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RESUME. Une étude antérieure a prouvé et vérifié expérimentalement sur un code Euler 2D que
les calculs itératifs avec point fixe peuvent étre différentiés pour obtenir les dérivées aux premier et
deuxiéme ordres des fonctions implicites définies par des équations d’état. On considérait également
que les itérées correspondantes des gradients et Hessiens réduits convergent a la méme vitesse que
I'itération de point fixe d’origine.

Cette étude plus détaillée révele néanmoins que ces dérivées convergent avec un certain retard par
rapport aux valeurs de la fonction. En effet le rapport des erreurs correspondantes croit vers l'infini
proportionnellement au compteur d'itérations ou a son carré. Mathématiquement, cet effet plutdt subtil
est causé par I'apparition de blocs de Jordan correspondant & des valeurs propres dégénérées. Nous
construisons un modele théorique de cet effet et nous le validons par des expéeriences numériques.

ABSTRACT. In an earlier study it was proven and experimentally confirmed on a 2D Euler code that
fixed point iterations can be differentiated to yield first and second order derivatives of implicit functions
that are defined by state equations. It was also asserted that the resulting approximations for reduced
gradients and Hessians converge with the same R-factor as the underlying fixed point iteration.

A closer look reveals now that nevertheless these derivative values lag behind the functions values in
that the ratios of the corresponding errors grow proportional to the iteration counter or its square to-
wards infinity. This rather subtle effect is caused mathematically by the occurrence of nontrivial Jordan
blocks associated with degenerate eigenvalues. We elaborate the theory and report its confirmation
through numerical experiments.

MOTS-CLES : methode iterative de type point fixe, dérivatif, convergence, bloc de Jordan
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1. Introduction and Assumption

The effect to be analyzed arises in the context of desigmigdiion by what has been
called piggy-back optimization [5]. Design optimizatioroplems are distinguished from
general nonlinear programming problems (NLP) by the faat the vector of variables
is a priori partitioned into a state vectgre Y and a set of design variablasc U. For
application of this scenario in computational fluid dynasrsee for example [10], [8], [9],
and [7]. Throughout we assume that the “user” has provideteeation function

G:YxU—=Y

that is contractive with respect to an inner product nornyoso that for allu € U and
y,g€Y

1G(y,u) = G(@,w)ll < elly — 7l
Herep < 1 may vary continuously as a function of the desigand its exact size will
usually not be available to a practical algorithm.

As an immediate consequence it follows by the Banach fixedtpgbeorem that for
fixedw and any initialy, € Y the sequencéy, } generated by

Yk+1 = G(yx,u)

must converge to the unique fixed poipt= y..(u) with y,. = G(y., u). In other words,
the assumptions made so far ensure that one can obtain for angolutiony.(u), a
process which one may call “simulate” the underlying systema practical simulation
the variables: andy will often be restricted to open subsets of the spdcesndY’,
respectively.

In order to progress from simulation to design we requireemsmnoothness af, na-
mely, that it is at least once continuously differentialietie joint variable vectofy, u).
The same assumption will be made for the objective function

f:YxU—=R,

which is meant to be minimized. Provided at leise C*(Y,U), one can obtain in a
completely automated fashion the adjoint iteration fuorcti

G(y,9,u) =4 Gy(y,u) + fy(y, ). (1)

Here subscripts denote partial differentiation gnlike the gradientf, is considered a
row-vector belonging to the dual spaceYofwhich we identify with the Hilbert spacg
itself. Then we have in the induced matrix and operator norm

o(u) = max |Gy (y,u)|| < o<1
yey
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so that also in the dual norm

G (y, 5, w) = Gy, 4.y, W) < ellF =7l

for any two row-vectorg,j € Y =Y.

2. Piggy-Back Convergence of Adjoints

Throughout the remainder of this paper we constdas constant and may therefore
omit it occasionally as an argument in analyzing the sinmgltaus iteration

o] = et @

EvenifG is merelyC! and thus?, (y) = G, (y, u) continuous with respect it follows
from y, — y. thatGy(yx, u) — Gy (y«, v) and hence the adjoint iteratgg converge to
7. the unique solution of the adjoint equation

g* :g*Gy(y*au)+fy(y*aU) (3)
The vectory, can be used to compute the so called reduced gradient

This row vector represents the total derivativeg @fith respect ta:, after the elimination
of the state vectay using the implicit function theorem. In order to be more sipeabout
the rate of convergence we assume thatand f,, are Lipschitz continuous with respect
to y so that for some > 0

1Gy (9, u) = Gy(y, W)l < vllg =yl = [1£y(F,u) = fy(y, w)ll.

