatives, each processing unit one after the other enters in critical section using a
mutex variable to update the parameters of the global model accessible from a shared memory.

Shared Memory

[ Critical Section

Procdssing unit 2

b AN

Lnu]

Procéssing unit 3 ‘

LIS

Figure 1: Parallelization with mutex synchronization. Each data part is assigned to a processing unit
which compute the derivatives (VP), and uses the critical section to update the global model.

This is therefore a parallelization at the data level because each processing unit will execute the
same set of instructions simultaneously with the others but with different data. It is synchronous
in the sense that, we use software synchronization (mutex) between the processing units for
update operations.

4.2 Parallel algorithm with implicit aggregation

Here we present the parallel training algorithm which takes into account the parallel imple-
mentation method presented in the previous section. The implementation was carried out in
a shared memory environment equipped with a multi-core architecture. The processing units
then correspond to the different cores of a processor. Each core, through a thread executes si-
multaneously with the other threads a set of instructions. The main thread executes algorithm
IV.1. It is responsible for initializing the parameters of the global model (line 2). At each epoch
(line 4 to 11), it partitions the data into P subsets, where P designates the number of processing
units available. It then launches the execution of the slave threads with a copy of the model
parameters, as well as a subset of the data sets.

Algorithm IV.1 ParallelTraining

Input. (X,Y), A, M, epoch: maximal numbers of epoch, p: number of thread
© <« InitializeParameters( ) // initialize the © parameters
e «+ 1,
while e < epoch
partition the data (X,Y) into P part d;
for each d;
ParametersCopy(©, ©;)
ThreadCode(d;, ©;, A, M)
enfor
e e+l
endwhile

O 00 N AN R WD =

—_ =
- O

Each slave thread executes algorithm IV.2 simultaneously with the other threads with a local
copy of the model and a subset of the dataset. The execution is almost similar to that carried out
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Algorithm IV.2 ThreadCode

Input. (X,Y), A, M, ©;: local model parameters, d;: data partition
B < getBatch(M,d;)
for b; € B
loss <0
d©; + Zerolnitialize( )
for (x,y) € b;
Ypred < Forward(x, ©)
loss < loss + lossEntropy(y, Ypred)
d©; < d©; + Backforward(©;, X, y, ypred)
enfor
LOCKMUTEX
update (O, dO;, A, M)
parametersCopy(©, ©;)
FREEMUTEX
enfor

O 0 N A R WD =

T T T =S S
wm A WD = O

in algorithm 1, where each slave thread partitions his subset of dataset (d;) into several batches
b; of size M (line 2). It then goes through each batch b;, and for each sentence x in b, it predicts
its class (line 7), compute and accumulates the prediction error as well as the partial derivatives
(line 8 and 9). Once a slave thread finishes calculating derivatives, it enters in critical section
using a mutex variable to update the global model accessible from shared memory. It then
retrieves the updated parameters for the next iterations (line 11 to 13). Finally, it releases the
mutex variable (line 14) to allow another thread to perform the update.

4.2.1 Complexity

Considering algorithm IV.1 and algorithm I'V.2, and let 1 be the index of the subset of data having
the largest size |d;|. The worst-case time complexity for a standard RNN is O(|dj|ne(nonp + nsnp,
(nh 4+ ne)). and for LSTM and GRU is O(|dj|ne(nsnh + ng(ne + np(np + ne))).

4.2.2 Maximum Speedup

Considering the same maximum epoch number n. used for the sequential version, the maximum
speedup for this parallel implementation corresponds to the number of units of treatment (P)
used. In practice it is difficult to have a speedup very close to the maximum speedup, this is
mainly due to the portions of code executing sequentially for the central thread.

4.3 Convergence

In this section, we analyze theoretically the convergence of the three algorithms sequential,
parallel with explicit aggregation and parallel with implicit aggregation. For this purpose, we
express the update equations for each of the three algorithms. We consider one epoch and we
assume there are k batches, 6y is the value of the parameters 6 after k updates.

