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RÉSUMÉ. Une étude antérieure a prouvé et vérifié expérimentalement sur un code Euler 2D que
les calculs itératifs avec point fixe peuvent être différentiés pour obtenir les dérivées aux premier et
deuxième ordres des fonctions implicites définies par des équations d’état. On considérait également
que les itérées correspondantes des gradients et Hessiens réduits convergent à la même vitesse que
l’itération de point fixe d’origine.
Cette étude plus détaillée révèle néanmoins que ces dérivées convergent avec un certain retard par
rapport aux valeurs de la fonction. En effet le rapport des erreurs correspondantes croît vers l’infini
proportionnellement au compteur d’itérations ou à son carré. Mathématiquement, cet effet plutôt subtil
est causé par l’apparition de blocs de Jordan correspondant à des valeurs propres dégénérées. Nous
construisons un modèle théorique de cet effet et nous le validons par des expèriences numériques.

ABSTRACT. In an earlier study it was proven and experimentally confirmed on a 2D Euler code that
fixed point iterations can be differentiated to yield first and second order derivatives of implicit functions
that are defined by state equations. It was also asserted that the resulting approximations for reduced
gradients and Hessians converge with the same R-factor as the underlying fixed point iteration.
A closer look reveals now that nevertheless these derivative values lag behind the functions values in
that the ratios of the corresponding errors grow proportional to the iteration counter or its square to-
wards infinity. This rather subtle effect is caused mathematically by the occurrence of nontrivial Jordan
blocks associated with degenerate eigenvalues. We elaborate the theory and report its confirmation
through numerical experiments.
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1. Introduction and Assumption

The effect to be analyzed arises in the context of design optimization by what has been
called piggy-back optimization [5]. Design optimization problems are distinguished from
general nonlinear programming problems (NLP) by the fact that the vector of variablesx
is a priori partitioned into a state vectory ∈ Y and a set of design variablesu ∈ U . For
application of this scenario in computational fluid dynamics see for example [10], [8], [9],
and [7]. Throughout we assume that the “user” has provided aniteration function

G : Y × U → Y

that is contractive with respect to an inner product norm onY so that for allu ∈ U and
y, ỹ ∈ Y

‖G(y, u) − G(ỹ, u)‖ ≤ % ‖y − ỹ‖.

Here% < 1 may vary continuously as a function of the designu and its exact size will
usually not be available to a practical algorithm.

As an immediate consequence it follows by the Banach fixed point theorem that for
fixedu and any initialy0 ∈ Y the sequence{yk} generated by

yk+1 = G(yk, u)

must converge to the unique fixed pointy∗ = y∗(u) with y∗ = G(y∗, u). In other words,
the assumptions made so far ensure that one can obtain for anyu a solutiony∗(u), a
process which one may call “simulate” the underlying system. In a practical simulation
the variablesu and y will often be restricted to open subsets of the spacesU andY ,
respectively.

In order to progress from simulation to design we require more smoothness ofG, na-
mely, that it is at least once continuously differentiable in the joint variable vector(y, u).
The same assumption will be made for the objective function

f : Y × U → R,

which is meant to be minimized. Provided at leastf ∈ C1(Y,U), one can obtain in a
completely automated fashion the adjoint iteration function

Ḡ(y, ȳ, u) ≡ ȳ Gy(y, u) + fy(y, u). (1)

Here subscripts denote partial differentiation andȳ like the gradientfy is considered a
row-vector belonging to the dual space ofY , which we identify with the Hilbert spaceY
itself. Then we have in the induced matrix and operator norm

%(u) = max
y∈Y

‖Gy(y, u)‖ ≤ % < 1
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so that also in the dual norm

‖Ḡ(y, ȳ, u) − Ḡ(y, ỹ, y, u)‖ ≤ %‖ȳ − ỹ‖

for any two row-vectors̄y, ỹ ∈ Ȳ ≡ Y .