Then we obtain for the discrepancidg, = vy, — v« andAy, = 7, — 7« the following
result.

Lemma 2.1 The sequencag, andy; converge R-linearly in that

lim sup VIAG| < o > lim sup VI Ayl
—00 —00

Proof. Using the assumed Lipschitz continuity we obtain the estiim
[AGe41ll < 1G6Gy(Yr, w) = GGy (yss w) || + Lfy (Yr, w) = fy (g, 0|
[AGK Gy (yr, w) + e (Gy (yr, w) — Gy(ys, W)l + vye — vol|
oll AT + 1Ak ([|g]l + 1)v.

IN
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Consequently we have for any weighted error combination
ek = [ Ayl + wl| Az

the recurrence

err1 < ol Ayl + w(ell Agkll + v (171l + DIl Aykl)
= (e+wr([g:ll + D)1 Akl + woll A
< (etwr(llgall + 1))z

This implies for anyw < (1 — o)/(v(||7«|| + 1)) the Q-linear convergence result

limsupegyi/ex < o+wr(||g] +1) < 1.

k—oo

By standard arguments one derives Bdinear convergence results
limsup v/||Agg| < klim Ver/w < o+wr(||g.] +1) <1.
k—o0 c— 00

Taking the infimum over alb > 0 one finally obtains as in [4] the assertion. The inequa-
lity on the right was just added for comparisof.

Since the convergence speed cannot be improved under aumptisns (namelyr,
has maximal nornp and is Lipschitz continuous with respectifbone may arrive at the
conclusion that the sequencgsg. } and{y} converge essentially at the same speed. In
fact this claim has been made repeatedly in the literatuldfamfirst author has suffered
from the same impression for a long time. On the other hane thas been the persistent
notion that the convergence of derivatives is lagging betttiese of the underlying fixed
point iterates.

3. Relative Convergence Speed of First Adjoints

In the remainder of this paper we require that= R™ andU = R™ are finite-
dimensional Euclidean spaces so that all linear operatorde identified with their ma-
trix presentation. Assuming furthermore, tiiatand f are twice Lipschitz-continuously
differentiable, we may rewrite the recurrence (2) as

{yk—l—l] :[ G(yr, u) ] ®)

Ph+1 Ny(yk, Ui, w)

Here we have expressed thefrom (3) as the gradient of the function

N(y,y,u) =y G(y,u) + f(y,u)
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Time-lag in Derivative Convergence 91

with respect tq,. Notice that this functionV differs from the familiar Lagrange function
L of the optimization problenmin f(y, u) s.t. G(y,u) — y = 0 by the shift

yy=N(y,y,u) — L(y, y, u).
Consequently, we have
Ny=L,+y and N;=Lz;+y but N,=L,
and, for the subsequent analysis more importantly, allrederivatives are identical :
Nyy = Lyy, Nyuw = Ly, Nyy = Ly
Differentiating (5) we obtain the block-triangular Jacai

Jo = Oyrt1,9k11) _ [ Gylyr.u) 0
 O(Yk, k) Nyy (i, Ui, w) G (yr,u) |

The characteristic polynomial of; satisfies
det(Jx — AI) = det?(Gy (yx, u) — M),

which implies that/, has the same eigenvalues@gys, u) but each of them with double
algebraic multiplicity. Our analyis and in particular thepf of Lemma A.1 reveals that
all eigenvalues ofJ;, are generically defective and generate a Jordan block oémim
sion two. Another consequence of Lemma A.1 is that one canaged linear-geometric
decline in the adjoint error as follows.

Linearizing about the fixed poirfi., . ) we obtain the Taylor expansion

Akt A 0] [Ay , o
T = i o(lla A
{Aym} [B AT] [Ayk +O(|Ayxl” + 1A %)

whereA = Gy (ys,u) andB = Ny, (7, y«, u). From this it follows by induction using
the R-linear convergence pf\y;| + ||Agx|| that for anyk andj > 0

Aypyj A 0] Ayp ) o
Tl = 7 o(|lA A ) 6
[Aykﬂ- B AT Ay, + O([[ Ay + |1 A7) (6)

Similarly it can be easily verified by induction that

J
go= [A 0V _ 4 - 0. (7)
* - B AT Z(AT)Z*lBA]*’L (AT)] .
1=1
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To simplify the matrix on the bottom left we assume at first tha= G, hasn distinct
real eigenvalues. Then it is certainly diagonalizable st th

A=TrT-" with T =diag(y)y,,
where
= i <
o= max || <e<l1

Then we can perform a two stage reduction to obtain the Jdikianepresentation

A 0 T 0 r o[-t o
B AT — |o T T||T"BT T|| 0 TT
T 0 I o]l[r o]f[r o]l[T~t o
~ o T %l |\cT I1||D T||C I||O0 TF
Here D is the (real) diagonal of' ” BT andC = —C7 is the antisymmetric solution of

the Liapunov equation
I'C—-Cr=T"BT - D.

