> ()

Clustering-based Graph Numbering using Execution Traces for Cache
Misses Reduction in Graph Analysis Applications

Regis Audran MOGO WAFO'!*, Thomas MESSI NGUELE'>%",
Armel Jacques NZEKON NZEKO’0'*, Xaviera Youh DJAM '

University of Yaounde I, FS, Computer Science Department, Cameroon
ZUniversity of Ebolowa, HITLC, Computer Engineering Department, Cameroon
3Sorbonne Université, IRD, UMI 209 UMMISCO, F-93143, Bondy, France

*E-mail : {audran.mogo, thomas.messi, armel.nzekon, xaviera.kimbi} @facsciences-uyl.cm
DOI : 10.46298/arima.13538
Submitted on May 3, 2024 - Published on February 24, 2025
Volume : 43 - Year : 2025

Editors : Mathieu Roche, Nabil Gmati, Clémentin Tayou Djamegni

Abstract

Social graph analysis is generally based on a local exploration of the underlying graph. That is,
the analysis of a node of the graph is often done after having analyzed nodes located in its vicinity.
However, over the time, networks are bound to grow with the addition of new members, which
inevitably leads to the enlargement of the corresponding graphs. At this level, we therefore have
a problem because more the size of the graph increases, more the execution time of graph anal-
ysis applications also increases. This is due to the very large number of nodes that will need to
be treated. Some recent work in-faces this problem by exploiting the properties of social net-
works. One of this properties is the community structure that is used to renumber the nodes of the
graph, in order to reduce cache misses. Reducing cache misses in an application usually allows
to reduce the execution time of this application. In this paper, we argue that combining existing
graph ordering with a new numbering that exploit execution traces analysis can allow to improve
cache misses reduction and hence execution time reduction. The idea is to build graph numbering
using execution traces of graph analysis applications and then combine it with an existing graph
numbering (such as Cn-order, NumBaCo, Rabbit and G-order). To build this new ordering, we
define a new distance and then used it to analyse execution traces with well known clustering
algorithms K-means (for Kmeans-order) and hierarchical clustering (for cl-hier-order). We then
combined these two numbering with the existing ones (previously mentioned). Experimental re-
sults did on three user machines show that: clustering based numbering allow to improve existing
numbering. In fact, the combination between clustering based numbering and existing numbering
allows to get better results. The gap (in term of cache misses reduction) between our proposal
and the existing numbering can reach 12.89%. This is for example the case with the 4-cores user
machine: with one thread, our proposal got the best cache misses reduction through the combi-
nation NumBaCo_K-means with 65.51% compared to 52.62% of cache misses reduction gotten
with Cn-order (an existing numbering).

Keywords: Cache misses reduction, Execution trace, Clustering, Multi-cores architecture

African Journal of Research in Computer Science and Applied Mathematics Page 1 of 18

mailto:
https://doi.org/10.46298/arima.13538

I INTRODUCTION

Actors and their interconnections in social networks are modeled with graphs where nodes
are actors and links are their interconnections. The advent of computers and communication
networks allows to analyze data (see [2]) on a large scale and has lead to a shift from the study
of individual properties of nodes in small specific graphs with tens or hundreds of nodes, to the
analysis of macroscopic and statistical properties of large graphs also called complex networks,
consisting of millions and even billions of nodes [2]. Social networks welcome new members
every day. This contributes to enlarging the size of the corresponding graphs. It should be noted
that the larger the graph, the longer the execution of the analysis applications takes time [5]. This
usually results from a large number of [7] cache misses, themselves caused by many memory
accesses in search of certain nodes during the execution of the graph analysis application.

Graph application consists in analyzing various nodes; process a node usually involves the
analysis of the other ones located in its vicinity. Reducing cache misses in an application allows
to reduce the execution time of this application. In order to reduce cache misses, the main idea
is therefore to renumber the graph such away that the nodes likely to be processed together
become close in the memory. Recent numbering algorithms guided by this idea have been
proposed, such as Cn-order[8—10], Gorder [6], Rabbit order [5] and NumBaCo [7]. They stood
out for their efficiency compared to other existing algorithms (see [8—10]).

In this paper, the execution traces analysis are used to build these new numberings, and also
to combine them with one of the recent numbering algorithms in order to have better results.
Machine learning techniques like k-means and hierarchical clustering are also used to analyze
the execution traces and to construct these numbering. K-means consists of grouping nodes into
k groups and hierarchical clustering consists of making a series of groupings, by aggregating
the closest nodes at each step. The gotten numbering (based on these clustering) was then
combined to the existing numbering (based on graph structure).

Contribution. We show in this paper that one can take into account graph structure (commu-
nity) and information during application execution (execution traces) in order to reduce cache
misses and hence to reduce execution time. In detail, our contribution is structured as follows:
* Firstly, one distance is defined between two nodes in an execution traces file.
* Two numbering algorithms based on clustering are then built: one based on the K-means
algorithm (1) and another one based on Hierarchical clustering(2).
* These new numbering are then combined with existing ones Cn-order[8], Gorder[6],
Rabbit-order[5] and NumBaCol7].
* Experiments are conducted on three multi-core machines with PageRank and Astro-ph[4].

Paper organization. The remainder of this paper is structured as follows. Section II presents
recent works on graph ordering. Section III recalls the cache management problem. Section IV
introduces our main contribution. Experimental results are shown in section V. Section VI is
devoted to the synthesis of our contribution together with future work.

II RELATED WORK

For several years, graph reordering algorithms have attracted the attention of researchers and
this attention is constantly increasing. The most recent graph reordering include NumBaCo
Messi Nguélé, Tchuente, and Méhaut [7], Gorder Wei, Yu, Lu, and Lin [6], Rabbit Order Arai,
Shiokawa, Yamamuro, Onizuka, and Iwamura [5] and Cn-order Messi Nguélé, Tchuente, and

African Journal of Research in Computer Science and Applied Mathematics Page 2 of 18

Meéhaut [8]. Tablel, gives a summary of the existing numbering methods with their advantages
and limits.

The main idea of NumBaCo is to exploit the community structure of the graph nodes to improve
graph analysis applications performances through cache misses reduction (see [7]).

In the case of G-order, Wei, Yu, Lu, and Lin [6]) offered an order that allows nodes in the direct
neighborhood to be close in memory.

Rabbit-order proposed by Arai, Shiokawa, Yamamuro, Onizuka, and Iwamura [5]) proposes a
numbering method based on two approaches, namely:

* Scheduling based on the community structure of the graphs in the real world: they try to
match the hierarchical communities of the graphs in the real world with the hierarchies
located at the level of the caches of the central processor unit;

* An incremental aggregation in parallel: this one aggregates in an incremental way the
vertices of the same community in parallel, which has the consequence of reducing the
number of vertices to be processed.