2. Piggy-Back Convergence of Adjoints

Throughout the remainder of this paper we consideru as constant and may therefore
omit it occasionally as an argument in analyzing the simultaneous iteration

[

yk+1

ȳk+1

]

=

[

G(yk, u)
Ḡ(yk, ȳk, u)

]

(2)

Even ifG is merelyC1 and thusGy(y) = Gy(y, u) continuous with respect toy it follows
from yk → y∗ thatGy(yk, u) → Gy(y∗, u) and hence the adjoint iteratesȳk converge to
ȳ∗ the unique solution of the adjoint equation

ȳ∗ = ȳ∗Gy(y∗, u) + fy(y∗, u) (3)

The vector̄y∗ can be used to compute the so called reduced gradient

ū∗ = ȳ∗Gu(y∗, u) + fu(y∗, u) (4)

This row vector represents the total derivatives off with respect tou, after the elimination
of the state vectory using the implicit function theorem. In order to be more specific about
the rate of convergence we assume thatGy andfy are Lipschitz continuous with respect
to y so that for someν > 0

‖Gy(ỹ, u) − Gy(y, u)‖ ≤ ν‖ỹ − y‖ ≥ ‖fy(ỹ, u) − fy(y, u)‖.

Then we obtain for the discrepancies∆yk ≡ yk − y∗ and∆ȳk ≡ ȳk − ȳ∗ the following
result.

Lemma 2.1 The sequencesyk and ȳk converge R-linearly in that

lim sup
k→∞

k

√

‖∆ȳk‖ ≤ % ≥ lim sup
k→∞

k

√

‖∆yk‖.

Proof. Using the assumed Lipschitz continuity we obtain the estimate

‖∆ȳk+1‖ ≤ ‖ȳkGy(yk, u) − ȳ∗Gy(y∗, u)‖ + ‖fy(yk, u) − fy(y∗, u)‖

= ‖∆ȳk Gy(yk, u) + ȳ∗(Gy(yk, u) − Gy(y∗, u))‖ + ν‖yk − y0‖

≤ %‖∆ȳk‖ + ‖∆yk‖(‖ȳ∗‖ + 1)ν.
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Consequently we have for any weighted error combination

εk ≡ ‖∆yk‖ + ω‖∆ȳk‖

the recurrence

εk+1 ≤ %‖∆yk‖ + ω(%‖∆ȳk‖ + ν(‖ȳ∗‖ + 1)‖∆yk‖)

= (% + ων(‖ȳ∗‖ + 1))‖∆yk‖ + ω%‖∆ȳk‖

≤ (% + ων(‖ȳ∗‖ + 1))εk.

This implies for anyω < (1 − %)/(ν(‖ȳ∗‖ + 1)) the Q-linear convergence result

lim sup
k→∞

εk+1/εk ≤ % + ων(‖ȳ∗‖ + 1) < 1.

By standard arguments one derives theR-linear convergence results

lim sup
k→∞

k

√

‖∆ȳk‖ ≤ lim
k→∞

k

√

εk/ω ≤ % + ων(‖ȳ∗‖ + 1) < 1.

Taking the infimum over allω > 0 one finally obtains as in [4] the assertion. The inequa-
lity on the right was just added for comparison.

Since the convergence speed cannot be improved under our assumptions (namelyGy

has maximal norm% and is Lipschitz continuous with respect toy) one may arrive at the
conclusion that the sequences{yk} and{ȳk} converge essentially at the same speed. In
fact this claim has been made repeatedly in the literature and the first author has suffered
from the same impression for a long time. On the other hand there has been the persistent
notion that the convergence of derivatives is lagging behind those of the underlying fixed
point iterates.

3. Relative Convergence Speed of First Adjoints

In the remainder of this paper we require thatY ≡ R
n and U ≡ R

m are finite-
dimensional Euclidean spaces so that all linear operators can be identified with their ma-
trix presentation. Assuming furthermore, thatG andf are twice Lipschitz-continuously
differentiable, we may rewrite the recurrence (2) as

[

yk+1

ȳk+1

]

=

[

G(yk, u)
Ny(yk, ȳk, u)

]

(5)

Here we have expressed theḠ from (3) as the gradient of the function

N(y, ȳ, u) ≡ ȳ G(y, u) + f(y, u)
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with respect toy. Notice that this functionN differs from the familiar Lagrange function
L of the optimization problemmin f(y, u) s.t.G(y, u) − y = 0 by the shift

ȳ y = N(y, ȳ, u) − L(y, ȳ, u).

Consequently, we have

Ny = Ly + ȳ and Nȳ = Lȳ + y but Nu = Lu

and, for the subsequent analysis more importantly, all second derivatives are identical :

Nyy = Lyy, Nyu = Lyu, Nuu = Luu.