It is well known that the linear mapping fro@ to 'C — CT has then? eigenvalues
v — «; and the eigenvectozsejT for 1 < 4,5 < n, so that the Liapunov equation must
be solvable since all eigenvaluesfare by assumption distinct.

Then it follows immediately that the j-th power df is given by

A o) [ T 0 I o717t 0 9
PR PR | R R

Thus we see that unless the diagohalbf B vanishes there might be a pretty strong
growth in the adjoint error componeat;,.. When the second order sufficiency conditions
for local optimality are satisfied at the limiting fixed pogitleast some projection @
must be positive definite so that itself and its diagonal ocamanish. In the following
we draw on the analysis in the appendix, which imposes muake&reassumptions on
A=G,y.

Lemma A.1 shows that unles$’ Bz happens to vanish for some possibly complex
eigenvectorr of A there might be a pretty strong growth in the adjoint error ponent
Ayy. To compare it to the original errdxyy, itself we firstly have to analyze its recurrence
a bit more carefully. Using the Lipschitz constanbne finds by standard estimates

1AYe1 — ADyi|l < vl Ay,

Let X be the (right) invariant subspace df belonging to all eigenvalues of maximal
modulusp. Then, using the estimate above, one can show that the agiglednAy,; and
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Time-lag in Derivative Convergence 93

X satisfies a recurrence that has exactly one stable fixed pamely0, see also [3]. If
the columns oY form a basis for the left invariant subspace belonging teigkknvalues
of maximal modulus, the relatioyi”z = 0 for all 2 € X' thus generically implies

YT A
lim —————— =1. 10
A Al (10)

Under the assumptions of Lemma A.1, which are genericaligfgad, it then follows

by (16) that
L [[AGl =

¢ < -
k([ Ay

for some constant§', C' > 0. Approximately, we have

A7l
Ayl

Hence we see that the convergence of the adjoint vegtamsally lags behind that of the
underlying iterateg;. even though both sequences have the same R-factor

(11)

4. Convergence of Second Order Adjoints

The above analysis can be extended to second derivativessegping products of
the projected Hessian with certain direction vectors. Mgpecifically, after picking a
directionu € U we may append (2) by the iterations

Zl)k+1 = G(yk7 yk7 Uu, U) = Gy(ykn U)yk + Gu(ylm u)u (12)

and

?jk—&-l = G(yka Yk Ykos ij‘7 U, u) = ngy + ijnyyk + fyyyk + ngyuu + fyuu (13)
= kGyWkw) + Nyy (Y, T, W)k + Nyu (s, Gr, w)t

where all derivatives of and f are evaluated at the current argumént, u). Then an
analysis along the lines of Section 3 shows thatjthandy; also converge R-linearly to
respective fixed pointg, andi, solving

y* = G(y*ay*7u’u) and g* = G(y*ay*ay*ag*aua ’LL)

The vecton), represents the feasible direction in state space assweidtethe variation
% in the design space. The vecircan be used to compute
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which represents the product of the reduced Hessian wittiteetion«. To analyze the
speed of convergence more carefully let us consider thaésteJacobian

OYkt1s Yrt1, Ukt1> Ykt1) _
O(Ys Uks Uk, Y

Gy (yk, u) 0 0 0
_ Nyy (ykv gka U) Gg (yka u) O O
P(ykayk7u7u) 0 Gy(ykvu) 0
H(ykagkaykagkvuvu) P(ykvykauﬂl)T Ng;;(ykvgkvu) Gg(ykau)
where

We notice that the matri¥! is symmetric, whileP is general and the values of these
two square matrices at the fixed poift., 7., v, ) are independent of each other as
A= Gy(ys,u) andB = Ny (G, Ys, w).