Cn-order proposed by Messi Nguélé, Tchuente, and Méhaut [8] is based on a fusion of the
advantages of previous models such as:

* grouping in memory nodes appearing frequently in direct neighborhood (based on G-
order)

* grouping in memory nodes belonging to the same community or sub-community (based
on Numbaco and Rabbit-order).

None of these methods does exploit former executions of the target application. In this paper,
we argue that exploiting former execution of the target applications (for example, exploiting
execution traces analysis) can allow to improve existing performances.

Table 1: Comparison of existing numbering methods

| Reference | Year | Techniques | Specifications \ Limits
[7] 2015 | NumBaCo Exploits community Doesn’t take into account
structure of the graph nodes degrees heterogeneity
in order to renumber it Doesn’t exploit former
executions of target applications
[6] 2016 Gorder Consider nodes sibling Does not take into
nodes account communities

Doesn’t exploit former
executions of target applications

[5] 2016 | Rabbit-order | Based on community Doesn’t take into account

structure + is parallel nodes degrees heterogeneity
Doesn’t exploit former

executions of target applications

[8] 2017 Cn-order Combines advantages Doesn’t exploit former
of the others executions of target applications

III CACHE MANAGEMENT PROBLEM

When a processor needs to access data during the execution of a program, it first checks the
corresponding entry in the cache. If the entry is found in the cache, there is cache hit and the

African Journal of Research in Computer Science and Applied Mathematics Page 3 of 18

data is read or written. If the entry is not found, there is a cache miss. There are three main
categories of cache misses which include - compulsory misses caused by the first reference
to data, - conflict misses, caused by data that have the same address in the cache (due to the
mapping), - capacity misses, caused by the fact that all the data used by the program cannot fit
in the cache. Hereafter, we are interested in the last category. In common processors, cache
memory is managed automatically by the hardware (pre-fetching, data replacement). The only
way for the user to improve memory locality or to control and limit cache misses is the way he
organizes the data structure used by its programs.

In previous work ([7], [8], [10]), it was shown that the problem of reorganizing a graph through
renumbering for cache misses is NP-Complete. Then some heuristics based on the graph struc-
ture are provided to solve this problem. In this paper we will show that combining solution
based graphs structure (community) with the information about the execution of an application
(execution traces) in order to reduce cache misses.

Modeling Cache misses in Graph Application. In this paragraph, we recall cache misses
modeling already presented at [7-10]. We only consider capacity cache misses caused by the
fact that the data used during the execution of a program cannot fit entirely in the memory cache.
Let:

* D.: The size of the cache memory,

e N : The Set of nodes

* b : The function which gives the number of the block to which a node x belongs.

b(x) = x Div D, (Div being the integer division).

When a node ”z” (which is therefore in the cache) is manipulated by the processor and the
processor tries to access another node ”y”, two situations are possible:

* if the two nodes are in the same memory block b(x) = b(y), then y is found also in cache
* if x and y are not in the same memory block, we say that there is a cache miss.

The cache miss can therefore be modeled with the function o defined by:

c:NxN—0,1

0, if b(z)—0b(y)=0
1, else

(z,y)— o(x,y) = {

This cache miss model can be used to count cache misses in a graph analysis application to give
a formal definition of the problem of reducing cache misses.

Illustration example of Cache misses counting in Graph Application. Consider figure 1
with the graph at the left and the memory representation at the right. The graph has 14 nodes,
the main memory has a size 4*4 and the cache memory has a size 4. Let 0 and 1 be the accessing
nodes in a program. 0 has the neighbors {4, 11} while 1 has {5,10,13} as neighbors. Accessing
to a node usually implies to access to its neighbors (in a graph application). So the access
sequence is S = {0,4,11,1,5,10,13}. Graph nodes are stored consecutively (from O to 13) in the
main memory. With this simple memory representation, we will get 7 cache misses when trying
to access to nodes 0 and 1 (that is sequence .S). In fact, trying to access to node 0 will cause the
first cache miss, and the block memory containing nodes 0,1, 2 and 3 will be stored in the cache
memory. But the next node to be accessed is node 4, witch is not yet in cache memory. So a
second cache miss will happen and the nodes 4, 5, 6 and 7 will be stored in the cache memory.
The same phenomenon will happen with nodes 11, 1, 5, 10 and 13 with a cache miss every time.

African Journal of Research in Computer Science and Applied Mathematics Page 4 of 18

-

X |x |x [x 0|1|2]3
Cache memory, size: 4 alslel7
8 |9 (10/11

12113114 X

Main memory, size: 4x4

Figure 1: Cache misses counting illustration (see [7])

IV NUMBERING BASED ON CLUSTERING

The idea here is to build a graph numbering by analyzing execution traces of graph applica-
tions with clustering algorithms. Figure 2 presents the complete principle of numbering using
execution traces analyses with six steps: - Instrumentalization, - Generate file trace, - Com-
pute Distance between nodes, - Grouping nodes using clustering Algorithms and distance D, -
Numbering nodes, - Put nodes in the new Graph.

1 M
Instrumentalisation -

2
Generate
File Trace

Compute Distance :
H between
nodes

E Grouping nodes
H using
Clustering
Algorithms
and Distance D
Between nodes

Numbering nodes

6
Put in the
Numbering graph
file

Graph base

Graph analysis
Application

Clustering
Algorithme

Numbering

‘ Graph file \

Figure 2: Principle of numbering by execution traces analyses

African Journal of Research in Computer Science and Applied Mathematics

Page 5 of 18

In this section, execution traces are presented first in section 4.1, and then our proposed distance
is presented in section 4.2. This distance allows us to build our new numbering algorithm
presented in section 4.3.

4.1 Execution traces

The execution traces allow to capture the behavior of the application during its execution. Since
it is a graph analysis application, we are interested to keep the way nodes are accessed during
execution. To obtain these traces, we add in the graph analysis program some code that allow
to print at each line of a file, a node and the list of other nodes directly encountered during the
execution program.

The goal of our work is to analyze this execution traces file in other to build a numbering that
will allow "closer nodes" to have "closer numbering". To carry out this goal, we choose to
analyze these execution traces with clustering algorithms such as K-means and Hierarchical
clustering. Those algorithms use with a distance that measures the closeness between nodes of
the execution traces file.

The next section presents the approach used to compute the distance between nodes in execution
traces file.

4.2 Distance between two nodes

Alex Groce (see [3]) defines the distance between two execution traces x and y of the same
0, if valf =wval?

rogram as follows: D(z,y) = > A(i) , where A(i) =
prog (2,9) = 22z Al0) (4) {1’ if val? + val?

val? and val! are the value of x and y at the time i.

Inspired by this, we define a metric between two nodes a and b encountered in the execution
traces file.

