
Multi-target synthesis of logic controllers using a MDE approach

Gérard NZEBOP NDENOKA*1,4,5, Maurice TCHUENTE2,4,5, Emmanuel SIMEU3,5, Valery MONTHE2

1Department of Land Surveying, National Advanced School of Public Works,
−P.O. Box 510 Yaoundé, Cameroon

2Department of Computer Science, University of Yaoundé I,
−P.O. Box 337 Yaoundé, Cameroon

3University Grenoble Alpes, CNRS, Grenoble INP ⊕, TIMA, 38000 Grenoble,
⊕Institute of Engineering Univ. Grenoble Alpes, France

4University of Yaoundé I, LIRIMA Laboratory, IDASCO Team, Cameroon
5Sorbonne Universities, UPMC Univ. Paris 06, IRD, UMI 209 UMMISCO, F-93143, Bondy, France

*E-mail : ndenokag@yahoo.fr

DOI : 10.46298/arima.14306
Submitted on September 19, 2024 - Published on March 25, 2025

Volume : 43 - Year : 2025

Editors : Mathieu Roche, Clémentin Tayou Djamegni, Nabil Gmati

Abstract
GRAFCET is a powerful graphical modeling language for the specification of controllers in dis-
crete event systems. It considers hierarchical structures as well as structural and semantic con-
straints. In this paper, we propose to use a GRAFCET specification model in a Model Driven En-
gineering (MDE) approach for multi-target synthesis of embedded logic control systems based on
microcontrollers. In this approach, a GRAFCET metamodel is associated with a microcontroller
metamodel which characterizes the microcontroller platform features to be considered when gen-
erating code. The GRAFCET metamodel includes the modeling of expressions to facilitate model
verification and an easy interpretation of GRAFCET events and time constraints. Transformation
rules for generation of C-programmable microcontroller code are then presented. As implemen-
tation, we present a platform based on Eclipse EMF, Object Constraint Language (OCL) and
Acceleo code generation engine.

Keywords
Multi-target synthesis; logic controllers; GRAFCET; Model Driven Engineering; model verifica-
tion; C code generation

I INTRODUCTION

The design cost of automated systems is greatly influenced by the time needed for the develop-
ment of reliable control code [12]. This task is generally accomplished by direct implementa-
tion from the functional design specification of the controller. Conventional manual translation
of the requirements of the control software into a control code often leads to additional costs

African Journal of Research in Computer Science and Applied Mathematics Page 1 of 22

mailto:
https://doi.org/10.46298/arima.14306

caused by erroneous interpretations [10, 12]. It is therefore of great interest to automatically
generate software code on the basis of a graphical specification language [8] such as GRAFCET
that is an international standard (IEC 60848 [2]) since 1988. Indeed, it is an advantageous
graphical modeling language for industrial programmable logic controller (PLC) specification
in discrete event systems (DES) [8].

A lot of work has been done to make GRAFCET a programming language. One of the well-
known developments [7] has led to the definition of Sequential Function Chart (SFC), which
is one of the five languages of the IEC 61131-3 standard dedicated to the programming of
PLCs. On the other hand, some authors have been interested in code generation for controllers
specified in GRAFCET. For instance, J. Machado et al. [5] presented a safe controller design
methodology permitting to easily generate control code for logic controllers taking as input
a GRAFCET specification model. Their proposal uses GRAFCET algebraic equations as a
formal representation of GRAFCET. Today the rapid advances in electronic technologies have
resulted in a variety of new and inexpensive control capabilities[15]. We are observing the
emergence and swift expansion of a diverse range of low-cost processors designed for executing
programs in complex embedded applications. Thus, the use of programmable controllers based
on microprocessors may be preferred in low cost applications to reduce the cost of the control
solution. As a consequence, it is important to consider the description of the target architecture
when generating code for a system specified in GRAFCET. This allows to handle the generation
of control code for a family of hardware architectures, with the possibility to choose one specific
architecture as input of the generation process.

Among the existing approaches for code generation from formal models, recent advances in the
field of Model Driven Engineering (MDE) produce the most promising outcomes [12]. MDE is
an expanding paradigm in the software engineering domain that promotes the use of models and
model transformations for the production of software artifacts (documentation, code, etc.), with
the use of Domain Specific Languages (DSLs). The MDE approach was found to be appropriate
for GRAFCET implementation [8, 12]. Indeed, the GRAFCET language can be seen as a DSL
and can benefit from the advances of MDE to facilitate control engineers practices, by enabling
the automatic transformation of GRAFCET models into control code.

Whatever be the nature of the model used to represent GRAFCET models in the code generation
process, this model must support the verifications that ensure compliance with the standard [5].
A step towards a general formal definition of GRAFCET is proposed in [10] and can be used as
a basis for GRAFCET model-driven development [12], including hierarchical structures [17] to
enable the expantion of the existing solutions to other issues of formal methods in control system
engineering. Our objective in this paper is to propose a GRAFCET metamodel representing all
its basic concepts including events and time constraints. We will then show how to perform
multi-target code generation, considering the specification of the target used.

The rest of the paper is organized as follows: Section II presents a background on GRAFCET
specification language and model driven development and analysis of MDE work for GRAFCET
implementation. GRAFCET metamodeling, verification rules and the derived properties are
presented in Section III. In Section IV, we present a multi target code generation, including the
microcontroller metamodel while Section V is devoted to a case study. The paper is concluded
in Section VI.

African Journal of Research in Computer Science and Applied Mathematics Page 2 of 22

II BACKGROUND

The specification of the logic controller is the first step in the development of embedded con-
trollers for a custom application [1]. GRAFCET is one of commonly used formal techniques
for logic controller specification. In this section, we present an overview of the GRAFCET
language and the MDE, which is the approach through which we formalize the GRAFCET
multi-target synthesis.

2.1 GRAFCET description language

GRAFCET is a graphical language for modeling automation systems defined in the IEC 60848
standard [2]. It is used for high level behavioral description of logic sequential systems and
has been inspired from the Petri Net language [1]. GRAFCET is used for the specification,
modelling and simulation of logic control systems in interaction with physical processes. A
GRAFCET model describes the states of a system and associated actions that permit to take
into account inputs and generate the corresponding outputs. This language is defined statically
by its syntax and dynamically by its evolution rules.

