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ABSTRACT. GreenLab is a structural-functional model for plant growth based on multidisciplinary
knowledge. Its mathematical formalism allows dynamic simulation of plant growth and model analy-
sis. A simplified soil water balance equation is introduced to illustrate the interactions and feedbacks
between the plant functioning and water resources. A water supply optimization problem is then
described and solved: the sunflower fruit weight is optimized with respect to different water supply
strategies in a theoretical case. Intuitive searching method and genetic algorithms are used to solve
this mixed integer nonlinear problem. The optimization results are analyzed and reveal possible agro-
nomic applications.

RÉSUMÉ. GreenLab est un modèle structure-fonction de croissance des plantes. Son formalisme
mathématique permet la simulation dynamique de la croissance et l’analyse du modèle. Dans cet
article est introduit une équation bilan de l’eau dans le sol afin de décrire les interactions entre la
croissance de la plante et les ressources en eau disponibles. Un problème d’optimisation des apports
d’eau au cours de la croissance est présenté et résolu par la méthode de recherche intuitive et par les
algorithmes génétiques : le poids du fruit de tournesol est maximisé en fonction de différentes straté-
gies d’apports d’eau, pour une quantité d’eau totale identique. Le formalisme présenté est intéressant
en ce qu’il ouvre la voie à d’importantes applications en agronomie.

KEYWORDS : plant growth model, soil water balance, genetic algorithm, mixed integer nonlinear
programming problem

MOTS-CLÉS : modèle de croissance de plantes, resources en eau, algoritmes génétiques, problème
d’optimisation mixte
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1. Introduction

Plant growth models play an essential role in agronomy, botany and computer graph-
ics. Different kinds of models, such as process-based models [6], geometric models [3]
or functional-structural models [8], have been developed for special applications and they
usually remain valid only for these. GreenLab model, see [2], tries to present a more
general mathematical description of plant growth combining both physiology and archi-
tecture. It is based on multidisciplinary knowledge, including botany, eco-physiology,
agronomy, mathematics and computer sciences. The development of GreenLab is a con-
stant process of balancing the simplicity and complexity when choosing and adapting the
biological and mathematical knowledge to form an efficient dynamical plant model useful
for a wide variety of applications in agronomy and forestry [7].

In this paper, a simplified soil water balance equation is introduced to GreenLab model
in order to take into account the interactions and feedbacks between the plant function-
ing and water resources. A water supply optimization problem is then formularized and
solved with genetic algorithms, showing possible applications of GreenLab in optimiza-
tion and control for agronomy.

2. GreenLab model

Like its predecessor AMAPhydro [1], GreenLab describes plant architecture at organ
level. The evolution of the plant structure called organogenesis is periodical and we define
the growth cycle (GC) as the thermal time necessary for each plant axis to develop a new
growth unit (GU). Such a growth unit is composed of one or several elementary structure
units that are a compound of associate organs (such as fruits and leaves) with an internode
on stem. The duration of GC can vary from several days (cottons) to one year (temperate
trees), but the sum of the daily temperatures needed to create a new GU of each GC is
quite constant.

At every GC, the plant produces biomass by leaf photosynthesis. If we consider that
every leaf undergoes the same microclimatic conditions,

�������
the biomass produced by

the photosynthesis of all the leaves during GC
�

can be formularized as an empirical
nonlinear function � of the environmental conditions � ����� , the number of leaves, their
surface areas, and some hidden parameters 	�

��	�������� In GreenLab [1], we choose:��������� � ��� ��� ����� ��	�
���	�� ��� � !#"%$ �'&)(*��+ � ���*, � �'���-�./10 !32 ��4�5 	76

�
(1)

where
&8(9��+ � ��� is the number of leaves

�
of chronological age (CA)

+
, at GC

�
, (these

leaves appeared at GC
�;:<+ 5 
 , and

�=��+ � ��� is their surface area. If the leaf thickness

195   L. Wu, Ph. De Reffye, Bao-Gang Hu, F.-X. Le Dimet, P.-H. Cournède

Revue ARIMA



is constant, its surface area will be proportional to the biomass accumulated by the leaf.	�
���	�� are parameters of � to assess. � �'��� is the average biomass production potential
depending on environmental factors, such as light, temperature and soil water content.