We are looking now for estimates of the corresponding dmmeiesA g, = ¥ — U«
andAjyj, = 9 — ¥, in addition to theAy, and Ay, considered before. Similarly to (6)
we obtain the linearization

Al
AYpyj
A
Alpe

A

0

B AT

P

0

H PT

J

0
0
0

e oco

AT

Ay
Ay,
Agj
Ay

+0

| Aygl*+

| Agr||>+

(| Ag]1?+
|| A2

(15)

Assuming at first again that has distinct real eigenvalues we may use the same transfor-
mation as in (8) and thgth power can be rewritten as follows,

A 0
AT
0
PT
TJ
jDTI~
P
H.

J

B
P
H

where withP = T-'PT andH = TTHT,

3]

i=1

B0
i; Pr
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Here we used the relation (7) once again. Hence we have thessipns

p; = f ri-1pri—
Hy=Y7_ (i 1)F"‘2D15F3";:+1 D-'HIY~ 4 (j — ))[i -1 PIY=i=1p
Taking norms we obtain for constantsandc,
1P| < erjpl™" and [|Hjl < ez j° pl~2

The later inequality is true becauBehas like A the spectral radiug, < 1. Thus we can
estimate all four error components as follows.

1Ayersll < plenl Ayell + O Ayl*)
1AGel < plleaall ATkl + c21 5 1Ayxl] + Ol Ayx|* + | Agx %)
ATl < pllesslAgkll + es1 5 1 Aykll] + O Ayl* + | Agl|*)

ATl < ol [caall AGkll + carg® | Ayl + cazj (| AGk]| + | Agn]
+ Ol Ayl + 1|A7 17 + A1 + | AGk]?)

These upper bounds apply in the nonlinear case under th&redtassumption on
A. While they suggest that the higher derivatives lag behinid,relation can only been
established if we assume linearity and draw on the morelddtanalysis in the Appendix.
Again, it is critical but reasonable to assume that the imidtL0) is satisfied. Then, under
the assumptions of Lemma A.2, it follows by (20) that

1 A
T Al

1 |Ags|

c <
- kAl

< C,

for some constants, C, D, D > 0.
This implies the proportionality relations

1A ~ k| Ayxll ~ & p* and (|G| ~ k2 | Ayxll ~ k2 o,

wherep denotes the spectral radius 4f This means in particular that the second deri-
vatives lag behind the first derivatives by a factor of orkland thus behind the original
iteration by a factor of ordet?.
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convergence history
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5. Numerical Results

The following results were obtained on the boundary comtroblem

Ayy(x) +e¥ ™ =0 for z = (x1,29) €[0,1]?
with the periodic and Dirichlet boundary conditions

y(O,C) = y(la C)7 y(Ca 0) = SiD(27TC), y(Cv 1) = U(C) for (e [O? 1]

The functionu is viewed as a boundary control that can be varied to minithigeobjec-
tive function

fw = [ [@yg; 3

In the following calculations we used = 0.001 and set constantly(¢) = 2.2. This
value is not all that far from the fold point where solutiomsse to exist.

We use a central difference discretization with the medditiwi /12.0 so that the re-
sulting algebraic system involvéd4 equations in as many variables. Since the nonlinea-
rities occur only on the diagonal one can easily implemeooldégs method to obtain the
basic functionG(y, u). For this simple example we also coded by hand the correspgnd

derived functions?, G and ever(: as defined in (1, 12) and (13), respectively. The results
were later confirmed using the automatic differentiatiasi ®DOL-C [6].

— 4 — cos(27()
n=0

i+ o /0 [u(0)? +/()?] d
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error comparison
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As can be seen in Fig.1 the convergence of the Jacobi methmath&r slow with the
common R-factor being abott — 1/300). The lowest curve represents the natural loga-
rithms of the Euclidean norm ratidigx+1 — yx|l/|ly1 — yol|, which provide some indica-
tion of the norm ratio Ayy || /|| Ayo||. In view of the very slow convergence this relation
need certainly not be very close. Nevertheless the thedygdgally confirmed with the
first direct and adjoint derivativej,1 — v« /|91 f.y0|| anql||gk+% - g,?||/Hg1 — ol
lagging somewhat behind and the second derivatiges: — y«||/||y1 — Yol coming in
last. The ratio between these derivative quantities anatigénal iterates themselves is
plotted in Fig. 2. After an initial transition phase one sqate clearly a growth propor-
tional to k£ and k2 for the first and second derivatives, respectively. While atimints
were defined as in (3) by the gradient fifthe direct differentiation was performed si-
multaneously with respect to all components of the disoeetti. so that the quantity:
occurring in (12) and (13) was in fact the identity matrix afler 12. Consequentlyy
andyj;, had also 12 times as many components as the underjyiagdi;., which are of
the same size.