Proximity D between two nodes. Let ['(a) and I'(b) the set of nodes encountered directly
after a and b respectively. The proximity D between a and b is defined as follows:

D(a,b) = [T'(a) UT(0)] — [T'(a) N T'(0)]
= (IP(@)] + [T(0)| = [T(a) NT(b)]) — |T(a) NT(b)]
= [[(a)] + [T(0)] = 2[T(a) N T(b)]

The proximity D between two nodes defined before is the well known symmetric differences
that has the following properties. Let /V be the set of nodes:
1. Ya,b € N, D(a,b) > 0.
This is because |I'(a)| + |T'(b)| > 2|T'(a) N T'(b)]
2. VYa,b € N,D(a,b) =0 <= a=0.

In fact, if a = b, we have |['(a)| + |T'(b)| = 2|T'(a) N T'(b)| then D(a,b) =0
D(a,b) =0 = |[I'(a)| +|T(b)| —2|T'(a) NT'(b)| =0
In the other side, = |I'(a)| + |T'(b)| = 2|T'(a) NT'()|
=— a=1b

3. Ya,b € N,D(a,b) = D(b,a)
This is because, |I'(a)| + |I'(b)| = |I'(b)| + |I'(a)| and |I'(a) NT'(b)| = |T'(b) N T'(a)]
4. Ya,b,c € N,D(a,c) < D(a,b) + D(b,c)

African Journal of Research in Computer Science and Applied Mathematics Page 6 of 18

For this last case, we should show that:
IT(a)|+]T(c)| =2 (a)NL(c)| < [T'(a)|+[T(b)|—2[I(a) L (b)[+[T(b)[+[T(c)|=2[T'()NI(c)]
This is shown on the Annex (see A).

4.3 Proposed Algorithms

In this section, we present numbering based on execution trace analysis with clustering and the
combinations between these algorithms and the previous existing numbering.

4.3.1 Kmeans-order and Cl-hier-order

Algorithm 1 presents clustering based on K-means. At line 1, the structure for the representation
of our execution traces on the file is built. At line 2, a clustering with K-means is performed,
with the parameters "K" for the number of clusters, "Ite" for the number of iterations and calcu-
lating the proximity of the nodes with our distance "D". At line 3, the nodes are renumbered in
such away that the ones which are close (with small distance) and are in the same cluster have
consecutive numbers.

Algorithm 1 : Kmeans-order
Input: G = (V, E), K, Ite, File_trace, D
Output:

i Trace_kmeans < Build_Trace_Kmeans(File_trace)

» Clusters_kmeans < Build_Clusters_Kmeans(Trace_kmeans, K, Ite, D)
3z G' < Renumbering(G, Clusters_kmeans)

+ Return G’

Algorithm 2 presents clustering based on Hierarchical Clustering. It has the same structure as
the Algorithm 1. But at line 2, the cluster computation is performed through the hierarchical
clustering algorithm. At line 3, it is the renumbering based on these clusters.

Algorithm 2 : Cl-hier-order
Input: G = (V, E), File, D
Output:

1. Trace_Cl — hier < Build_Trace_Cl_hier(File_trace)
» Hiearachies < Buil_hierar(G, Trace_Cl_hier, D)

3z G' < Renumbering(G, Hiearachies)

+ Return G’

4.3.2 Combination between Kmeans-order and Cl-hier-order

Algorithm 3 presents the combination kmeans-order with Hierarchical Clustering. At line 1,
the K-means algorithm gives the first clusters, in order to reduce the size of the data set to
be processed. At line 2 now, the hierarchical clustering algorithm computes the cluster, using
the clusters provided by K-means. In line 3, the renumbering is done based on clusters in the
hierarchy where the first level of hierarchy is composed of clusters produced by K-means .

African Journal of Research in Computer Science and Applied Mathematics Page 7 of 18

Algorithm 3 : kmeans-order_Cl-hier-order
Input: G = (V, E), K, File_trace, D
Output: ¢’

1. Clusters_kmeans < Build_clusters_Kmeans(K, G, File_trace, D)
» Hiearachies < Buil_hier(G, Clusters_kmeans, D)

» G' <= Renumbering(G, Hiearachies, Clusters_kmeans)

+ Return G’

4.3.3 Combination between existing numbering with Kmeans-order and CI-hier-order
In this part, We consider existing numbering as: Cn-order, NumBaCo, Rabbit-order and Gorder.

Algorithm 4 present the combinations Exist-Numbering_Kmeans-order. At line 1 we first pro-
duce a new graph renumbered by one of the existing numbering. Then on line 2 we extract the
Traces, with the new graph previously obtained. In line 3 we build our structure for the repre-
sentation of the traces which will be used by K-means. At line 4 we proceed to the construction
of the clusters using K-means. At line 5, we renumber the nodes in such away that the ones
which are close (with small distance) and are in the same cluster have consecutive numbers.

Algorithm 4 : Exist-Numbering_Kmeans-order
Imput: G = (V, E), K, D, Ite
Output: G”

1. G' < Buil_New_Graph(Ezisting — numbering, G)

» File_Trace' < Build_File_Trace’_Kmeans(G")

» Trace'_kmeans < Build_Trace’_Kmeans(File_Trace’)

« Clusters'_kmeans < Build_Clusters'_Kmeans(G', Trace’_kmeans, K, Ite, D)
s. G" < Renumbering(G', Clusters'_kmeans)

« Return G”

Algorithm 5 present the combination exist-numbering_Cl-hier-order. It is the same process with
algorithm 4, but here we permute K-means-order by Cl_hier-order.

Algorithm 5 : Exist-Numbering_Cl-hier-order
Input: G = (V,E), D
Output: G”

i G' < Buil_New_Graph(Ezisting_Numbering, G)

» File_Trace' < Build_File_Trace' (G')

» Trace'_Cl_hier <— Build_Trace’_Cl_hier(File_Trace')
« Hiearachies' < Build_hierar'(G', Trace’_Cl_hier, D)
s G" <= Renumbering(G', Hiearachies')

« Return G”

African Journal of Research in Computer Science and Applied Mathematics Page 8 of 18

4.4 Complexity

The complexity in the presented algorithms depends on the initial clustering algorithms used.
For k-means, the complexity depends on the number of iterations and the number of clusters to
build. More the the number of iterations and clusters is high, more higher complexity. For Hier-
archical Clustering, the complexity depends on the number of the graph nodes and the number
of groupings carried out at each hierarchy. If we have many grouping in the first hierarchy, we
can finish quickly the program, but if we have one grouping in each hierarchy, the complexity
becomes very high.

For every case, the time for re-numbering the graph is O(/N), where N is the number of graph
nodes.

V EXPERIMENTAL EVALUATION

The experiments were done on three user machines:

¢ A two-cores machine with 1.10GHz, 6GB of Ram, .2 of 4MB KB and L1 of 24KB;

¢ A 4-cores with 1.70GHz, 4GB of Ram ,L.3 of 3MB KB, L2 of 256 KB and L1 of 32KB.