2.1.1 GRAFCET statics

A GRAFCET model (as presented in Figure 1) is a directed graph with two types of nodes: steps
and transitions. Steps are represented by squares while transitions are represented by horizontal
lines.

Figure 1: Example of GRAFCET model

Initial steps are represented with double squares. Steps can be either numbered or named, while
transitions do not require numbering. Steps and transitions are linked by directed arcs, referred
to as junctions or connections. These arcs are essential for connecting steps to transitions and
vice versa. Each transition is associated with a transition condition, also known as receptivity
or condition.

2.1.2 GRAFCET dynamic behavior

The GRAFCET dynamic behavior can be compared to a sequential machine that provides an
event-driven conversion of an input sequence into a set of outputs, considering the controller’s
internal state [1, 5]. The GRAFCET evolution is possible by firing (or clearing) transitions

African Journal of Research in Computer Science and Applied Mathematics Page 3 of 22

according to five evolution rules defined by the IEC 60848 standard [2] which aims to ensure a
deterministic behavior :

• Rule 1: At the initial time, all the initial steps are active; all the other steps are inactive.
• Rule 2: A transition is enabled when all the steps that immediately precede this transition

are active. A transition is fireable when it is enabled and when the associated transition
condition is true. A fireable transition must be immediately fired.

• Rule 3: Firing a transition provokes simultaneously the activation of all the immediately
succeeding steps and the deactivation of all the immediately preceding steps.

• Rule 4: When several transitions are simultaneously fireable, they are simultaneously
fired.

• Rule 5: When a step shall be both activated and deactivated, by applying the previous
evolution rules, it is activated if it was inactive, or remains active if it was previously
active.

These rules enable the calculation of the subsequent state and the corresponding output signals
caused by an input event [1, 2, 12]. A step defines a partial state of the system and can be
active or inactive; hence, a Boolean variable Xi, named step activity variable is defined for each
step. The variable Xi (which is an internal variable) is true (1) if the step i is active and false
(0) if not. The general state of a GRAFCET model called its situation, is characterized by the
set of all the active steps at a given time. It can be represented by a vector X = (Xi). Initial
steps represented by double squares are initially activated (Rule 1). As soon as time passes and
events occur, the continuous changing of the GRAFCET situation characterizes the evolution of
the system that it models. A mathematical formalisation of these dynamics is proposed in [10]
and R. Mross et al. [19].

2.1.3 GRAFCET example

Figure 1 shows an example of a GRAFCET model used in [18], inspired from a model presented
in [13] to model the water supply subsystem of a tank. This model has eight steps numbered
from 1 to 8 among which the step 1 is initial, nine transitions numbered from (1) to (9) and
several actions among which : C := 0 and N := 10 are stored actions performed during the
deactivation of step 1; V R1, AV and REC are continuous level actions associated respectively
to steps 3, 4 and 8. The action A if (bWD OR ppM1) is a conditional level action. It is performed
if step 6 is active and the condition bWD OR ppM1 is true. The receptivity of transition (2) is
hT2 AND rain. It expresses the fact that when step 2 is activated and the value of hT2 AND rain
is true, this transition is fireable and should be fired; when it is fired, step 2 is deactivated and
step 3 is activated. Here, hT2 and rain are two Boolean variables representing digital input
signals.

2.2 Model driven engineering

Model Driven Engineering (MDE) is the field of software engineering that makes use of models
and model transformation to produce software artifacts such as code and documentation [11].

2.2.1 Key principles and MDE approaches

The basic principle of MDE is “everything is a model” [9, 11]. A model is a representation of a
system under study. MDE principles state that a particular view of a system can be captured by a
model and each model is written in the language of its metamodel. In other words, “a metamodel
is a model of models” that defines the structure of a modeling language [11]. As a consequence,
a model should satisfy the structure defined at the level of its metamodel. A modeling language

African Journal of Research in Computer Science and Applied Mathematics Page 4 of 22

is a set of all possible models that are conforming to the modeling language’s abstract syntax,
represented by one or more concrete syntaxes and satisfying a given semantics [11]. The process
of defining a modeling language starts with the identification of the concepts, abstractions and
relations underlying the application domain. It corresponds to the domain analysis phase of the
development of a Domain Specific (Modeling) Language (DS(M)L).

MDE approaches are usually supported by complex tools called “model driven MetaTools” and
commonly known as “language workbenches” [16]. They provide a collection of features to
help users define DS(M)Ls, with specific editors, model validation and model transformation.
Examples of such tools are Eclipse Modeling Framework (EMF), Microsoft Software Factories,
and JetBrains MPS [11]. A model transformation is “the process of converting one model to an-
other model of the same system‘” [11]. A model transformation program takes as input a model
conforming to a given source metamodel and produces as output another model conforming to
a target metamodel [16].

2.2.2 Related work

Many PLC environments such as CoDeSys allow multi-target synthesis of logic control sys-
tems [10], but these environments are proprietary and they are not interested by the synthesis on
microcontroller targets. Y. Qamsane et al [14] proposed a GRAFCET metamodel for the trans-
formation of Distributed Control model of automated manufacturing systems into GRAFCET
to facilitate its implementation. This model represents the very basic GRAFCET structure, but
is limited to allow the construction of any GRAFCET model. For example, only one action
can be associated to a step, and its type (continuous or stored) is not taken into consideration.
Similarly, to demonstrate that composing transformations is a complex problem, F. Basciani
et al. [9] proposed a GRAFCET metamodel to illustrate model transformations between in-
compatible metamodels, with an illustration on the transformations between GRAFCET and
Petri nets. This GRAFCET metamodel conforms to the GRAFCET standard and represents
only the concepts of the most basic structure of the language. Similarly, R. Julius et al. [17]
proposed a metamodel based approach for GRAFCET specifications, with a particular focus on
hierarchical structures, enabling how to expand the existing solutions to other issues of formal
methods in control system engineering. The variable and timing condition concept is presented,
discussed and formalized by G. Nzebop N. et al. [18]. Their proposal integrates a parser ca-
pable of directly analysing and generating GRAFCET expressions in an MDE environment for
editing GRAFCET models. However, this solution had not yet been integrated into a general
GRAFCET metamodel. Recently, R. Mros et al. [19] proposed a GRAFCET metamodel for
editing models and transforming them into Guarded Action Language (GAL) for verification
purposes. Their contribution emphasizes the hierarchical structures of GRAFCET and rules for
editing valid GRAFCET models. Also, the GRAFCET expressions must be transformed into
GAL before being verified and validated. Another limitation of this MDE synthesis solution is
that their target is mainly programmable controllers (via the Structured Text, one of the PLC
languages [7]) and does not take into account specific targets such as microcontrollers.