The biomass produced by photosynthesis is redistributed among all the organs accord-
ing to their demands >@? :

> ? �BA����DC ?7EF? �BA�� (2)

which depends on organ CA
A

and organ type G ( G �H+ ��I
��JK��LF��M and refers respectively
to leaf, internode, layer, female flower and male flower).

C ? are the organ sink strengths
and are model hidden parameters. E ? are normalized distribution functions characterizing
the evolution of the sink strengths from CA 1 to CA N ? , N ? being the organ lifespan. Thus,
the total biomass demand of the plant at GC

�
is:

O �'�����  ?
P'Q !#"%$ & ? ��+ � ���*, > ? ��+@� (3)

where
& ? ��+ � ��� is the number of o-type organs of CA

+
at GC

�
. This instantaneously

leads to the calculation of the biomass increment RTS ? ��+ � ��� and total cumulated biomassS�? �'+ � ��� of any o-type organ of CA
+

at current GC
�

:RTS7? �'+ � �����VU Q 0 !72 ��4W 0 ��4 ,3�����X: 
 �S7? ��+ � ����� !YZ "9$ RTS�? �BA � �[:\�'+):[A����]�^C ? !YZ "%$�_ 0 Z 4a` b 0 ��c 0 ! c Z 4ac $ 4W 0 �@c 0 ! c Z 4�4 (4)

3. Mathematical description of the water supply problem

3.1. Plant growth interacting with water resources in soil

Plants participate to soil water circulation by transpiration. Water is taken from soil
by roots and flows through the plant hydraulic network up to the leaves, where water is
transpired to provide necessary energy fluxes for photosynthesis. The water content in the
superior soil layers, named soil moisture, is important for the study of bio-geophysical
processes in agricultural or forestry ecosystems. Soil water balance is achieved when
we simplify this complex soil-plant system by concentrating on plant transpiration, soil
evapotranspiration, and water supply from both irrigation and precipitations.

Suppose
�edf� N � is the water content in soil per surface unit. It can be considered as a

potential. The loss of water by evapotranspiration is:

> � d � N ���g: J $ ,
�h� d � N �*:i� dkj � �*, >
N (5)
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where
�ldkj � corresponds to the wilt point of soil water content beneath which the plant

cannot extract water from soil. J $ is an evapotranspiration coefficient. Likewise, if m � N �
is the water supply at N , the water gained by the soil is> � d � N ��� Jn6 �h� dkj�o :p� d � N ��� m � N �q, >
N (6)

where
�ldkjfo

is the water field capacity above which the water flows away and J 6 is an
absorption coefficient.

Thus the differential equation for the evolution of the soil water content is:> �ld]� N ���g��: J $ �h�ed�� N �*:i�edkj � � 5 J 6 ���ldkjfor:i�edf� N ���q, m � N ��� >�N (7)

Figure 1 shows the fitting results of the calibrated soil moisture model (7) using measure-
ments of the soil water content and rainfalls done in Ivory Coast.

Figure 1. Fitting results of the calibrated soil moisture model

Considering plant transpiration, Equation (7) becomes:

> � d � N �>
N �s: J $ ��� d � N �q:p� dkj � �t unv w
soil evapotranspiration

5 Jn6 �h� dkj�o :p� d � N ���*, m � N �t unv w
water absorption

: Crx)� N �t unv w
plant transpiration

(8)
where

Crx)� N � is the plant transpiration and is linearly proportional to plant biomass pro-
duction calculated by equation (1). The discretized form of Equation (8) at GC scale
is:

� d ��� 5 
 �q�y� 
 : J $ : Jn6 , m ��������� d ����� 5 � dkj � J $ 5 � dkjfo Jn6 , m �'���k:{zr,#������� (9)
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where
�ldf�'���

is the soil water content at GC
�

, m ����� is the water supply during GC�
,
�������

is the plant biomass production during GC
�

and
z

is the ratio between plant
transpiration and plant biomass production.