6. Summary, Conclusion and Outlook

We studied the convergence behavior of fixed point iteratfonderivatives of impli-
cit functions. These recurrences are generated in a coghplaechanical fashion from a
user supplied contractive fixed point solver for evaluatimgimplicit function. While the
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contractivity and thus the asymptotic convergence ratehisrited by the derived solvers
there is a certain time lag. This is not really surprisingsithe equations for the adjoints
y and those for the feasible directionsre dependent on and both in turn impact the
second order adjoint equation fgr Mathematically we obtain Jordan blocks of size 2
for the double eigenvalues of the first derivative systentsadrsize 3 for the quadruple
eigenvalues of the second order adjoint system. One do@btah blocks of size 4 since
the (3, 2) sub-block in the big Jacobian system vanishes identic@ligerwise it would
connect the two first derivative systems.

Generally if one were to iteratively evaluate derivativésooder d one can expect
that the relative errors compared to those of the underlftingtion iteration grows like
k?, wherek is the iteration counter. In the context of constrainedrojaation one can
expect that the correct values of reduced gradients (4) assibins (14) are obtained
slower than feasibility so that optimality will be arrivetlia the tangential fashion that
is familiar from SQP calculations [11, 12, 13]. In fact whém tstate equation only be
solved by a slowly convergent fixed point solver as we haverassd throughout it makes
little sense to apply an SQP type algorithms. Instead onlepvéfer a so-called one-shot
optimization strategy [14], where feasibility and optiitals achieved at the same time.
We are currently investigating a piggy-back optimizaticheme, where a third iteration
updating the design variableson the basis of approximate reduced gradient information
is appended to (3).

A. Convergence Behavior of Linear Recurrences

In this section, we study the linear recurrences in (6) ai) ({1 detail. The transi-
tion matrices of both recurrences have a very particulaicgire and the following two
lemmas show the convergence behavior that is (generiéatlyced by these structures.

LemmaA.1 Consider a linear recurrence of the form

i l=ls L
Jrt1 B AT fw |’

where A and B are realn x n matrices, and assume thaf the spectral radius ofd,
satisfies) < p < 1. Let\q,..., )\, denote the eigenvalues df with |\;| = p. Itis
assumed that eacky is simple and satisfies the following conditions :

1) if \; is real thenz! Bx; # 0, wherez; is a right eigenvector belonging to;.
2) if \; is complex themijBxi,R + :cZIB:cI orazZRBxi,I # —x] Bx; g, Where
x; r andz; 1 are the real and imaginary parts of a right eigenvector bejimg to ), .

Revue ARIMA
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Let the columns of € R™*" form a basis for the space spanned by the left eigenvectors
y1,...,y, belonging to\, ..., \.. Then there exist constartg, Cs, C5, Cy > 0 so that

| frt5]] ; i1 I sl i1
<Copl, Cajpil < <Pl (18)
VT <0 Golr <y < Caar

C1p? <

provided that| Y7 fx|| # 0.

Proof. If ); is real, there is an invertible real matfixsuch that the first column af
is z; and

i 0 0 0
ST 0 1[4 0 [T 0 ]_| 0 An 0 0
- 0 7T B AT 0 7T - Bi1 Bia N\ 0 ’

Bgl BQQ 0 A%é

whereBy; = xiTBxi. Since\; is simple, the matrixd;, — A\; I is invertible. Setting
R = BlQ(AQQ — )\if)_l andR; = ()\lI — AgQ)_lel ylelds

i 0 0 0 1 0 0 O
. s 0 An o0 0 . o 1 00
J=RrUR=| with R=| o o) | @
0 By 0 AL Ry 0 0 I

If y; denotes the first column @& —7 theny; is a left eigenvector belonging ty;. This
implies|y; fii;| = o7 |yl fi| while 2] frij] = jp7 Byl fil + O(p?).