Here we propose a metamodel that allows the editing of valid GRAFCET models with well-
constructed and verified expressions [18, 19] based on a GRAFCET expression parser and the
OCL language, associated with a metamodel of C-programmed microcontrollers [4] to facilitate
code synthesis for these architectures.

African Journal of Research in Computer Science and Applied Mathematics Page 5 of 22

III GRAFCET CONCEPTS AND METAMODEL

Here, we present the GRAFCET metamodeling, consisting of the identification of GRAFCET
concepts with their interrelations, and their formalization within a metamodel.

3.1 GRAFCET concepts identification

Given the complexity of the GRAFCET domain, we distinguish the identification of concepts
of the basic GRAFCET structure, concepts related to variables and actions, GRAFCET expres-
sions concepts and timing variables concepts.

3.1.1 Concepts of the basic GRAFCET structure

With regard to the description of the GRAFCET language according to the IEC 60848 3rd Ed.
standard [2], it appears that a GRAFCET model groups together several steps and transitions.
They are linked together by oriented links also called connections. The steps (Step concept),
the transitions (Transition), oriented links (Connection) and variables (Variable) are GRAFCET
elements (G7Element). Two types of oriented links can easily be identified: transition-to-step
link (TransitionToStep) and step-to-transition link (StepToTransition). Each instance of Tran-
sitionToStep is outgoing from a transition and incoming from a step, while each instance of
StepToTransition is outgoing a step and incoming a transition.

3.1.2 Concepts related to variables, actions and expressions

A Boolean variable (BooleanVariable) is associated with a step to represent its activity, and
is internal to the GRAFCET. Any variable (Variable) is either input, output or internal. It is
characterized by a name and a duration of its activity. Several actions (Action) may be associated
with a step. Every action is represented and performed by its variable. This way of structuring
Action and Variable concepts makes it possible to have the same action associated with several
different steps as stated in the standard. An action can only be stored (StoredAction) or level
(LevelAction).

The concept Expression do not appear explicitly in the GRAFCET standard, but it exists and its
modeling permits to solve certain issues such as verifications and the providing of appropriate
semantics. This concept is presented, discussed and formalized by G. Nzebop N. et al. [18],
including GRAFCET events and timing variables. In [19], the authors also identify the notion
of Variable as a key concept, and use the concept Condition to refer to Boolean expressions
(Expression).

3.1.3 Concepts related to timing variables

Here is an overview of the concept of timing variables, as detailed in [18], and extended to other
Boolean variables within GRAFCET, including suitable semantics proposed in the C program-
ming language. The GRAFCET standard defines timing variables or conditions, exemplified by
X1/3s (termed Delayed 1), not X1/3s (referred to as Limited), and 2s/X1/3s (known as Delayed
2, serving as the general form), all derived from the activity variable X1. These expressions uti-
lize a variable, and their interpretation involves calculations. For instance, the condition X1/3s
holds true if the duration since variable X1 became true is at least 3 seconds. The determination
of timing variable values relies on tracking the duration of the associated variable’s activity.

Thus, each GRAFCET variable must be defined by its state (active or inactive) and its life-
time, which is the duration since it transitioned from false to true. We employ the concept of
TimingOperator to represent a timing variable, which includes a type (Limited, Delayed1, or

African Journal of Research in Computer Science and Applied Mathematics Page 6 of 22

Delayed2) and two durations (duration1 with unit unit1 and duration2 with unit unit2); dura-
tion2 is applicable only for Delayed2 timing expressions. Units of duration are specified in the
enumerated type TimeUnit.

3.2 The GRAFCET metamodel

The formalization of GRAFCET concepts and the links between them produces the GRAFCET
metamodel of Figure 2, where the elements depicted in purple represent components of the
main GRAFCET structure. The yellow elements illustrate aspects of the GRAFCET expression
language ‘[18], while the blue elements refer to enumerated types or potential values for specific
attributes within the model.

Figure 2: The GRAFCET metamodel

Many relationships are automatically derived. An automatic solution for the construction of
GRAFCET expressions has been presented in [18], based on an ANTLR parser generator tool,
called G7Expr, that is called to automatically and recursively derive all the elements associated
with the construction of GRAFCET expressions. We therefore integrate this solution into the
proposed GRAFCET metamodel.

To ensure that the built models are valid, semantic constraints or rules are stated, formalized
with OCL (in the same way as [19] and [18]) and integrated into the GRAFCET metamodel.
In effect, OCL is a formal language that is independent of a programming language [19]. It is
used to describe elements on UML models and to query metamodel instances. Generally, OCL
expressions are written in the context of a specific instance of a model, to which the keyword

African Journal of Research in Computer Science and Applied Mathematics Page 7 of 22

self refers. The ”.” operator refers to an attribute, resulting to a single attribute or a set, called
collection; while the ”->” operator refers to the navigation from a collection.

For example, the constraint ”A GRAFCET has at least one initial step” is formalized with OCL
as follows :

Listing 1: A GRAFCET has at least one initial step

1 context Grafcet invariant hasAtLeastOneInitialStep :
2 self.steps->select(s|s.isInitial)->size()>=1;

Annex 1 contains other rules that have been clearly identified, stated and formalized with OCL.