The biomass production potential � ����� during GC
�

is linearly proportional to the
current soil water content, if we suppose that light and temperature conditions are optimal
and the plant suffers no stress (for a complete formula, please refer to [10]):

� �����]�D|s, �ld]�'���*:p�ldkj �� dkj�o :i� dkj � (10)

Equations (1), (4), (9) and (10) provide the whole mathematical formalism of the soil-
plant system that enables us to study the interactions between plant and water resources
in soil. Note that all organ morphologic characteristics can be calculated by (4) and some
additional allometric rules. They can be considered as observations of the soil-plant sys-
tem. Once the observations are measured, hidden model parameters can be tracked back
by inverse methods. In [2], it was shown that � the calibration of some hidden parame-
ters, such as sink strengths

C ? and hydraulic resistances 	 $ ��	 6 remain stable. Therefore
these parameters can be considered as internal endogenous factors. In [11], Zhan cali-
brates these parameters for several cultivated plants, such as maize, cotton, sunflower and
tomato. In this preliminary study, we choose a 63 GC sunflower for the water supply
optimization problem. The internal endogenous parameters are taken from the calibrated
ones in [11], and the external environmental parameters, such as J $ ��Jn6 , etc., are set to
empirical values from previous studies. Agronomic experiments are difficult to design in
order to validate the theoretical optimum. However, for some specific watering strategies
(including the theoretical optimal one), it would be interesting to check the validity of the
prediction.

3.2. Formulation of plant water supply optimization problem

In numerous cases, water reserves are limited because of drought or economic reasons.
For a given quantity of water supply, the fruit yield will depend on the irrigation strategy
during the plant growth.

In order to alleviate the calculation load, instead of optimizing the water supply at each
GC, we try to find an optimal water distribution curve of the total water supply amount
among a cluster of curves. We use parameterized beta function to generate a cluster of
water supply curves. Given beta function parameters

+
and } , and the total water supply

amount WT, the water supply at GC ~ , ~]���B
�� &[� , noted m]� , is:

mq� � WT� � ~ :�� � �& � ! c $ � 
 : ~ :�� � �& ��� c $
where

�
is a normalization factor of beta function:
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�i��� � "9$ � ~
:p� ���& � ! c $ � 
 : ~ :p� ���& ��� c $

We introduce two variables date, the GC at which the water supply starts, and freq, the
water supply frequency, to simulate a practical water supply strategy. The water supply is
redistributed at GC ~ , with ~ �HAX� LF	3I3S 5 > + N�I , A �i� and 
���~�� &

. For the other
GC, water supply is set to zero. The upper in figure 2 shows the curve cluster of beta law
when

+���� ��} � � �i� � ��� 
��������1���@��
 � ��� � ��> + N�I � 
���LF	3I3S � 
 , and rhythmically
water supply is shown in the lower of figure 2 where

+T� �@��} � 
 � ��> + N�I � 

��LF	KI3S � � .
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Figure 2. Curve cluster of beta law for continuous (upper) and rhythmical (lower) water
supply, where �����<���7������� �<¡�¢ .

The water supply optimization problem is then formulated as a mixed integer nonlin-
ear programming problem (MINLP) P,£�¤�¥o�¦�§F¨ L ��©ª�

subject to, 
e� © $ � © 6l�«
 �
�
e� ©­¬ � ©1® � & (11)

where
© $ � © 6 are the continuous beta law parameters

+ ��} and
© ¬ � © ® are the integer vari-

ables date and freq. The bounds for
© $ � © 6 ensures a sufficient amount of distribution

curves.
&

is the sunflower total number of GC.
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4. Approaches to the solution of problem (P)

For comprehensive survey of algorithms and applications of MINLP, please see [4]
and [9]. Unfortunately in problem (P) the variable > + N�I and LF	3I3S are fixed to be integers
and there is no definition for real values. Therefore we can’t define the relaxation problem
by allowing > + N�I and LF	KI3S to be real variables and by imposing boundary constraints
in branch and bound algorithms. In addition, because of the nonconvexity of objective
function (induced by thresholding, i.e. water field capacity

� dkj�o
), the introduction of

master problem by linearizations incurs severe difficulties, i.e. the solution of the master
problem does not have a valid bounding representation and the global optimum may be
cut off in cutting plane methods.