Differentiating (5) we obtain the block-triangular Jacobian

Jk ≡
∂(yk+1, ȳk+1)

∂(yk, ȳk)
=

[

Gy(yk, u) 0
Nyy(yk, ȳk, u) GT

y (yk, u)

]

.

The characteristic polynomial ofJk satisfies

det(Jk − λI) = det2(Gy(yk, u) − λI),

which implies thatJk has the same eigenvalues asGy(yk, u) but each of them with double
algebraic multiplicity. Our analyis and in particular the proof of Lemma A.1 reveals that
all eigenvalues ofJk are generically defective and generate a Jordan block of dimen-
sion two. Another consequence of Lemma A.1 is that one can deduce a linear-geometric
decline in the adjoint error as follows.

Linearizing about the fixed point(y∗, ȳ∗) we obtain the Taylor expansion

[

∆yk+1

∆ȳk+1

]

=

[

A 0
B AT

] [

∆yk

∆ȳk

]

+ O(‖∆yk‖
2 + ‖∆ȳk‖

2)

whereA ≡ Gy(y∗, u) andB ≡ Nyy(ȳ∗, y∗, u). From this it follows by induction using
the R-linear convergence of‖∆yk‖ + ‖∆ȳk‖ that for anyk andj > 0

[

∆yk+j

∆ȳk+j

]

=

[

A 0
B AT

]j [

∆yk

∆ȳk

]

+ O(‖∆yk‖
2 + ‖∆ȳk‖

2). (6)

Similarly it can be easily verified by induction that

Jj
∗ ≡

[

A 0
B AT

]j

=





Aj 0
j

∑

i=1

(AT )i−1BAj−i (AT )j



 . (7)
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To simplify the matrix on the bottom left we assume at first that A = Gy hasn distinct
real eigenvalues. Then it is certainly diagonalizable so that

A = TΓT−1 with Γ = diag(γj)
n
j=1,

where
%∗ ≡ max

1≤j≤n
|γj | ≤ % < 1

Then we can perform a two stage reduction to obtain the Jordan-like representation
[

A 0
B AT

]

=

[

T 0
0 T−T

] [

Γ 0
TT BT Γ

] [

T−1 0
0 TT

]

=

[

T 0
0 T−T

] [

I 0
CT I

] [

Γ 0
D Γ

] [

I 0
C I

] [

T−1 0
0 TT

]

(8)

HereD is the (real) diagonal ofTT BT andC = −CT is the antisymmetric solution of
the Liapunov equation

ΓC − CΓ = TT BT − D.

It is well known that the linear mapping fromC to ΓC − CΓ has then2 eigenvalues
γi − γj and the eigenvectorseie

T
j for 1 ≤ i, j ≤ n, so that the Liapunov equation must

be solvable since all eigenvalues ofA are by assumption distinct.

Then it follows immediately that the j-th power ofJ∗ is given by

[

A 0
B AT

]j

=

[

T 0
(CT−1)T T−T

] [

Γj 0
j DΓj−1 Γj

] [

T−1 0
CT−1 TT

]

(9)

Thus we see that unless the diagonalD of B vanishes there might be a pretty strong
growth in the adjoint error component∆ȳk. When the second order sufficiency conditions
for local optimality are satisfied at the limiting fixed pointat least some projection ofB
must be positive definite so that itself and its diagonal cannot vanish. In the following
we draw on the analysis in the appendix, which imposes much weaker assumptions on
A = Gy.

Lemma A.1 shows that unlessxHBx happens to vanish for some possibly complex
eigenvectorx of A there might be a pretty strong growth in the adjoint error component
∆ȳk. To compare it to the original error∆yk itself we firstly have to analyze its recurrence
a bit more carefully. Using the Lipschitz constantν one finds by standard estimates

‖∆yk+1 − A∆yk‖ ≤ ν‖∆yk‖
2.

Let X be the (right) invariant subspace ofA belonging to all eigenvalues of maximal
modulusρ. Then, using the estimate above, one can show that the angle between∆yk and
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X satisfies a recurrence that has exactly one stable fixed pointnamely0, see also [3]. If
the columns ofY form a basis for the left invariant subspace belonging to alleigenvalues
of maximal modulus, the relationY T x = 0 for all x ∈ X⊥ thus generically implies

lim
k→∞

‖Y T ∆yk‖

‖∆yk‖
= 1. (10)

Under the assumptions of Lemma A.1, which are generically satisfied, it then follows
by (16) that

C ≤
1

k

‖∆ȳk‖

‖∆yk‖
≤ C (11)

for some constantsC,C > 0. Approximately, we have

‖∆ȳk‖

‖∆yk‖
∼ k.