3.3 Deriving relative positions between steps and transitions

The GRAFCET evolution rules (defined in Section 2.1.2) make use of relative positions between
steps and transitions. For example, given a transition, it is necessary to evaluate all the input
steps (upstream steps) and all the output steps (downstream steps). We provide a solution by
using the OCL language to query metamodel instances.

Input steps of a transition : According to the model, a step is at the input of a transition if
there exists a link (of type StepToTransition) which is both at the output of this step and at the
input of this transition. Input steps are obtained by creating the inSteps property in the context
of Transition as presented on Listing 2:

Listing 2: Deriving inSteps property

1 property inSteps:Step[*] { derived volatile }
2 { derivation: (grafcet.steps->select(step|step.outConnections->exists(

outCon|self.inConnections->includes(outCon))))->asSet(); }

Similarly, we create derived properties for output steps of a transition, input transitions of steps,
and output transitions of steps, all of which are required to implement the GRAFCET evolution
rules.

IV MULTI TARGET CODE GENERATION

This section starts with the specification of target platforms, before describing the transforma-
tion of GRAFCET into control code.

4.1 Target platforms specification and metamodel

The microcontrollers programmable in a language derived from the C-language [4] are consid-
ered, and the metamodel of this family is drawn in Figure 3. As for the GRAFCET, a microcon-
troller model editor is also obtained in Eclipse EMF, allowing the edition and saving models in
XMI format for any use, such as code generation.

The elements shown in white represent useful physical characteristics, while those in purple
illustrate characteristics associated with the C-language. The light yellow elements denote enu-
merated types or potential values for specific attributes within the model.

African Journal of Research in Computer Science and Applied Mathematics Page 8 of 22

Figure 3: Microcontroller metamodel

4.2 Transformation step for code generation

Here is the MDE transformation process to generate GRAFCET code, which utilizes both the
GRAFCET model and the target microcontroller model as input. We then present a formal
tool for describing the semantics of GRAFCET, specifically the algebraic equations, followed
by the general structure of the C code to be generated for controlling the system modeled by
GRAFCET, along with the associated transformation rules.

4.2.1 GRAFCET algebraic equations

Due to the sequential execution of instructions by microcontrollers, the GRAFCET dynamics
is stated in the code in terms of GRAFCET algebraic equations presented in [5] and recalled
in [13]. Here are the two main equations of the GRAFCET dynamics. Let CC(tr) (Clearing
Condition) be the Boolean variable associated to the clearing of transition tr: tr can be fired if
it is validated and if its associated transition condition TC(tr) is true. CC(tr) is calculated as
shown on equation 1.

CC(tr) = (
m∏
i=1

X tr
i)× TC(tr) (1)

where :
• X tr

i is the step activity Boolean variable associated to step i and directly preceding tran-
sition tr,

• TC(tr) is the transition condition associated to transition tr and
• m is the number of steps immediately preceding the transition tr.

African Journal of Research in Computer Science and Applied Mathematics Page 9 of 22

∏m
i=1 X

tr
i expresses the condition for this transition to be validated.

After the initialization of activity variables, their update is computed as shown on equations 2.

Xi(t+ 1) =

p∑
j=1

CC(tri−j) +Xi(t)×
q∏

j=1

CC(tri+j) (2)

where :

• Xi(t) is the step activity variable of step i in the tth scan cycle,
• Xi(t+ 1) is the step activity variable of step i in the (t+ 1)th scan cycle,
• p is the number of transitions directly preceding the step i,
• q is the number of transitions directly succeeding the step i,
• CC(tri−j) is the clearing condition of transition j, directly preceding the step i and
• CC(tri+j) is the clearing condition of transition j, directly succeeding the step i.

To calculate the value of the actions, a Boolean variable A is associated with each action A.
Since it’s possible for the same action A to be associated with several steps, the value of A(t)
is obtained by calculating the logical OR(+) of the step variables XA

i , i = 1, 2, . . . , h; where h
is the number of steps with which this action is associated (equation 3):

A(t) =
h∑

i=1

XA
i (t) (3)

Where XA
i (t) is the activity variable of a step i at time t to which the action A is associated.

The equation 3 proposed in [5] concerns only continuous level actions (with 1 or true condi-
tion). This equation is generalized for conditional level actions, by combining each step activity
variable with which the action is associated with the corresponding condition. The result is
equation 4 :

A(t) =
h∑

i=1

(XA
i (t)× CondAXi

(t)) (4)

where CondAXi
(t) is the condition at time t of the A action associated with the step whose

activity variable is Xi.

For stored actions, these are textual expressions primarily intended for variable assignment,
either when the step is activated or when it is deactivated. Concerning GRAFCET expressions,
they are transformed into C code using the C semantics of expressions described in [18] and
produced by a GRAFCET expression parser.

African Journal of Research in Computer Science and Applied Mathematics Page 10 of 22

4.2.2 General structure of the generated code

The transformation is based on the correspondence of GRAFCET-elements to C code fragments
(M2T transformation) of the Concrete syntax design pattern category. For M2M transforma-
tions, it is possible to thoroughly describe how each element of the source model is transformed
into the target model, which is not always straightforward for M2T transformations. The overall
structure of the generated code is presented in Listing 3 :

Listing 3: General structure of the generated code

1 // Inclusion of necessary libraries for the specific target
2 // Declaration of variables for the Grafcet model
3 void setup() {
4 initializeTimer(); // Initialize timer if the Grafcet uses timing

conditions
5 // Configure input and output pins
6 // Set the initial state of the Grafcet
7 X1 = 1; // Set X1 as the initial step of the Grafcet model
8 }
9 void loop() {

10 // Read the input signals
11 // Evaluate validated transitions (VT_i)
12 // Assess receptivities (R_i)
13 // Calculate clearing transition conditions (CC_i)
14 // Determine the new state of the Grafcet (Xi)
15 // Calculate outputs (level actions)
16 // Evaluate stored actions
17 // Updating outputs
18 }
19 // Include this if the C language compiler requires a main function
20 void main(void) {
21 setup();
22 while (1) { loop(); }
23 }
24 void initializeTimer(){...}
25 void update_G7TimingVars_callback(){...}
26 void pinModeConfig(int pin_num, int mode){ ... }
27 ... //other functions of reading/writing pins

For additional details, Annex 2 offers a summary of several essential code transformation rules.
Specifically, Equation 1 is realized through the rules in Listing 13 and Listing 14, while Equa-
tion 2 is realized by the rule in Listing 15.