Due to these reasons, we did not consider classic methods introduced in [4], but alter-
natively design an intuitive searching process of bug walk adapted to the special structure
of the problem (P). Then genetic algorithms are employed for the purpose of global opti-
mum. Roughly speaking, the bug walk method terminates within one hour, but can only
obtain local results, whereas using genetic algorithms we are more likely to find global
solutions within several hours of calculation. The water supply optimization problem
here is strongly non-convex (see [10]) and further theoretical investigations are necessary
to prove that the optimum found is the global one. However, various numerical tests have
reinforced this assumption. The significance of this paper is to define such water supply
problems with better solutions.

4.1. Solution of problem (P) with bug search process

We define problem (P1) for each fixed pair � > + N�I���LF	3I3S � as follows

£¯¤�¥o�¦�§ª° L �'© ��> + N�I���LF	KI3S �
subject to, 
e� © $ � © 6 �«
 ��� (12)

where
© $ � © 6 are same as in problem (P). Problem (P1) is a typical bound-constrained

problem and can be solved by standard optimization subroutines (in this paper MATLAB
optimization subroutine fmincon is employed).

The bug search diagram and its pseudocode are shown in figure 3. The first step of
the process is to generate center pair ±�² randomly and to solve problem (P1) at ±�² .
Then problem (P1) is solved at each pair around the center pair ±r² and we record the
optimal fruit weight for each pair ±�� , which is denoted OptimalValue( ±�� ). Subsequently
we choose clockwise the pair with better fruit weight as the new center pair. The searching
continues until there is no pair around the center one that has better fruit weight. The
optimization results are the final center pair value � > + N�I���LF	KI3S � and the optimal values of+ ��} at the center pair.
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Figure 3. Diagram (a) and pseudocode (b) of search process for bug walk.

The bug search method is essentially a local algorithm. For the four initial pairs in
table 1, beta law parameters

+
and } are all initialized as 3 and 12 respectively. The

iteration results are shown in figure 4. When freq is big enough, the shape of curve has
little influence on the optimal results. The case (I) and case (II) have the same optimal

+
and } values. In contrast, it seems that frequency has significant influence on optimization
results. Note that case (III) and (IV) have the same supply frequency but different initial
supply date.

Initial pair Optimal parameter values Optimal fruit
date freq a b date freq weight (g)

(I) 18 61 3 12 32 63 112.42
(II) 36 29 3 12 25 19 213.48
(III) 4 12 1.3096 1.1532 2 2 1192.5
(IV) 15 3 1.2063 1.1506 6 2 1170.5

Table 1. Bug search method results with different initial pairs.
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Figure 4. Iteration of bug search algorithm with different initial pairs in table 1.

4.2. Solution of problem (P) using genetic algorithms

Genetic algorithms belong to a category of stochastic search techniques for optimiza-
tion. A population of elements in the search space evolves generation after generation
towards a better fitness, according to genetic-like rules. The GA used in this paper is a
standard one [5]. The continuous parameters

+ ��} , and integer parameters date, freq, are
encoded as arrays of binary bits, named chromosomes. The fitness function is the final
fruit weight obtained with the corresponding water supply strategy. To generate a new
population, we first select chromosomes with a probability proportional to their fitness.
Then, the pairwise selected chromosomes exchange parts of their chromosomes with a
crossover probability Pc. Finally, mutation is carried out by flitting bits randomly with a
mutation probability Pm.

In this paper we use binary coding and decoding schemes for the mixed integer-
continuous variables � + }�> + N�I=LF	KI3S � . The bit number allocated to each variable is cal-
culated as

}�~aN �´³¶µ¸·�¹ � ��º } :p» }¼�½ 5 
 �a¾ (13)
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where º }3� » } are the up and low bound of variables,
¼e½

is the coding precision, i.e. for
integer variables

¼r½ � 
 , and for continuous variables
¼r½ �D� � � 
 . Applying this formula

with º }3� » } set as in (11) and with
&

equal to ¿�� , the bits allocated for � + }q> + N�I=LF	KI3S � are�À
�Á)
�Á�¿Â¿ � respectively.