Hence we see that the convergence of the adjoint vectorsȳk really lags behind that of the
underlying iteratesyk even though both sequences have the same R-factorρ.

4. Convergence of Second Order Adjoints

The above analysis can be extended to second derivatives representing products of
the projected Hessian with certain direction vectors. Morespecifically, after picking a
directionu̇ ∈ U we may append (2) by the iterations

ẏk+1 ≡ Ġ(yk, ẏk, u, u̇) ≡ Gy(yk, u)ẏk + Gu(yk, u)u̇ (12)

and

˙̄yk+1 ≡ ˙̄G(yk, ȳk, ẏk, ˙̄yk, u, u̇) ≡ ˙̄ykGy + ȳkGyy ẏk + fyy ẏk + ȳkGyuu̇ + fyuu̇ (13)

= ˙̄ykGy(yk, u) + Nyy(yk, ȳk, u)ẏk + Nyu(yk, ȳk, u)u̇

where all derivatives ofG andf are evaluated at the current argument(yk, u). Then an
analysis along the lines of Section 3 shows that theẏk and ˙̄yk also converge R-linearly to
respective fixed pointṡy∗ and ˙̄y∗ solving

ẏ∗ = Ġ(y∗, ẏ∗, u, u̇) and ˙̄y∗ ≡ ˙̄G(y∗, ȳ∗, ẏ∗, ˙̄y∗, u, u̇).

The vectorẏ∗ represents the feasible direction in state space associated with the variation
u̇ in the design space. The vector˙̄y∗ can be used to compute

˙̄u∗ ≡ ˙̄y∗Gu(y∗, u) + Nuy(y∗, ȳ∗, u)ẏ∗ + Nuu(y∗, ȳ∗, u)u̇ (14)
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which represents the product of the reduced Hessian with thedirectionu̇. To analyze the
speed of convergence more carefully let us consider the extended Jacobian

∂(yk+1, ȳk+1, ẏk+1, ˙̄yk+1)

∂(yk, ȳk, ẏk, ˙̄yk)
=

=









Gy(yk, u) 0 0 0
Nyy(yk, ȳk, u) GT

y (yk, u) 0 0
P (yk, ẏk, u, u̇) 0 Gy(yk, u) 0

H(yk, ȳk, ẏk, ˙̄yk, u, u̇) P (yk, ẏk, u, u̇)T NT
yy(yk, ȳk, u) GT

y (yk, u)









where

P (y, ẏ, u, u̇) ≡ Gyy(y, u)ẏ + Gyu(y, u)u̇

H(y, ȳ, ẏ, ˙̄y, u, u̇) ≡ ˙̄yGyy(y, u) + Nyyy(y, ȳ, u)ẏ + Nyyu(y, ȳ, u)u̇.

We notice that the matrixH is symmetric, whileP is general and the values of these
two square matrices at the fixed point(y∗, ȳ∗, ẏ∗, ˙̄y∗) are independent of each other as
A ≡ Gy(y∗, u) andB ≡ Nyy(ȳ∗, y∗, u).

We are looking now for estimates of the corresponding discrepancies∆ẏk = ẏk − ẏ∗
and∆ ˙̄yk ≡ ˙̄yk − ˙̄y∗ in addition to the∆yk and∆ȳk considered before. Similarly to (6)
we obtain the linearization









∆yk+j

∆ȳk+j

∆ẏk+j

∆ ˙̄yk+j









=









A 0 0 0
B AT 0 0
P 0 A 0
H PT B AT









j 







∆yk

∆ȳk

∆ẏk

∆ ˙̄yk









+ O









‖ ∆yk‖
2+

‖∆ȳk‖
2+

‖∆ẏk‖
2+

‖∆ ˙̄yk‖
2









. (15)

Assuming at first again thatA has distinct real eigenvalues we may use the same transfor-
mation as in (8) and thej-th power can be rewritten as follows,