V A CASE STUDY OF CODE GENERATION

This case study aims to provide an example of implementing transformations for code genera-
tion specifically for the family of microcontrollers discussed here. We then present a particular
case with the Atmega328P microcontroller [21].

5.1 An implementation of the transformation with Acceleo

The transformation program is organized by modules. Each module contains several templates
and/or queries to extract information from the manipulated models and write the result into
the file on output. The Acceleo language is then used to implement the transformation of

African Journal of Research in Computer Science and Applied Mathematics Page 11 of 22

Figure 4: General architecture of the transformation system

GRAFCET into code. It is an implementation of the MOFM2T specification defined by the
OMG and is made up of two main types of structures: templates and queries. Templates are
sets of Acceleo statements that are used to generate text, and queries are used to extract infor-
mation from models.

The main module (generateG7MM2Code.mtl) contains one template that provides the main
structure of the code generated and outputted in a file, as shown in Figure 8 of Annex 3.

The general architecture of this transformation system is shown in Figure 4. The Acceleo Trans-
formation Engine takes as input a valid GRAFCET model and a description of the architecture
of the target microcontroller to execute the transformation rules and produce dedicated code as
output.

5.2 Editing and validation of the GRAFCET model

After the creation of the generation model (.genmodel) within Eclipse EMF, the project code
is automatically generated, including the code of a GRAFCET editor, which has several views
including a tree editor (Sample Reflective Ecore Model Editor) and a text editor. This is a
significant advantage of using a MDE environment, as it provides readily available model ma-
nipulation tools.

Here we illustrate this editor with the GRAFCET model from the example (Figure 1). Based
on this GRAFCET model, we present a corresponding GRAFCET model with labeled links (as
shown in Figure 5), enabling a clear differentiation between the links.

The labels (con1, con2, etc.) permit to distinguish links from each other. This GRAFCET
model has a total of 20 links: 10 of type StepToTransition and 10 of type TransitionToStep. All
the derived features of this GRAFCET model are automatically produced, according to Section
3.3. Figure 6 shows an overview of this GRAFCET model produced in the Sample Reflective
Ecore Model editor. All step activity variables (X1, X2, . . . , X8) are automatically built, as
well as step variables, actions, and transition expressions.

Validation rules are associated with the GRAFCET metamodel and must be verified in model
instances by running the validation process.

African Journal of Research in Computer Science and Applied Mathematics Page 12 of 22

Figure 5: GRAFCET example with the links labelled

5.3 Application to the Atmega328P microcontroller

5.3.1 Atmega328P microcontroller description and attributes

Atmega328P is a high performance Microchip 8-bit microcontroller based on the AVR enhanced
RISC architecture, manufactured by the Atmel company [21]. The Atmega328P is a product of
open-source hardware projects, driven by the development of platforms known as Arduino [6,
15]. This microcontroller powers the Arduino Uno development platform. As an open-source
hardware project, all the specifications of the circuit board and electronic components, along
with the IDE software, are freely accessible for anyone to use or modify [15]. The attributes of
the Atmega328P used for code generation are listed as follows:

• Name: Atmega328P, Manufacturer: ATMEL, 8 bits word memory;
• 20MHz of processor, 2Ko of RAM, 32Ko of Flash memory, 1Ko of EEPROM;
• Programmable pins with numbers: PD0 (0) . . . PD7(7), PB0 (8) . . . PB7 (15), PC0 (0)

. . . PC5(28);
• C-language characteristics: Name: Arduino, Timer: Timer 1 of 16 bits;
• Pins operations :
pinMode(pin_num, mode); to configure a pin number with a particular mode (INPUT/OUT-
PUT),
digitalRead(pin_num); to read a digital value of a pin number,
digitalWrite(pin_num, value); to write a digital value on a pin number,
analogRead(pin_num); to read an analog value of a pin number,
analogWrite(pin_num, value); to write an analog value on a pin number;

• Timer 1 configuration: Timer1.initialize(1000000/(1000/TIMER_PERIOD));
Timer1.attachInterrupt(update_G7TimingVars_callback);

To configure the Timer 1 (16 bits timer) with a period of TIMER_PERIOD milliseconds.
It calls periodically the function update_G7TimingVars_callback.

The ecore metamodel instance corresponding to ATmega328P is produced and used in the code
generation process. An overview of the metamodel instance corresponding to ATmega328P is
given in Figure 7. The left part represents the physical characteristics, displaying, for example,
the 23 pins numbered from PD0 to PC5. The right part illustrates how the Arduino language
interacts with these pins and configures a timer.

African Journal of Research in Computer Science and Applied Mathematics Page 13 of 22

Figure 6: The GRAFCET example in tree editor

5.3.2 Generation of GRAFCET code in Arduino language

An implementation of the M2T transformation has been executed to generate arduino code. Af-
ter the selection of the GRAFCET model, the microcontroller instance and the target directory,
the transformation program is run and the target code is produced. An overview of the resulting
code is presented in Annex 4.

This generated code compiles successfully in the Arduino environment and runs on any Arduino
board (such as Uno, Mega, . . .) equipped with the Atmega328P microcontroller, producing the
expected behavior.

VI CONCLUSION AND REFERENCES

6.1 Discussion

In this paper, we first introduce a GRAFCET metamodel along with associated rules that fa-
cilitate the creation of valid GRAFCET models characterized by well-structured and verified
expressions [18, 19]. This is achieved through the integration of a GRAFCET expression
parser and the Object Constraint Language (OCL). Next, we introduce a metamodel for C-
programmable microcontrollers [4], along with transformation rules aimed at optimizing code
synthesis for these controller architectures.

All verifications of the input GRAFCET model are conducted within the synthesis environ-
ment. This is achieved using the expression parser, which guarantees the accurate construction
of expressions —including complex timing expressions [18]— by recursively generating the
corresponding instances of Expression.