The code and decode formulae of chromosomes for the mixed integer-continuous vari-
ables are as follows: Coding formula for real variables is

}�Ã +�»�� D2B Ä � LFÃ +�»ª:�» } �ÆÅ�� � � � P : 
 ��Ç@� º } :p» } ��È (14)

where D2B is a function that transforms decimal code to binary code, LFÃ +�» is the decimal
real variable value, }#Ã +�» is the chromosome binary code of LFÃ +�» . The decoding formula
for real variables is

LFÃ +�»Æ� B2D
� }�Ã +�»��ÆÅÉº } :�» }� � � P : 
 5

» } (15)

where B2D is a function that transforms binary code to decimal code. The coding formu-
lae for integer variables are» I � � º } :p» } 5 
JnG º � N � ³ 6�Ê¶ËÀÌ c $ÍBÎ � ¾

}�Ã +�» �
D2B

��� ~hÃ +�»ª:�» } � 5 randint
� 
���J�G º � N : 
 ��Å]» I �����

(16)

where function randint
� ~ $ ��~Ï6 � generates a random integer between ~ $ and ~Ï6 . The decod-

ing formula for integer variables is

~aÃ +�»Æ� mod
�
B2D

� }�Ã +�»h� � º } :�» } 5 
 � 5 » } (17)

where mod
� ~�� O � is a function that calculates the remainder when integer ~ is divided by

integer
O

.

Solution Appearing Optimal parameter values Optimal fruit
Number Generation a b date freq weight (g)

1 110 1.3686 1.1934 1 2 1196.3
2 92 1.3263 1.1632 1 2 1196.6
3 108 1.3263 1.1571 1 2 1196.6

Table 2. Optimization results of MINLP GA solver
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To solve the water supply optimization problem, we take a population size of 35,
Pm=0.05, Pc=0.4 and we stop the algorithm after 150 generations. The best chromosome
is always kept for the next generation. The MINLP genetic algorithm solver was tried 3
times with randomly generated initial populations. The optimal parameter values, optimal
fruit weight and the generation at which the best chromosome appears are listed in table
2. The optimal parameter values are stable for the 3 tries. The corresponding iterative
processes are shown in figure 5.
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Figure 5. Iterative results of MINLP GA solver along generations, where J1-J3 are best
fruit weight and m1-m3 the mean fruit weight along generations for solution 1-3 in table 2.

Different water supply strategies and their fruit accumulation are compared in figure
6. (a) is a linear water supply strategy, with freq = 1, date = 1; (b) is the optimal water
supply strategy with freq = 1, date = 1; (c) is the optimal results of the problem (P) with
arbitrary freq and date values. 3D plant geometries of each strategy are also calculated
and compared. The fruit weight (J) and sunflower height (H) are quite different for water
distribution strategies (a), (b), (c). With the optimal strategy (c), the fruit is 18% heavier
than with strategy (b) and the plant is 15% higher. It is interesting to note that with strategy
(b), the fruit is 51% heavier than with strategy (a), but the plant is smaller. It is due to the
abundance of water supply at early GC, favoring internode growth, and deficient water
supply after the fruit appearance for strategy (a).
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Figure 6. Comparison of different water supply strategies and the resulting fruit weight.

5. Conclusion

In this paper, we have extended GreenLab model in order to take into account available
water resources in soil. It has been done by deriving a simplified water balance equation.
The mathematical formalism introduced and the plant growth description by a dynamical
system has allowed us to define a water supply optimization problem. It has been solved
using genetic algorithms and the numerical results obtained in a theoretical case give the
best water supply strategy in order to obtain a maximum fruit weight. The results are
rather preliminary, since external parameters are set empirically, and their calibration and
validation are needed. However, the problem solved is a very good example of the kind
of applications in agronomy or forestry that we want to achieve. We are confident that the
mathematical formalism introduced in the functional-structural model GreenLab should
lead to this goal.
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