A 0 0 0
B AT 0 0
P 0 A 0
H PT B AT









j

=









T 0 0 0
T−T CT T−T 0 0

0 0 T 0
0 0 T−T CT T−T









· · ·

· · ·









Γj 0 0 0
jDΓj−1 Γj 0 0

P̃j 0 Γj 0

H̃j P̃T
j jΓj−1D Γj

















T−1 0 0 0
CT−1 TT 0 0

0 0 T−1 0
0 0 CT−1 TT









where withP̃ ≡ T−1PT andH̃ ≡ TT HT ,

[

P̃j 0

H̃j P̃T
j

] j
∑

i=1

[

Γi−1 0
(i − 1)Γi−2D Γi−1

] [

P̃ 0

H̃ P̃T

] [

Γj−i 0
(j − i)Γj−i−1D Γj−i

]
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Here we used the relation (7) once again. Hence we have the expressions

P̃j =
j

∑

i=1

Γi−1P̃Γj−i

H̃j =
∑j

i=1(i − 1)Γi−2DP̃Γj−i + Γi−1H̃Γj−i + (j − i)Γi−1PΓj−i−1D

Taking norms we obtain for constantsc1 andc2

‖P̃j‖ ≤ c1 j ρj−1
∗ and ‖H̃j‖ ≤ c2 j2 ρj−2

∗

The later inequality is true becauseΓ has likeA the spectral radiusρ∗ < 1. Thus we can
estimate all four error components as follows.

‖∆yk+j‖ ≤ ρj
∗c11‖∆yk‖ + O(‖∆yk‖

2)

‖∆ȳk+j‖ ≤ ρj
∗ [c22‖∆ȳk‖ + c21 j |∆yk‖] + O(‖∆yk‖

2 + ‖∆ȳk‖
2)

‖∆ẏk+j‖ ≤ ρj
∗ [c33‖∆ẏk‖ + c31 j ‖∆yk‖] + O(‖∆yk‖

2 + ‖∆ẏk‖
2)

‖∆ ˙̄yk+j‖ ≤ ρj
∗

[

c44‖∆ ˙̄yk‖ + c41j
2‖∆yk‖ + c42j(‖∆ȳk‖ + ‖∆ẏk‖

]

+ O(‖∆yk‖
2 + ‖∆ȳk‖

2 + ‖∆ẏk‖
2 + ‖∆ ˙̄yk‖

2)

These upper bounds apply in the nonlinear case under the restricted assumption on
A. While they suggest that the higher derivatives lag behind, this relation can only been
established if we assume linearity and draw on the more detailed analysis in the Appendix.
Again, it is critical but reasonable to assume that the relation (10) is satisfied. Then, under
the assumptions of Lemma A.2, it follows by (20) that

C ≤
1

k

‖∆ẏk‖

‖∆yk‖
≤ C, D ≤

1

k2

‖∆ ˙̄yk‖

‖∆yk‖
≤ D

for some constantsC,C,D,D > 0.

This implies the proportionality relations

‖∆ẏk‖ ∼ k ‖∆yk‖ ∼ k ρk and ‖∆ ˙̄yk‖ ∼ k2 ‖∆yk‖ ∼ k2 ρk,

whereρ denotes the spectral radius ofA. This means in particular that the second deri-
vatives lag behind the first derivatives by a factor of orderk and thus behind the original
iteration by a factor of orderk2.
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5. Numerical Results

The following results were obtained on the boundary controlproblem

∆xy(x) + ey(x) = 0 for x = (x1, x2) ∈ [0, 1]2

with the periodic and Dirichlet boundary conditions

y(0, ζ) = y(1, ζ), y(ζ, 0) = sin(2πζ), y(ζ, 1) = u(ζ) for ζ ∈ [0, 1]

The functionu is viewed as a boundary control that can be varied to minimizethe objec-
tive function

f(y, u) =

∫ 1

0

[

∂y(η, ζ)

∂η

∣

∣

∣

∣

η=0

− 4 − cos(2πζ)

]2

dζ + σ

∫ 1

0

[

u(ζ)2 + u′(ζ)2
]

dζ

In the following calculations we usedσ = 0.001 and set constantlyu(ζ) = 2.2. This
value is not all that far from the fold point where solutions cease to exist.