¢ A 12-cores machine with 4.70GHz, 16GB of Ram ,L.3 of 12 MB, L2 of 2048 KB and L1
of 48KB.

For this evaluation, we present results got with the well known graph analysis application,
Pagerank [1]. We used a Posix thread implementation proposed by Nikos Katirtzis'. This im-
plementation uses adjacency list representation. We use Astro-ph dataset [4] that has n=16,046
nodes and m=242,502 edges (that is almost 2.46 MB with the formula presented at Messi
Nguélé and Méhaut [10], the graph size is G_space = 8m + 40N bytes).

In this section, we compare previously proposed graph numbering (Cn-order, Rabbit, Gorder,
NumBaCo) with numbering based clustering (through execution traces analysis). We also anal-
yse the case where we fuse existing numbering with clustering based ones. We do this in three
ways: cache reference reduction (section 5.1), cache-misses reduction (section 5.2), execution
time reduction (section 5.3). This task was done with three tables:
» Table 2 that compares cache references, cache misses and execution time on the two-cores
machine described above;
* Table 3 that does the same but on the 4-cores machine described above;
 Table 4 that does the same again but on the 12-cores machine described above.
In each table, the color signification is as follows:
* The four best performances are colored. The two best performance are in bold.
¢ The color blue is for the time, the color red for the cache misses and the color for
the cache references.
* In the heuristic column, new proposed ones are bold. We put the k-means and cl-hier
(which are the base of our proposed orders) in

"https://github.com/nikos912000/parallel-pagerank

African Journal of Research in Computer Science and Applied Mathematics Page 9 of 18

https://github.com/nikos912000/parallel-pagerank

[Heuristic Time (ms) [Cache misses(th) | Cache references(th) |
Astro-ph Tth 976.84 1893.65 69646.035
Gorder I1th 894.19 (8.46%) | 1581.28 (16.50%) 37224.29 (46.55%)
NumBaCo Ith 896.67 (821%) | 1532.83 (19.05%) 40092.06 (42.43%)
Rabbit Tth 907.24 (7.13%) 1719.17 (9.21%) 41608.28 (40.26%)
Cn-o Ith 896.52 (8.22%) 1706.46 (9.89%) 37070.80 (46.77%)

941.79 (3.59%) 1835.72 (3.06%) 48939.62 (29.73%)
932.98 (4.49%) 1841.19 (2.77%) 48887.31 (29.81%)
k-means-o_cl-h-o Ith 904.55 (7.40%) 1993.18 (-5.26%) 38025.62 (45.40%)

Cn-o_k-means-o 1th

924.48 (5.36%)

1555.45 (17.86%)

45363.86 (34.87%)

Cn-o_cl-h-o 1th

899.82 (7.89%)

1636.62 (13.57%)

Gorder_k-means-o 1th

909.10 (6.93%)

1479.79 (21.86 %)

43959.29 (34.01%)

Gorder_cl-h-o 1th

887.13 (9.18%)

1564.93 (17.36%)

NumBaCo_k-means-o 1th

925,58 (5.25%)

74274 (7.97%)

45953.94 (34.02%)

NumBaCo_cl-h-o 1th

907.86 (7.06%)

1715.44 (9.41%)

Rabbit_k-means-o Ith 919.32 (5.89%) | 172848 (8.72%) | 46236.76 (33.61%)
Rabbit_cl-h-o Ith 896.14 (3.26%) | 1533.67 (19.01%)

Astro-ph 2th T64.15 2470.65 76210.12
Gorder 2th TOTAT (-2.79%) | 231096 (6.46%) | 4345521 (37.61%)
NumBaCo 2th 690,30 (7.54%) | 2532.54 (-2.51%) | 4703525 (32.47%)
Rabbit 2th 658.66 (10.80%) | 2689.75 (-8.87%) | 49065.78 (29.55%)
Cn-o 2th 688.03 (7.79%) | 242747 (1.75%) | 43511.17 (37.53%))

64927 (11.76%)

72605.58 (-5.46%)

56326.53 (19.12%)

644.14 (12.29%) | 2387.23 (3.38%) 55760.22 (19.94%)
k-means-o_cl-h-o 2th 646.42 (12.05%) | 2600.44 (-5.25%) 44760.02 (35.73%)
Cn-o_k-means-o 2th 656.77 (10.99%) | 2349.04 (4.92%) 52293.08 (24.92%)
Cn-o_cl-h-o 2th 637.06 (13.01%) | 2331.34 (5.64%)

Gorder_k-means-o 2th

663.23 (10.33%)

2293.60 (7.17%)

53396.72 (23.33%)

Gorder_cl-h-o 2th

635.1 (13.21%)

2195.94 (11.12%)

NumBaCo_k-means-o 2th

64451 (12.25%)

2587.76 (-4.74%)

53264.53 (23.52%)

NumBaCo_cl-h-o 2th 702.30 (6.33%) | 2620.71 (-6.07%)
Rabbit_k-means-o 2th 661.03 (10.56%) | 2444.63 (1.05%) 53051.03 (23.83%)
Rabbit_cl-h-o 2th 684.06 (8.20%) | 2538.87 (-2.76%)

Table 2: Graph Ordering Comparison with Pagerank, 2 threads, Astro-ph with a 2-cores in term of time
(in milliseconds, ms), cache misses (in thousands, th) and cache references (in thousands, th)

5.1 Cache-References Reduction

Cache references correspond to the number of time the program (Pagerank in this case) looks
for data at last level cache memory (L2 for two-cores and L3 for 4-core and 12 cores). So when
the data required by the processor is not present at the first level cache memory (L1 for two-
cores, L1 and L2 for 4-cores and 12 cores), it is looked at the last level cache memory and this
causes a cache reference. This means that, the number of cache references increases with the
increasing of first level cache memory misses. In other words, the reduction of cache misses at
the first level cache memory will allow the reduction of cache references.

In Table 2, with the user machine two-cores, we can see that:

* With one thread, k-means and cl-hier orders (the base of our new proposed orders) reduce
the cache references more than base line (without numbering). But they don’t do more
than existing ordering (Gorder, NumBaCo, Rabbit and Cn-order).
We can see an improvement when combining k-means and cl-hier with existing ordering.
And some of these combination give very good results. For example, the two combina-
tions (Rabbit_cl-hier-order) and (Gorder_cl-hier-order) produce the best cache-references
reduction 49.38% and 49.25% respectively while the existing ordering Cn-order produces

the third performance with 46.77%.