4.3.1 Sequential Convergence

In the case of sequential executing (algorithm II.1), 8, is used to compute #,, 6 is used to
compute 6, and finally so far, 6;_; is used to compute 6. Let a%i be the derivative calculated
using 0;. At each step ¢, if we replace ¢;_; in 0; by its expression contemning 0;_,, then we can
write 6, as in equation 6:
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k-1
ot
j=0 "

4.3.2 Explicit Aggregation Convergence

For a parallel execution with an explicit aggregation (algorithm presented at [4]), we consider
P available processing units. Let:

* agg() be the aggregation function at each update

be the derivative calculated by any process unit using :

— the j*" batch and,
— 0, the value of the model parameters at the i*" update.

* Let u be the number of updates. Compared to the sequential execution, u = 22

6, can be written as in equation 7:

u—1
0u290—)\2agg< ot ) (7
i=0 JEL...P]

00, ip+j
In the context of our experiments, agg() function corresponds to the arithmetic mean.

4.3.3 Implicit Aggregation Convergence

In this case (algorithm IV.1), each thread makes updates on the model according to its batches
without waiting the other threads. It is then difficult to know which value of the model is used
by a thread to perform derivatives necessary for these updates. In fact, a derivative computed
by a thread depends on the current batch and also the value of the model it saw when it began
its processing on this batch. This model value is one of the previous computed by one of the
threads that did the update before. We catch this behavior as follow:

59 be the derivative computed by any thread at the j** update with the batch j**
*,J

ol e o ol ol )
89*7]' 600,]” 091,]'7 Y 89]'_17]'

¢ Each

is defined as in section 4.3.2

/L‘?j
We have k updates as in a sequential execution. The difference with the sequential execution is
with the initial values at each updates of each thread. We can write 6, as in equation 8

k
ot
Op=0—A> (8)
£ 9.,

*7]
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4.3.4  Analysis of the three Convergences

According to equations 6,7,8, we can observe the difference between the explicit and implicit
aggregation as follows:
1. Number of iteration: we have k& updates with implicit aggregation as in sequential algo-
rithm while there are only % updates with explicit aggregation.
2. Aggregation function agg(): The aggregation function used in explicit aggregation can
lead to loss of information. In fact, in explicit aggregation, each thread first computes
a derivative from its received batch. Once the last thread is finished, then we use the
function agg() to aggregate the derivatives before doing the update. agg() that can be
the average function (or another function), doesn’t necessarily capture the entire part of
information learned by threads on their respective batches. It is then subject to biases and
responsible for the information lost.
In contrast, in implicit aggregation, threads integrate their learned information progres-
sively in sequential fashion thanks to mutex. Each thread does the update directly without
an intermediary step. Like that, the loss of information is reduced.

This two observations show that the convergence of the implicit aggregation is closer to the
sequential algorithm convergence compared to the convergence of the explicit aggregation.

In the next section, we are going to confirm these observations experimentally.

V EXPERIMENTS AND RESULTS

We present in this section our experimental results obtained for sequential and parallel execu-
tion. The experiments were carried out on a multi-core machine with 32 cores (at 1.5 GHz) and
62 Go of Ram. The implementations of the training algorithms were done with C language and
using the posix thread library for parallel implementations, the pre-processing operations on the
data were done with python language. The dataset we used was constructed by [9]. This dataset
contains 115,864 labeled discussion comments from English Wikipedia. Each comment was
labeled by approximately 10 annotators via Crowdflower on how aggressive the comment was
perceived to be, we finaly have 101,082 comments considered non-aggressive by the annotators,
and 14,782 comments labeled as aggressive. We applied a set of pre-processing operations to
the data, namely data cleaning, stop word removal, tokenization and vector representation using
the skipgram algorithm provided by the gensim python library. The datasets were then split into
two, namely 80% for training, and 20% for the testing phase.