African Journal of Research in Computer Science and Applied Mathematics Page 14 of 22

Figure 7: Microcontroller model instance (Atmega328P)

Additionally, the rules defined and formalized in OCL are executed by the GRAFCET editor,
which is generated by the MDE environment in Eclipse EMF [16].

While timing conditions are thoroughly addressed, the GRAFCET structures (macro steps, en-
closing steps, and forcing orders [2]) are not defined as in [19], where the metamodel is only
partially presented. However, this limitation is mitigated by the fact that any GRAFCET model
featuring hierarchical structures can be transformed into an equivalent flat GRAFCET model,
often referred to as a sound GRAFCET [3, 19].

The extension of MDE-based controller synthesis to microcontroller targets allows us to accom-
modate a broad range of hardware architectures beyond traditional PLCs. This is particularly
relevant as, for certain applications, programmable controllers based on microprocessors may
be preferred over PLCs to reduce overall control solution costs. By combining the functional
specification with the description of the microcontroller target, we can develop integrated MDE
platforms that enable the safe synthesis of low-cost controllers. The code generated for one
target can be readily adapted for another C-programmable target. If needed, the transforma-
tion itself can be reused with minimal modifications to accommodate the new target, ensuring
multi-target synthesis. Furthermore, the transformation rules outlined in this paper can be eas-
ily adapted to generate code in programming languages other than C, thus supporting multi-
languages code generation, using an approach such as that presented in [20].

6.2 Conclusion

The objective of this paper was to explore the multi-target synthesis of logic embedded con-
trollers from GRAFCET specifications. We have proposed a GRAFCET metamodel that con-
siders all the basic concepts of the GRAFCET language, including time constraints and events.
This has led to the creation of a GRAFCET metamodel associated with a GRAFCET expression
parser, facilitating the design of verified GRAFCET models. To allow multi-target generation,
we have proposed a microcontroller metamodel representing its main characteristics useful for

African Journal of Research in Computer Science and Applied Mathematics Page 15 of 22

code generation. Transformation rules have been designed for GRAFCET code generation,
given the model of the target microcontroller, with an implementation case study in the popular
Eclipse MDE environment. The flexibility of the multi-target platform for embedded control
synthesis, proposed in this paper, allows PLC technology to be used in a wide variety of appli-
cations that were not previously associated with PLCs. The proposal presented in this paper is
fully transparent and can be easily adapted for any other purpose.

Exploring microcontrollers with simplified non-C programming appears worthwhile. Future
research could extend the target metamodel and transformation rules to enable multi-target and
multi-language synthesis.

REFERENCES

Publications

[1] R. David. “Grafcet: A powerful tool for specification of logic controllers”. In: IEEE
Transactions on control systems technology 3.3 (1995), pages 253–268.

[2] I. E. Commission. IEC 60848: GRAFCET specification language for sequential function
charts. Technical report. Tech. rep. International Electrotechnical Commission, 2002.

[3] R. David and H. Alla. Discrete, continuous, and hybrid Petri nets. Volume 1. Springer,
2005.

[4] O. Bayó-Puxan, J. Rafecas-Sabaté, O. Gomis-Bellmunt, and J. Bergas-Jané. “A GRAFCET-
compiler methodology for C-programmed microcontrollers”. In: Assembly Automation
28.1 (2008), pages 55–60.

[5] J. Machado, E. Seabra, J. C. Campos, F. Soares, and C. P. Leão. “Safe controllers design
for industrial automation systems”. In: Computers & Industrial Engineering 60.4 (2011),
pages 635–653.

[6] F. Daniel K and G. Peter J. “Open-source hardware is a low-cost alternative for scientific
instrumentation and research”. In: Modern instrumentation 2012 (2012).

[7] IEC61131-3. “Programmable controllers—Part 3: programming languages (3rd ed.)” In:
International Electrotechnical Commission publishing (2013).

[8] F. Schumacher, S. Schröck, and A. Fay. “Tool support for an automatic transformation
of GRAFCET specifications into IEC 61131-3 control code”. In: Emerging Technologies
& Factory Automation (ETFA), 2013 IEEE 18th Conference on. IEEE. 2013, pages 1–4.

[9] F. Basciani, D. Di Ruscio, L. Iovino, and A. Pierantonio. “Automated chaining of model
transformations with incompatible metamodels”. In: International Conference on Model
Driven Engineering Languages and Systems. Springer. 2014, pages 602–618.

[10] F. Schumacher and A. Fay. “Formal representation of GRAFCET to automatically gen-
erate control code”. In: Control Engineering Practice 33 (2014), pages 84–93.

[11] A. R. Da Silva. “Model-driven engineering: A survey supported by the unified conceptual
model”. In: Computer Languages, Systems & Structures 43 (2015), pages 139–155.

[12] R. Julius, M. Schürenberg, F. Schumacher, and A. Fay. “Transformation of GRAFCET to
PLC code including hierarchical structures”. In: Control Engineering Practice 64 (2017),
pages 173–194.

[13] G. N. Ndenoka, E. Simeu, and R. Alhakim. “Efficient controller synthesis of multi-energy
systems for autonomous domestic water supply”. In: Revue Africaine de Recherche en
Informatique et Mathématiques Appliquées 24 (2017).

African Journal of Research in Computer Science and Applied Mathematics Page 16 of 22

[14] Y. Qamsane, M. El Hamlaoui, A. Tajer, and A. Philippot. “A Model-Based Transfor-
mation Method to Design PLC-Based Control of Discrete Automated Manufacturing
Systems”. In: Proceedings of Engineering and Technology–PET 19 (2017), pages 4–11.

[15] P. Zabala, M. C. Abas, and P. Cerna. “‘Development of programmable relay switch using
microcontroller”. In: American Journal of Remote Sensing 5.5 (2017), pages 529–551.

[16] M. Soukaina, B. Abdessamad, and M. Abdelaziz. “Model Driven Engineering (MDE)
Tools: A Survey”. In: American Journal of Science, Engineering and Technology 3.2
(2018), page 29.