African Journal of Research in Computer Science and Applied Mathematics

Page 10 of 18

* Like the previous observation, With two threads, k-means and cl-hier orders reduce the
cache references more than base line. And also, they don’t do more than existing ordering.
It is with the combination that we have an improvement. In fact, the combinations
Gorder_cl-hier-order and Cn-order_cl-hier-order give the best results with 39.85% and
39.32% respectively. The best existing order comes at the fifth position behind other
combination with 37.61%.
In Table 3 with the user machine 4-cores and Table 4 with the user machine 12-cores we have
quite the same observations, that is: k-means and cl-hier orders improve the base line (without
any numbering), do worst than the existing numbering, but their combination with these last
one can allow some improvements and even give better results.

According to these observations, we can say our newly proposed heuristic is more efficient
when it is combined with existing numbering. It allows to reduce cache references and is in
some cases better than existing numbering. So, as expected, since it reduces cache references,
it helps to reduce cache misses for lower levels of memory cache.

| Heuristic [Time (ms) | Cache misses (th) | Cache references (th) |
Astro-ph Tth 983.97 1404.34 28672.87
Gorder 1th 900.62 (8.47 %) 751.31 (46.50%) 16978.87 (40.78%)
NumBaCo 1th 905.25 (8.00%) 896.31 (36.18%)
Rabbit 1th 914.773 (7.04%) 1086.81 (22.61%) 16533.93 (42.34%)
Cn-o [th 892.39 (9.31%) 665.33 (52.62%)

950.17 (3.44%)

1195.37 (14.88%)

22385.70 (21.93%)

959.13 (2.52%)

1658.89 (-18.13%)

22492.25 (21.56%)

k-means-o_cl-h-o 1th 917.94(6.71%) | 1028.04 (26.80%) | 16742.54 (41.61%)
Cn-o_k-means-o 1th 929.78 (5.51%) | 953.61 (32.10%) | 20027.35 (30.15%)
Cn-o_cl-h-o 1th 903.06 (8.22%) | 525.40 (62.59%)

Gorder_k-means-o 1th

934.33 (5.05%)

868.65 (38.15%)

21413.63 (25.32%)

Gorder_cl-h-o 1th

907.33 (7.79%)

808.25 (42.45%)

16195.74 (43.52%)

NumBaCo_k-means-o 1th

924.18 (6.08%)

484.30 (65.51%)

20254.35 (29.36%)

NumBaCo_cl-h-o 1th

911.60 (7.36%)

1079.61 (23.12%)

Rabbit k-means-o 1th

933.37 (5.14%)

970.35 (30.90%)

20829.65 (27.35%)

Rabbit_cl-h-o 1th

916.99 (6.81%)

1142.33 (18.66%)

16220.99 (43.43%)

Astro-ph 2th

770.58

1784.53

30485.73

Gorder 2th 937.64 (-21.68%) | 1493.62 (16.30%) 17951.56 (41.11%)
NumBaCo 2th 663.45 (13.90%) | 1448.12 (18.85%)
Rabbit 2th 575.40 (25.33%) | 1309.51 (26.62%) 18777.25 (38.41%)
Cn-o 2th 683.86 (11.25%) | 1203.83 (32.54%)
570.09 (26.02%) | 1434.87 (19.59%) 24521.64 (19.56%)
573.90 (25.52%) | 1591.81 (10.80%) 24592.08 (19.33%)
k-means-o_cl-h-o 2th 621.42 (19.36%) [3092.95 (-73.32%) | 18886.29 (38.05%)
Cn-o_k-means-o 2th 609.62 (20.89%) [1334.22 (25.23%) 22032.80 (27.73%)
Cn-o_cl-h-o 2th 579.80 (24.76%) | 984.11 (44.85%) 18069.54 (40.73%)
Gorder_k-means-o 2th 610.47 (20.78%) | 1263.17 (29.22%) 23595.91 (22.60%)
Gorder_cl-h-o 2th 605.60 (21.41%) | 1267.19 (28.99%) 18002.23 (40.95%)
NumBaCo_k-means-o 2th | 559.63 (27.38%) | 1159.25 (35.04%) | 22427.91 (26.43%)

NumBaCo_cl-h-o 2th

681.36 (11.58%)

1351.63 (24.26%)

Rabbit_k-means-o 2th

601.76 (21.91%)

1306.93 (26.76%)

22889.38 (24.92%)

Rabbit_cl-h-o 2th

669.41 (13.13%)

1414.45 (20.74%)

Table 3: Graph Ordering Comparison with 2 Pagerank, 2 threads, Astro-ph with a 4-cores in term of time
(in milliseconds, ms), cache misses (in thousands, th) and cache references (in thousands, th)

5.2 Cache-Misses Reduction

Cache misses correspond to the number of time the program looks for data at the last level
cache memory (L2 for two-cores, L3 for 4-cores and 12-cores) and doesn’t find it. When the

African Journal of Research in Computer Science and Applied Mathematics Page 11 of 18

data required by the processor is not present at last level cache memory, it is looked at central
memory and this causes a cache misses.

In term of cache misses reduction, when looking at the three Tables 2, 3 and 4, results gotten
with our heuristics compared to existing one have the same tendency to the one gotten in term
of cache references and are even better.

In fact, with Table 2,

* With one thread, k-means and cl-hier orders improve only the base line (without number-
ing). But when combined with existing ordering, they improve them. For example, we can
see that the combination Gorder_Kmean-order produces the best cache-misses reduction
21.86%, NumBaCo is the second with 19.05% and another combination (Rabbit_cl-hier-
order) is the third with 19.01%.

* With two threads, the combinations (Gorder_cl-hier-order) and (Gorder_kmeans-order)
are the first with 11.12% and 7.17% respectively. The existing numbering Gorder takes
the third place with 6.46%. Many ordering do not do well than the base line (the percent-
age is negative).

In Table 3 we remark that:

* With one thread, we can see that only k-means-order offers an improvement of the base
line, but without exceeding the performances given by existing numbering. Despite this
first observation, we also note that the combinations (NumBaCo_kmeans-order and Cn-
order_Cl-hier-order) produce the best cache-misses reduction with respectively 65.51%
and 62.59%. Cn-order takes the third place with 52.62%.

* With two threads, our heuristic k-means-order success to improve line base(without num-
bering) and two existing methods (NumBaCo and Gorder). The combination still keep
the best reduction (Cn-order_Cl-hier-order and NumBaCo_Kmean-order) with 44.85%
and 35.04% respectively, and Cn-order is still the third with 32.54%.

In Table 4 we remark that:

* With one thread, we can see that k-means-order produces the best cache-misses reduc-
tion with 12.98%. Rabbit takes the second place with 11.99% and then the combina-
tions (Rabbit_kmeans-order and Rabbit_Cl-hier-order) take the third and fourth place
with 10.96% and 8.66% respectively.