Since we are performing a text classification task (know if a comment is aggressive or not), and
the datasets used are unbalanced, the appropriate metrics performance to evaluate the model
are the unweighted averages of: precision, recall, and f-measure. The description and formula
of these metrics are given in the table 1, where [ is the number of class, tp; (true positives),
the number of correctly recognized examples for class 7, tn; (true negatives), the number of
correctly recognized examples that do not belong to class 7, fp; (false positives), numbers of
examples that either were incorrectly assigned to the class ¢ and fn, (false negatives) the num-
bers of examples were not recognized for class ¢ [1].
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Table 1: Metric measurement descriptions and formula to evaluate the model.

Measure Description Formula
S
. . I =1 tp;+fp
Recall An average per-class effectiveness of a classifier to identify -7
class labels
S
- . =1 tpi+fn;
Precision An average per-class agreement of the data class labels with e E—
those of a classifiers
F-measure Relations between data’s positive labels and those given by a 2x Recallx P?”QC’L‘SZOTL
] Recall+Precision
classifier based on a per-class average

The performance due to parallelization of an algorithm will be measured using the following
metrcic :

e Execution time T(p): Is the execution time taken by a parallel program using p threads.
e The Speedup S(p): Is the ratio between the execution time with one resource, on the
execution time on p resources.

5(p) = 11

T(p)

5.1 Sequential execution

(€))

The hyper parameters values used for running the learning algorithm for each of the RNN
variants are as follows: the maximum number of epochs (15), the learning rate A (0.01), the
batch size M (32), the total number of ny, neurons in the hidden layer (80), the size n, of input
vectors representing a word (100). Figure 2 presents the loss evolution throughout the sequential
training algorithm. We see that training with an LSTM was much more stable than that with a
standard RNN, and convergence was faster compared to that observed with a GRU.

Loss evolution

—& STM
—+— GRU
—&— Standard RNN

T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

epochs

Figure 2: Loss evolution through the learning

Table 2: Metric measurements and time taken for each RNN variants.

Precision Recall F-measure Training time (s)
LSTM 0.925 0.930 0.925 13390
GRU 0.912 0.919 0911 9717
Standard RNN 0.91 0.922 0.917 3143
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We then used the test dataset to obtain the metric performance for each of the models. Table 2
presents the metric results obtained as well as the training time taken with each of the variants
of the RNN. We observe that the metric performances of the model obtained with an LSTM
are superior to the others. Even if here these differences are quite slight, we saw in figure
2 that the LSTM provided the lowest prediction error, which confirms the fact that, for this
particular dataset, the model obtained with an LSTM would be the best choice. However,
using an LSTM involves a higher training time compared to other RNN variants, which was
predictable, given the number of parameters and the workload which is much higher. We then
implemented the training algorithms in parallel, hoping reduce the execution time while keeping
the metric measures

5.2 Parallel Execution

In order to perform comparisons, we used two parallel implementation strategies for the training
algorithm. The first (parallel with mutex) is the idea of parallelization that we propose in this
paper. The second one (parallel with aggregation) is the one carrying out an aggregation (in
this case the arithmetic mean) of the various local derivative to update the global model. figure
3 presents the speedup (time saving) obtained as a function of the number of processing units
used for each version of RNN with the two parallel implementation strategies.

SpeedUp evolution with LSTM SpeedUp evolution with the GRU

—e~ parallel implémentation with Aggregation
—+— parallel implémentation with Mutex

—e— parallel implémentation with Aggregation
—— parallel implémentation with Mutex

SpeedUp
a @

IS

w

0 5 10 15 20 25 30 o 5 10 15 20 25 30
Numbers of Threads Numbers of Threads

SpeedUp evolution with Standard RNN

—e— parallel implémentation with Aggregation
74 —— parallel implémentation with Mutex

0 5 10 15 20 25 30
Numbers of Threads

Figure 3: Evolution of speedUp depending on the number of cores

By observing the figure 3 we note that, the difference in time gain between the two parallel im-
plementation methods is more significant with an LSTM. For example, we obtained a speedup
of 7 for the parallel training algorithm with mutex of an LSTM using the 32 available process-
ing units, compared to a speedup of 5 using the parallel algorithm performing the arithmetic
average. The hypothesis justifying these results is the fact that, the parallel implementation
method with mutex provides better results when the workload is greater. This is the case with
an LSTM. We also observed the evolution of the convergence of the model for each of the two
strategies using graphs showing the evolution of the training error as a function of the number of
epochs (see figure 4). By examining these graphs, we note that the model converges better with
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parallel execution with 4 threads parallel execution with 16 threads