[17] R. Julius, T. Trenner, A. Fay, J. Neidig, and X. L. Hoang. “A meta-model based environ-
ment for GRAFCET specifications”. In: 2019 IEEE International Systems Conference
(SysCon). IEEE. 2019, pages 1–7.

[18] G. N. Ndenoka, M. Tchuenté, and E. Simeu. “Langage et sémantique des expressions
pour la synthèse de modèle Grafcet dans un environnement IDM”. In: Revue Africaine
de Recherche en Informatique et Mathématiques Appliquées 33 (2021).

[19] R. Mross, A. Schnakenbeck, M. Völker, A. Fay, and S. Kowalewski. “Transformation
of GRAFCET into GAL for verification purposes based on a detailed meta-model”. In:
IEEE Access 10 (2022), pages 125652–125665.

[20] T. Xue, X. Li, T. Azim, R. Smirnov, J. Yu, A. Sadrieh, and B. Pahlavan. “Multi-Programming
Language Ensemble for Code Generation in Large Language Model”. In: arXiv preprint
arXiv:2409.04114 (2024).

[21] Atmel. ATMega328 datasheets. Accessed Apr. 2024.

ANNEX 1 : SEMANTIC CONSTRAINTS OF GRAFCET
uniqueNamesInVars constraint: Two different variables cannot have the same name :

Listing 4: uniqueNamesInVars constraint (Grafcet)

context Grafcet invariant uniqueNamesInVars:
self.variables->forAll(v1,v2| v1<>v2 implies v1.name<>v2.name);

validTransition constraint: Any transition has at least one step in input and one step in output :

Listing 5: validTransition constraint (Transition)

context Transition invariant validTransition :
self.inConnections->size()>=1 and self.outConnections->size()>=1;

stepVarIsInternalVar constraint: Any variable associated to a step (step activity variable) is an internal variable
:

Listing 6: stepVarIsInternalVar constraint (Step)

context Step invariant stepVarIsInternalVar:
self.stepVariable.type = VarType::Internal;

LevelActionVarIsBoolVar constraint: Any variable representing a level action is of type BooleanVariable :

Listing 7: levelActionVarIsBoolVar constraint (LevelAction)

context LevelAction invariant levelActionVarIsBoolVar:
self.actionVariable.oclIsTypeOf(BooleanVariable);

African Journal of Research in Computer Science and Applied Mathematics Page 17 of 22

https://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf

validStepToTransitionStepSide constraint: An instance of StepToTransition can only link one step to one tran-
sition, i.e. only one incoming step :

Listing 8: validStepToTransition_StepSide constraint (Grafcet)

context Grafcet invariant validStepToTransition_StepSide :
self.connections->select(c|c.oclIsTypeOf(StepToTransition))
->forAll(con|self.steps->select(s|s.outConnections
->includes(con))->size()=1);

validStepToTransitionTransitionSide constraint: An instance of StepToTransition can only link one step one
transition, i.e. only one outgoing Transition :

Listing 9: validStepToTransition_TransitionSide constraint (Grafcet)

context Grafcet invariant validStepToTransition_TransitionSide :
self.connections->select(c|c.oclIsTypeOf(StepToTransition))
->forAll(con|self.transitions->select(t|t.inConnections->includes(con))

->size()=1);

validTransitionToStepTransitionSide constraint: An instance of TransitionToStep can only link one transition
to one step, i.e. only one outgoing Step :

Listing 10: validTransitionToStep_TransitionSide constraint (Grafcet)

context Grafcet invariant validTransitionToStep_TransitionSide :
self.connections->select(c|c.oclIsTypeOf(TransitionToStep))
->forAll(con|self.transitions->select(t|t.outConnections
->includes(con))->size()=1);

validTransitionToStepStepSide constraint: An instance of TransitionToStep can only link one transition to one
step, i.e. only one incoming Transition :

Listing 11: validTransitionToStep_StepSide constraint (Grafcet)

context Grafcet invariant validTransitionToStep_StepSide :
self.connections->select(c|c.oclIsTypeOf(TransitionToStep))
->forAll(con|self.steps->select(s|s.inConnections
->includes(con))->size()=1);

ANNEX 2 : SOME BASIC TRANSFORMATION RULES
The rules are outlined in the following listings:

Listing 12: Receptivity calculation

R_[aTransition.name/] = <aTransition.getCExpr()>;

Listing 13: Validate transition (VT) computation (Acceleo)

//Evaluate validated transitions (variables)
[for (trans : Transition | g7.transitions)]

VT_[trans.name/] = [for (step : Step | trans.inSteps) separator (’ &&
’) after (’;’)] [step.variable.name/] [/for]

[/for]

African Journal of Research in Computer Science and Applied Mathematics Page 18 of 22

Listing 14: Clearing a transition (CC) computation

//for every transition <trans>
CC_[trans.name/] = VT_<trans.name> && R_<trans.name>;

Listing 15: Steps activity variables(Xi) computation

[for (step : Step | g7.steps)]
[step.variable.name/] = [for (trans : Transition | step.inTransitions

) separator (’ || ’) after(’ || ’)] CC_[trans.name/][/for]([step.
variable.name/] [for (trans : Transition | step.inTransitions)
before (’&& ’) separator (’ && ’)]! CC_[trans.name/][/for]);

[/for]

Listing 16: Level action computation

if(!<transitions_fired>){
//for every step <st>
if(<st.variable.name>) {
[st.actions(LevelActions)[0].variable.name/] =
[st.actions(LevelActions)[0].expressionCondition.getCExpr()/] ;
}
//for all level actions associated to the step <st>

}

Listing 17: updating outputs or actions

if(! transitions_fired){
//for every level action <act>
if([act.variable.name/] != [act.variable.name/] +"_Old"){
digitalPinWrite("pin_"+ [act.variable.name/],[act.variable.name/]);
}

}

Listing 18: Duration of activity variables computation

if([aVariable.name/]){ [aVariable.name/]_duration ++; }
else { [aVariable.name/]_duration = 0 ; }

The functions <objet.getCExpr()> and <objet.getOldCExpr()> are used to invoke the GRAFCET
expression parser, generating the corresponding C expressions."