¢ With two threads, as seen with one thread, k-means-order reduces the cache misses of
base line (without numbering) with 18.31% and outperforms all the existing numbering.
Cl-hier-order also improves the base line with 11.84% and improves all the existing num-
bering. the combinations (Gorder_Cl-hier-order, Rabbit_Kmeans-order and kmeans_CI-
hier-order) take the second place with 15.83%, third place with 15.58% and fourth place
with 13.11% respectively.

These observations show that our main heuristic sometimes improve the existing numbering
(k-means-order at table 4 takes the first place with one and two threads). Even the combi-
nations proposed allow to improve the existing numbering, this is the case for exeample with
NumBaCo_kmeans-order which gives highest improvement with 65.51%.

African Journal of Research in Computer Science and Applied Mathematics Page 12 of 18

[Heuristic [Time (ms) | Cache misses (th) [Cache references (th)]
Astro-ph Tth 257.92 354.88 25438.29
Gorder Ith 242.55 (5.96 %) 328.57 (7.42%)

NumBaCo Ith 243.88 (5.44%) 325.98 (8.15%)
Rabbit 1th 247.99 (3.85%) | 312.33 (11.99%) 20680.43 (18.70%)
Cn-o Ith 244.20 (5.32%) 343.56 (3.19%)

252.95 (1.93%) [308.80 (12.98%) 24612.55 (3.25%)

253.48 (1.72%)

336.83 (5.09%)

24871.53 (2.23%)

Kk-means-o_cl-h-o 1th

246.93 (4.26%)

349.06 (1.64%)

21086.16 (17.11%)

Cn-o_k-means-o Ith 250.35 (2.93%) | 353.12 (0.50%) 23644.92 (7.05%)
Cn-o_cl-h-o 1th 245.33 (4.88%) | 350.81 (I.15%) | 20725.76 (18.53%)
Gorder_k-means-o Ith 248.49 (3.65%) | 330.20 (6.96%) 23308.4 (8.37%)
Gorder_cl-h-o 1th 24401 (5.39%) | 341.64 (3.73%)
NumBaCo_k-means-o Tth | 248.85 (3.52%) | 328.35 (1.48%) 23660.38 (6.99%)
NumBaCo_cl-h-o Ith 24523 (4.92%) | 332.80 (6.22%) | 19998.94 (21.38%)
Rabbit_k-means-o Ith 250.67 (2.81%) | 315.99 (10.96%) | 23834.96 (6.30%)
Rabbit_cl-h-o 1th 245.95 (4.64%) | 324.16 (8.66%) | 20460.49 (19.57%)
Astro-ph 2th 260.01 387.78 27610.67
Gorder 2th 75133 (3.67%) | 351.63 (9.32%)
NumBaCo Zth 247.55 (5.12%) | 366.24 (5.55%)
Rabbit 2th 240.09 (7.98%) | 342.30 (11.73%) | 23255.84 (15.77%)
Cn-o 2th 24811 (4.91%) | 366.93 (5.38%)
242.56 (7.03%) | 316.79 (18.31%) | 26830.44 (2.83%)
242.20 (7.17%) | 341.88 (11.84%) | 25998.54 (5.84%)
k-means-o_cl-h-o 2th 240.89 (7.67%) | 336.94 (13.11%) | 23450.35 (15.07%)

Cn-o_k-means-o 2th

242.16 (7.19%)

366.17 (5.57%)

25549.98 (7.46%)

Cn-o_cl-h-o0 2th 242.85(6.92%) | 368.26 (5.03%) 23119.75 (16.27%)
Gorder_k-means-o 2th 241.69 (7.37%) | 353.71 (8.79%) 25523.43 (7.56%)
Gorder_cl-h-o 2th 240.37 (7.87%) | 326.40 (15.83%) 22840.31 (17.28%)
NumBaCo_k-means-o 2th | 239.21 (8.32%) | 340.44 (12.21%) 25157.05 (8.89%)
NumBaCo_cl-h-o 2th 243.54 (6.66%) | 338.02 (12.83%)

Rabbit_k-means-o 2th

241.76 (1.34%)

327.36 (15.58%)

25357.19 (8.16%)

Rabbit_cl-h-o 2th

24874 (4.67%)

374.88 (3.33%)

23251.75 (15.79%)

Table 4: Graph Ordering Comparison with Pagerank, 2 threads, Astro-ph with a 12-cores in term of time
(in milliseconds, ms), cache misses (in thousands, th) and cache references (in thousands, th)

5.3 Execution Time Reduction

In this section, we analyse the execution time reduction with Tables 2, 3 and 4. Execution time
reduction corresponds to the gain due to the numbering when executing Pagerank on astro-ph
graph. The observations made here are seen as a tangible impact of the improvements made by
cache references and cache misses reduction discussed on the previous section 5.1 and section

5.2

In Table 2, we can see that:

* With one thread, K-means-order and cl-hier-order improve base line without improve ex-
isting numbering. It is their combination with this last that improve performances. For
example, the combination Gorder_Cl-hier-order produces the best time reduction with
9.18% while the combination Rabbit_cl-hier-order is third with 8.26%. The existing num-
bering Gorder is the second with 8.46%.

* With two threads, K-means-order and Cl-hier-order succeed to improve base line as well
as the existing numbers; Cl-hier-order even take the third place with 12.29%. The com-
binations give the best improvement, it is the case of Gorder_Cl-hier-order with 13.21%,
which correspond at the first place on the cache reference and cache misses. At the Sec-
ond place we have the combination Cn-order_Cl-hier-order with 13.01% corresponding
at the second place in cache reference and fourth place in cache misses.

In Table 3, with user machine 4-cores, we can remark that:

African Journal of Research in Computer Science and Applied Mathematics

Page 13 of 18

* With one thread, on this architecture, K-means and Cl-hier-order improve the base line(
without numbering) but the exiting methods Cn-order, and Gorder take the two first place
with 9.31% and 8.47% respectively. In the third place we have the combination Cn-
order_Cl-hier-order with 8.22%.

* With two threads, K-means and Cl-hier-order improve the base line(without numbering)
as well as all existing numbering with 26.02% and 25.52% respectively. In addition the
combination NumBaCo_kmeans-order takes the first place with 27.38%. Rabbit-order
takes the fourth with 25.33%.

In Table 4, with user machine 12-cores, we can remark that:

* K-means and Cl-hier-order improve the base line (without numbering) but not the existing
methods Gorder and NumBaCo that take the first two places with 5.96 % and 5.44%
respectively. The combination Gorder_Cl-hier-order combination takes the third place
with 5.39%.

* With two threads, K-means and Cl-hier-order improve the base line(without number-
ing) with 7.03% and 7.17% respectively. They even did better than all the existing
ordering except Rabbit-order which takes the second place with 7.98%. The combina-
tions (NumBaCo_kmeans-order, Gorder_Cl-hier-order and Gorder_kmeans-order) take
the first place with 8.32%, the third place with 7.87% and the fourth place with 7.37%
respectively.