0.375 —e— Sequential —e— sequential
—— parallel with Mutex —— parallel with Mutex
0.350 —a— parallel with aggregation —a— parallel with aggregation

0.3251

0.3004

loss
o
w
[=]

0.2754

loss

0.2504

0.2251

0.2001

0.1751

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
epoch epoch

parallel execution with 24 threads parallel execution with 32 threads

—e— Ssequential 0.504 —e— sSequential
—— parallel with Mutex —+— parallel with Mutex
—a— parallel with aggregation —a— parallel with aggregation

loss
loss

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
epoch epoch

Figure 4: Error evolution with LSTM

the strategy of parallelization without aggregation compared to that carrying out the arithmetic
average of the various local models.

We also note that the number of processing units used has a more negative impact on the strat-
egy with aggregation. We can for example see that with eight processing units, the convergence
of the model using this strategy is much worse than that with two processing units. Table 3
presents the performance metrics obtained with each of the two parallelization strategies using
the eight processing units available, and in comparison with those obtained with sequential ex-
ecution. By observing table 3, we see that for one or the other of the RNNs, we obtain models
with better metric performances when we use the parallel implementation strategy using mutex
synchronization. We can conclude on the fact that, it is more interesting to use a parallelization
strategy without aggregation compared to that carrying out an aggregation between the local
models of the various processing units. One of the main difficulties or disadvantages of strate-
gies using an aggregation is the fact of having to choose the appropriate method or aggregation
function guaranteeing good convergence and saving time.
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Table 3: Table presenting the precision metrics for parallel implementations (with 08 threads) as well as
the time taken to train the model

Precision Recall F-measure Training time (s)

s sequential 0.925 0.930 0.925 13390

% parallel with Mutex 0.927 0.930 0.922 1748
parallel with aggregation | 0.896 0.90 0.874 2443
sequential 0912 0.919 0911 9717

% parallel with Mutex 0.914 0.919 0.907 1745
parallel with aggregation | 0.894 0.902 0.882 1740

ks sequential 0.917 0.922 0.917 3143

g parallel with Mutex 0.912 0.917 0.914 429

z parallel with aggregation | 0.888 0.898 0.877 435

VI CONCLUSION

In this paper we first compare sequential executions of standard Recurrent Neural Network
(RNN), Long Short Time Memory (LSTM) and Gated Recurrent Unit (GRU), on aggressive
recognition task using the same datasets which contain 115,864 labeled discussion comments
from English Wikipedia. We have shown that the LSTM provides better metric performance (an
f-measure of 0.925 compared to 0.911 and 0.917 respectively with a GRU and standard RNN).
However an LSTM implies a more important training execution time (13390 s) in comparison
with a GRU (9417 s) and a standard RNN (3143 s). We then proceeded with parallel implemen-
tations of the training algorithms, to get both good metric performance and reduce execution
time. We proposed the parallelization strategy with mutex synchronization in comparison to the
existing approach which is based on a strategy with an explicit aggregation function. The exper-
imental results on an 32-core machine at 1.5 GHz and 62 Go of RAM, show that better results
are obtained with the parallelization strategy that we proposed. In fact, for the parallelization
of an LSTM using the mutex synchronization, we obtain a speedUp of 7 and an f-measure
of 0.922 , compared to a f-measure of 0.874 and a speedup of 5 with an explicit aggregation
strategy between workers

As future work, we plan to continue our experiments by using more hardware resources and
more larger datasets. We also want to experiment with the case where there is no mutex syn-
chronization between threads, each thread will be able to update the model whenever it wants
without any mutex barrier or other. We want to observe the impact of this way of doing things in
terms of model convergence and time savings. It would also be interesting to use and compare
other deep learning algorithms like transformers, which are successful at the moment especially
for Natural Language Processing tasks.
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