ANNEX 3 : THE MAIN ACCELEO MODULE
The primary Acceleo module responsible for code generation is illustrated in Figure 8.

African Journal of Research in Computer Science and Applied Mathematics Page 19 of 22

Figure 8: Overview of the main Acceleo module for code generation

ANNEX 4 : OVERVIEW OF THE ARDUINO CODE GENERATED FOR THE EXAM-
PLE

Listing 19: Overview of the Arduino code generated

1 #include "TimerOne.h"
2 //**** Declare INPUT pins mapped **** Total : 9
3 const byte pin_init_ = 2;
4 ...
5 //**** Declare DIGITAL INPUT pins states **** Total : 9
6 boolean init_, init__Old;
7 ...
8 const unsigned int TIMER_PERIOD = 100; //100 ms = 1/10 seconds
9 //Program Initialization

10 void setup(){
11 initializeTimer();
12 //INPUT PINs Configuration
13 pinModeConfig(pin_init_, INPUT);
14 pinModeConfig(pin_hT2, INPUT);
15 ...
16 //OUTPUT PINs Configuration
17 pinModeConfig(pin_VR1, OUTPUT);
18 pinModeConfig(pin_C, OUTPUT);
19 ...
20 //Inital steps activity variables initialization
21 X1 = true; X2=false; X3=false; X4=false; X5=false; X6=false; X7=false;

X8=false;
22 };
23 //Program loop
24 void loop(){
25 //Reading states of Digital INPUT pins (Digital Input variables)
26 init_ = digitalPinRead(pin_init_);
27 hT2 = digitalPinRead(pin_hT2);

African Journal of Research in Computer Science and Applied Mathematics Page 20 of 22

28 ...
29 //Evaluate validated transitions (variables)
30 VT_1 = X1 ;
31 ...
32 VT_6 = X4 && X5;
33 ...
34 //Evaluate Receptivities of transitions
35 R_1 = (init__Old == false) && (init_ == true);
36 R_2 = hT2 && rain;
37 R_3 = ((! rain) && bWD) && ppM1;
38 ...
39 R_6 = (X_4__duration >= 5000/PROGRAM_PERIOD) && (X_4__duration <= 10000/

PROGRAM_PERIOD) && (tmp > 21) ;
40 ...
41 //Evaluate clearing/firing transitions conditions
42 CC_1 = VT_1 && R_1;
43 CC_2 = VT_2 && R_2;
44 ...
45 //Calculation if there is any transition cleared : 2nd alternative
46 transitions_fired = CC_1 || CC_2 || CC_3 || CC_4 || CC_5 || CC_6 || CC_7

|| CC_8 || CC_9 ;
47 ...
48 //Evaluate steps activity variables
49 X1 = (X1 && ! CC_1);
50 X2 = CC_9 || CC_1 || CC_6 || (X2 && ! CC_4 && ! CC_3 && ! CC_2);
51 ...
52 //Evaluate Digital OUTPUTs variables : 8
53 if(transitions_fired == false){
54 //Evaluate Level Actions Associated to Step 3 : 1
55 VR1 = X3 && (1);
56 A = X6 && (bWD || ppM1) || X7 && (bWD && ! ppM2);
57 ...
58 }
59 //Evaluate Analog/Stored OUTPUTs variables
60 //Evaluate Stored Actions Associated to Step 1
61 //Step 1: Action C On Activation
62 if(X1_Old == false && X1 == true){
63 C = 0;
64 }
65 //Evaluate Stored Actions Associated to Step 3
66 //Step 3: Action C On deactivation
67 if(X3_Old == true && X3 == false){
68 C = C + 2*N;
69 }
70 ...
71 //Updating LEVEL ACTIONS OR DIGITAL OUTPUTs
72 if(!transitions_fired){
73 //A stable situation is reached
74 if(VR1_Old != VR1){
75 digitalPinWrite(pin_VR1, VR1);
76 }
77 ...
78 }
79 ...
80 // Keep the state of Xi variable in Xi_Old before the next cycle to use

it when evaluating rising edge or falling edge of variables
81 X1_Old = X1;
82 ...

African Journal of Research in Computer Science and Applied Mathematics Page 21 of 22

83 }
84

85 void initializeTimer(){
86 unsigned int FT_Steps = 1000/TIMER_PERIOD;
87 Timer1.initialize(1000000/FT_Steps);
88 Timer1.attachInterrupt(update_G7TimingVars_callback);
89 }
90 void update_G7TimingVars_callback(){
91 //called periodically to update timing variables
92 //Updating durations of steps activity variables for timing conditions
93 //for the step 1
94 if(X1){X1_duration ++;}e lse { X1_duration = 0; }
95 ...
96 }
97 ...
98 //Pin mode configuration
99 void pinModeConfig(int pin_num, int mode){

100 pinMode(pin_num, mode);
101 }
102 ...

African Journal of Research in Computer Science and Applied Mathematics Page 22 of 22

	I Introduction
	II Background
	2.1 GRAFCET description language
	2.1.1 GRAFCET statics
	2.1.2 GRAFCET dynamic behavior
	2.1.3 GRAFCET example

	2.2 Model driven engineering
	2.2.1 Key principles and MDE approaches
	2.2.2 Related work

	III GRAFCET concepts and metamodel
	3.1 GRAFCET concepts identification
	3.1.1 Concepts of the basic GRAFCET structure
	3.1.2 Concepts related to variables, actions and expressions
	3.1.3 Concepts related to timing variables

	3.2 The GRAFCET metamodel
	3.3 Deriving relative positions between steps and transitions

	IV Multi target code generation
	4.1 Target platforms specification and metamodel
	4.2 Transformation step for code generation
	4.2.1 GRAFCET algebraic equations
	4.2.2 General structure of the generated code

	V A case study of code generation
	5.1 An implementation of the transformation with Acceleo
	5.2 Editing and validation of the GRAFCET model
	5.3 Application to the Atmega328P microcontroller
	5.3.1 Atmega328P microcontroller description and attributes
	5.3.2 Generation of GRAFCET code in Arduino language

	VI Conclusion and references
	6.1 Discussion
	6.2 Conclusion