With these last observations we can say that the heuristics proposed in this article improve the
performance of base line most of the time and we also note that the combinations succeed in
improving the existing numbering even more.

5.4 Global Observations

When looking at all criterion together (time, cache misses, cache references), we can observe
that, in many cases, the gains obtained on the memory caches are the causes of the gains ob-
tained in the execution times. For example, this is the case on table2 with the combination
Gorder_Cl-hier-order which correspond to the first place on the cache reference(39.85%) and
the first place on cache misses(11.12%) and finally the best performance in execution time with
13.21%.

VI CONCLUSION

In this paper, we proposed a new numbering that exploit execution traces analysis in order to
improve memory cache reduction and hence execution time reduction in graph application. To
build this ordering, we defined a new distance and then we used it to analyse execution traces
with well known clustering algorithms K-means (for Kmeans-order) and hierarchical clustering
(for cl-hier-order). Even the results obtained with these clustering based ordering was already
interesting, we did combinations between existing numbering and clustering based numbering
in order to obtain better results. Experimental results did on three user machines show that:

* clustering based numbering allow to improve existing numbering.

* combination between clustering based numbering and existing numbering allows to get

better results.

African Journal of Research in Computer Science and Applied Mathematics Page 14 of 18

The gap between existing numbering results and results based on our proposal can sometime
be more than 12%. For example, with user machine 4-cores, with one thread, we got the best
cache misses reduction through the combination NumBaCo_K-means with 65.51% compared
to 52.62% of cache misses reduction gotten with Cn-order (an existing numbering).

Our proposal has two main drawbacks. The first one is base on the fact that clustering such as
hierarchical clustering takes long time to be proposed executed. This became a real challenge
when someone wants to number a huge graph with our clustering based numbering. One can
solve this problem by choosing a good clustering algorithm. The second drawback is related to
our distance definition. In fact, our distance puts together nodes that have close execution traces
lines bringing together nodes that are in the same line of execution trace. One can solve this
problem by redefining a distance that will consider nodes that are in the same line of execution
traces. Another solution can be based on considering execution traces as itemset and then
measure the closeness of nodes through frequent itemset mining algorithm.

References

[1] L. Page, S. Brin, R. Motwani, and T. Winograd. “The PageRank citation ranking: bring-
ing order to the web.” In: Stanford InfoLab (1999).

[2] M. E. Newman. “The structure and function of complex networks”. In: STAM 45.2 (2003),
pages 167-256.

[3] A. Groce. “Error explanation with distance metrics”. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2004,
pages 108-122.

[4] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data. June 2014.

[S] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura. “Rabbit order: Just-
in-time parallel reordering for fast graph analysis”. In: 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE. 2016, pages 22-31.

[6] H. Wei, J. X. Yu, C. Lu, and X. Lin. “Speedup graph processing by graph ordering”.
In: Proceedings of the 2016 International Conference on Management of Data. 2016,
pages 1813—-1828.

[7] T. Messi Nguélé, M. Tchuente, and J.-F. Méhaut. “Social network ordering based on
communities to reduce cache misses”. In: Revue ARIMA Volume 24 - 2016-2017 - Special
issue CRI 2015 (May 2017).

[8] T. Messi Nguélé, M. Tchuente, and J. Méhaut. “Using Complex-Network Properties for
Efficient Graph Analysis”. In: Parallel Computing is Everywhere, Proceedings of the
International Conference on Parallel Computing, ParCo 2017, 12-15 September 2017,
Bologna, Italy. 2017, pages 413-422.

[9] T. Messi Nguélé. “DSL for Social Network Analysis On Multicore Architecture”. PhD
thesis. Université Grenoble Alpes; Université de Yaoundé I, Sept. 2018.

[10] T. Messi Nguélé and J.-F. Méhaut. “Applying Data Structure Succinctness to Graph
Numbering For Efficient Graph Analysis”. In: Revue Africaine de Recherche en Infor-
matique et Mathématiques Appliquées 32 (2022).

A ANNEX: FOURTH PROPERTIES OF D PROXIMITY

On this case we should show that:

IT(a)] + [T(c)| = 2[T(a) NT(e)] < [T(a)] + [T(b)] = 2|T(a) NT(®)] + [T(b)] + [T(c)] = 2[T'(b) NT(c)]

African Journal of Research in Computer Science and Applied Mathematics Page 15 of 18

http://arima.episciences.org/3318
http://arima.episciences.org/3318
http://dx.doi.org/10.3233/978-1-61499-843-3-413
http://dx.doi.org/10.3233/978-1-61499-843-3-413

Now we permute the elements of left and right and we also change the signe:

IT(@)] +[T(0)] = 2[T(a) NT(B)] + [L(B)| + [T(e)| = 2[T(b) NT(e)| = [F(a)] + [T(e)| = 2[T(a) NT(c)]

the |I'(a)| and the |T'(¢)| will cancel out and th |T'(b)| will add up;

We also pass the factor —2|T'(a) N I'(¢)| on the other side of the inequality in order to have 0 on one side. Thus,

we have:
2|IT(b)| — 2|T(a) NT(b)| — 2IT(b) NT(c)| + 2|T(a) NT(c)] > 0
< 2[[T(®)| = [(a) NT(B)] = [T(b) NT(e)| + [T(a) NT(c)]] = 0
< L) = [T(a) NT(®)] = [T(b) NT(e)| + [T(a) NT(c)| = 0
We group those who have the negative sign on one side and we have:
IT(®) + [T(a) NI (e)| = [T'(a) NT()] — [T(b) NT(c)] = 0
< [L()[+[T(a) NT(c)| = [[T(a) NT(B)[+[T(0) NT(c)[] = 0
So to show that D(a, b) + D(b, ¢), it is enough to show that:
IT®)] + [T(a) NT(e)| = [[T(a) NT(0)| + |T(6) NT(c)[] = 0.
Let us show that: |I'(b)| + |T'(a) NT(c)] — [|T(a) NT(b)| + |T'(b) NT(c)|]] > 0
IT®)] + |T(a) NI (e)] = [[T(a) NT(B)] + [T(b) NT(c)[] = 0
> [I(b)| +[T(a) NT(¢)| = [[T(a) NT(B)] + [T(b) NI (c)]]

With this inequality, the factors that can have different values are:
i%) |F(a) NT(e)| < |D(a)| I [T(a)| < [T(¢)] Or < |L(e)| If [T(c)| < [F(a)]
i) |0(a) NT(b)| < [D(a)| If [T(a)| < [T(b)] Or < [L(b)| If [T(b)] < |T(a)l
iii?) [I'(b) NT(e)] < L (B)| IF[T(B)] < [T(e)] Or < [T ()| If ()] < [T(D)]

For this inequality to no longer hold, the right side would have to be greater than the left side. The maximum cases

for this to happen are:

15t Case : [T'(a) NT'(b)| = |T'(a)| and |T'(b) NT(c)| = |T(b)]
2" Case: [T'(a) NT'(b)| = |T'(a)| and |T'(b) NT(c)| = |T(c)]
NI(b)| = [L(b)| and [T'(b) NT(c)| = [L'(b)]

374 Case: [I'(a)
(

| =T
4'h Case: [I'(a)NT'(b)| = T

(b)] and [T'(6) NI (e)| = [T(c)]

From these different cases, we can determine the probable maximum value of |[T'(a) N T'(c)| contained in the left

part of the inequality and see if the inequality will always be respected.
1.0.1 I*" case : (|T'(a) NT(b)| = |T(a)| and |T'(b) NT(c)| = |T(b)])
In this first case we have the following information:

(IT(a)| < [T(®)] and L ()] < [T(0)]) = [T(a)] < [T(b)] < |T'(c)
(a) NT(c)| = [T(a)|
The inequality |T'(b)| + [T'(a) NT'(c)| > [|T'(a) NT'(b)| + |T'(b) NT'(c)|]
thus becomes |I'(b)| + |I'(a)| > |T'(a)| + |T'(b)]

= |T

And the inequality is therefore verified.

African Journal of Research in Computer Science and Applied Mathematics

Page 16 of 18

1.0.2 2™ case: ([l'(a) NT(b)| = |T(a)| and |T(b) NT(c)| = |T(c)])
Here [['(a)| < [T'(b)| and [I'(c)| < [P(b)] = [I'(a)] < [I'(b)] = |T'(c)|

In this case, we cannot directly conclude. We can however say that: 3 ¢1,¢2 C N / |T'(b)] = |T'(a)| + |¢1] and
PO = [T(e)] + g2

Thereby

[D(a)] = [L®)] = [g1] and [T(c)| = [T(®)] - |g2| = [[(a) NT(c)| = |T(a)|+ [T(c)| = [T'(a) UT(D)]
Or

IT'(a) UT(b)| = |T(b)| because |T'(b)| > |T'(a)]

The inequality can be written:

T+ [T(a)] + ()] = [T(b)| = [T(a)] + [T (c)]

We note that the |T'(a)| and |T'(c)| will cancel on either side of the inequality and we will have:
IT@) = [T(®)] = 0;

The |T'(b)| will cancel out and we will therefore have a valid expression.

103 3 case: ([T(a) NT(B)| = [F(b)| and |T(b) NT(c)| = |T(b)))

For the 3" case, we have |I'(b)| < |['(a)| and |T'(b)| < [T'(c)| = |['(a)| > |T\(b)| < |T(c)]

In this case, we cannot directly conclude. However we can say that: 3¢3,¢4 C N / |I'(a)| = |T'(b)| + |¢3| and
IT(e)] = [CO)] + lg4] -

Thus, () N T(c) = (T(b) U g3) N (D(b) U g4) = T(b) U (¢3 N q4)

Hence, |I'(a) NT'(c)| = [T'(b) U (¢3 N g4)| = [L(b)] + |g3 N q4| — [L(b) N (g3 N q4)]

The inequality therefore becomes:

IT(0)] + [T(b)] + [g3 N g4 — [T'(b) N (g3 N g4)| = [T'(b)] + T(b)]

The |T'(b)| will all cancel out and we will have:

lg3N g4 —[T(b)N(g3Ngd)| >0 <= [g3N g4 > [T(b) N (g3Ng4)l

But by definition, |¢3 N ¢4| > [T'(b) N (g3 N q4)

The result is therefore valid, which allows us to verify our 37 case.

104 4" case: ([T(a) NT(b)] = |T(b)| and |D(b) NT(e)| = [T(e)))

L(e)] < |T'(b)] and [T'(b)] < [I'(a)] = [T(a)] = [T'(b)] = |T(c)]
= [P(a) NL(c)| = [P(c)].

For this last case,

The inequality therefore becomes: |I'(b)| + [['(c)| > |T'(b)| + |T'(¢)]
This gives us a valid result.

All cases could be tested and verified.

African Journal of Research in Computer Science and Applied Mathematics Page 17 of 18

B BIOGRAPHY
Regis Audran MOGO WAFO, Computer Science PhD Student in University of Yaounde 1

Thomas MESSI NGUELE, Computer Science Doctor/PhD, Senior Lecturer at University of Yaounde 1, Head of
Department of Computer Engineering at HITLC of University of Ebolowa

Armel Jacques NZEKON NZEKO’O, Computer Science Doctor/PhD, Senior Lecturer at University of Yaounde 1
Xaviera YOUTH KIMBI, Computer Science Doctor/PhD, Senior Lecturer at University of Yaounde 1

C ACKNOWLEDGMENT

The successful completion of this research has been made possible through the generous support and collaboration
of various scholarship stakeholders. We express our sincere gratitude to International Development Research Cen-
tre (IDRC), Swedish International Development Cooperation Agency (SIDA) and African Center for Technology
Studies (ACTS) for awarding the Artificial Intelligence for Development (AI4D) scholarship program that funded
this research. This scholarship not only provided financial support but also served as a source of motivation and
encouragement throughout the project.

We are grateful for the support of all members of our work team namely High performance data science (HIPER-
DAS), who contributed to stimulating discussions and shared their insights. The collaborative environment fostered
by our academic community has been integral to the development of this work. Lastly, we extend our thanks to all
those who, directly or indirectly, played a role in the realization of this paper. Your support has been crucial, and we
are grateful for the opportunities provided by the scholarship stakeholders and the broader academic community.

African Journal of Research in Computer Science and Applied Mathematics Page 18 of 18

	I Introduction
	II RELATED WORK
	III Cache Management Problem
	IV Numbering Based on Clustering
	4.1 Execution traces
	4.2 Distance between two nodes
	4.3 Proposed Algorithms
	4.3.1 Kmeans-order and Cl-hier-order
	4.3.2 Combination between Kmeans-order and Cl-hier-order
	4.3.3 Combination between existing numbering with Kmeans-order and Cl-hier-order

	4.4 Complexity

	V Experimental Evaluation
	5.1 Cache-References Reduction
	5.2 Cache-Misses Reduction
	5.3 Execution Time Reduction
	5.4 Global Observations

	VI Conclusion
	A Annex: fourth properties of D proximity
	1.0.1 1st case : (|(a) (b)| = |(a)| and |(b) (c)| = |(b)|)
	1.0.2 2nd case :(|(a)(b)| = |(a)| and |(b)(c)| = |(c)|)
	1.0.3 3rd case :(|(a)(b)| = |(b)| and |(b)(c)| = |(b)|)
	1.0.4 4th case:(|(a)(b)| = |(b)| and |(b)(c)| = |(c)|)

	B Biography
	C Acknowledgment