If \; = A\ir + tA; 1 is complex there is an invertible real matfixsuch that the first
two columns ofl’ arex; g, z; ; and

Aqq 0 0 0
j_[T—l oHA oHT 0 ]_ 0 Apw 0 0
=l o 17 =1 By B AL 0 |
Bs1 By 0 AL
(18)
with

AR AT vl pBrir xlpBxis b1 b2
An=1 230 ae | BT o B By | = | b '
=X, iR z; [ Brir ;B 21 boa

If R, andR, denote the solutions of the Sylvester equatifiagls, — A1 Ry = Bis and
Ry AT, — AL, Ry = By, respectively, then the same transformation as in (17) earsbd
to eliminate the off-diagonal blockB,, and B, in (18), see also [3]. Decompose

bi1 +ba2  big — by } 1 [ bi1 —ba2  bi2 + by ]

1
Bu=V4+W:=_ =
H 2 { ba1 — b1z b11 + a2 2| biz+ba1 bag — b1y
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SinceV is in the range of the Sylvester operat®r— RAT, — A;; R, we can elimi-
nate this part by a similarity transformation and 8¢t = W, which is under the given
assumptions different from zero. Then we hdg A1, = AT, By; and therefore

Ay 0 ] Al 0
By Af) J(AT) 1By (A

If y; r andy; ; denote the first two columns @7 theny; = y; r + 1y, 1 is a left eigen-
vector belonging td\;. This implies||[y; r, yi,1]" fr+jll = ¢’ l[vi.r, yi.1]" fill, while

iz o) gl = 307 Buall llyi,rs vid] " full + O7).
Altogether, this shows the existence of constaitsC,, Cs, Cy > 0 such that

Cro YTl < YT frwsll < Cop?|I YT fill,

Cojp/ YT fill < IX"frrsl < Cagp YT il

where the columns oK ¢ R"f’” form_a basis forrl,_. o T This concludes the proof
as| fejll = IV fesjll +O7) and|| frijll = | X7 frrsll +O(p7) for somep < p. O

(19)

Several remarks are in order :

1) The second condition in Lemma A.1 can be written in the noorapact form
o Bx; # 0with 2, = 2; g + 17, .

2) If B is skew-symmetric then the two conditions in Lemma A.1 aveaghb vio-
lated, independent of the eigenvectors Af Moreover, {g XT} is a so called skew-
Hamiltonian matrix, which can always be put into block diagbform [6‘ AOT} by a
similarity transformation [1, 2]. Hence, the second indiyan (16) does not hold for
this case.

3) In the applications considered in this pageilis symmetric and it is also reaso-
nable to assum® to be positive definite. In this case, the two conditions imbea A.1
are always satisfied, independent of the eigenvectoss of

LemmaA.2 Consider a linear recurrence of the form

Fren A0 0 07 f
fevr | _ | B AT 0 0 fr
geq1 | | PO A O gk |’
Jr+1 H pT B AT Ik

where A, B, H, P are realn x n matrices. Assuming that the spectral radip®f A
satisfied) < p < 1, letAq,. .., \. denote the eigenvalues afwith |\;| = p. Moreover, it
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is assumed that each is simple and satisfies” Bx; # 0,z Hz; # 0, andz Py, # 0,
wherez; andy; are right and left eigenvectors belongingXe.

Let the columns of € R™*" form a basis for the space spanned by the left eigen-
vectorsyy, ..., y, belonging to\q, ..., A,.. Then there exist constants, ..., Cs > 0 so
that (16) is satisfied, and additionally

g |l grssl i1 2 9 | Grt5 2 9
Csjp/ ' < 222 < Cojp? ™t Crj?p™? < 2 < Csjp’ 72, (20)
YT fl] YT fi]

provided that| YT fx|| # 0.

Proof. If ); is real then by similar arguments as in the proof of Lemma wd may
restrict ourselves to the iteration

Y; e Aio 0 0 0 vyl fr
zlfizr | | Bu AN 0 0 x! fr
Y! Gkt Py 0 X O vlgr |’
L G Hyy Pu B M X gy

WhereBu = $?B$Z, Hy; = {I?;FH{EZ andPH = yZTPLUZ Since

J

N0 0 0
Bu M 0 0
Py 0 XN 0|
Hy P B A
N 0 0 0
B FNTIBy N 0 0
a JNTIPY 0 M 0

?

GNTIHy + (52— )N T2H0 Py GNPy GNTIBy N
for j > 1, we have

! fresl = Plyi Sl
=] forsl = 3Byl fil + O0),
vl gkl = 3077 Payl fel + O(),
2l geiil = 52072 HuPuy! fiol + O3p7),
The complex case is treated analogously. Altogether, théseconstant§’s , ..., Cs > 0

so that (19) is satisfied, and additionally

G IlY Rl < Y gkl < Codd YT fill,
Cri?p 2V fll < X gesll < Csd?p YT i,
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which concludes the proof using the same argument thatedeslthe proof of LemmaA.1.
a
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