We use a central difference discretization with the mesh-width 1/12.0 so that the re-
sulting algebraic system involves144 equations in as many variables. Since the nonlinea-
rities occur only on the diagonal one can easily implement Jacobi’s method to obtain the
basic functionG(y, u). For this simple example we also coded by hand the corresponding

derived functions̄G, Ġ and even ˙̄G as defined in (1, 12) and (13), respectively. The results
were later confirmed using the automatic differentiation tool ADOL-C [6].
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As can be seen in Fig.1 the convergence of the Jacobi method israther slow with the
common R-factor being about(1− 1/300). The lowest curve represents the natural loga-
rithms of the Euclidean norm ratios‖yk+1 − yk‖/‖y1 − y0‖, which provide some indica-
tion of the norm ratios‖∆yk‖/‖∆y0‖. In view of the very slow convergence this relation
need certainly not be very close. Nevertheless the theory isbasically confirmed with the
first direct and adjoint derivatives‖ẏk+1 − ẏk‖/‖ẏ1 − ẏ0‖ and‖ȳk+1 − ȳk‖/‖ȳ1 − ȳ0‖
lagging somewhat behind and the second derivatives‖ ˙̄yk+1 − ˙̄yk‖/‖ ˙̄y1 − ˙̄y0‖ coming in
last. The ratio between these derivative quantities and theoriginal iterates themselves is
plotted in Fig. 2. After an initial transition phase one seesquite clearly a growth propor-
tional to k andk2 for the first and second derivatives, respectively. While theadjoints
were defined as in (3) by the gradient off , the direct differentiation was performed si-
multaneously with respect to all components of the discretizedu so that the quantitẏu
occurring in (12) and (13) was in fact the identity matrix of order 12. Consequently,̇yk

and ˙̄yk had also 12 times as many components as the underlyingyk andȳk, which are of
the same size.

6. Summary, Conclusion and Outlook

We studied the convergence behavior of fixed point iterations for derivatives of impli-
cit functions. These recurrences are generated in a completely mechanical fashion from a
user supplied contractive fixed point solver for evaluatingthe implicit function. While the
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contractivity and thus the asymptotic convergence rate is inherited by the derived solvers
there is a certain time lag. This is not really surprising since the equations for the adjoints
ȳ and those for the feasible directionsẏ are dependent ony and both in turn impact the
second order adjoint equation for˙̄y. Mathematically we obtain Jordan blocks of size 2
for the double eigenvalues of the first derivative systems and of size 3 for the quadruple
eigenvalues of the second order adjoint system. One does notobtain blocks of size 4 since
the (3, 2) sub-block in the big Jacobian system vanishes identically.Otherwise it would
connect the two first derivative systems.

Generally if one were to iteratively evaluate derivatives of order d one can expect
that the relative errors compared to those of the underlyingfunction iteration grows like
kd, wherek is the iteration counter. In the context of constrained optimization one can
expect that the correct values of reduced gradients (4) and Hessians (14) are obtained
slower than feasibility so that optimality will be arrived at in the tangential fashion that
is familiar from SQP calculations [11, 12, 13]. In fact when the state equation only be
solved by a slowly convergent fixed point solver as we have assumed throughout it makes
little sense to apply an SQP type algorithms. Instead one will prefer a so-called one-shot
optimization strategy [14], where feasibility and optimality is achieved at the same time.
We are currently investigating a piggy-back optimization scheme, where a third iteration
updating the design variablesu on the basis of approximate reduced gradient information
is appended to (3).

A. Convergence Behavior of Linear Recurrences

In this section, we study the linear recurrences in (6) and (15) in detail. The transi-
tion matrices of both recurrences have a very particular structure and the following two
lemmas show the convergence behavior that is (generically)induced by these structures.

Lemma A.1 Consider a linear recurrence of the form

[

fk+1

f̄k+1

]

=

[

A 0
B AT

] [

fk

f̄k

]

,

whereA and B are real n × n matrices, and assume thatρ, the spectral radius ofA,
satisfies0 < ρ < 1. Let λ1, . . . , λr denote the eigenvalues ofA with |λi| = ρ. It is
assumed that eachλi is simple and satisfies the following conditions :

1) if λi is real thenxT
i Bxi 6= 0, wherexi is a right eigenvector belonging toλi.

2) if λi is complex thenxT
i,RBxi,R 6= xT

i,IBxI or xT
i,RBxi,I 6= −xT

i,IBxi,R, where
xi,R andxi,I are the real and imaginary parts of a right eigenvector belonging toλi.
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Let the columns ofY ∈ R
n×r form a basis for the space spanned by the left eigenvectors

y1, . . . , yr belonging toλ1, . . . , λr. Then there exist constantsC1, C2, C3, C4 > 0 so that

C1ρ
j ≤

‖fk+j‖

‖Y T fk‖
≤ C2ρ

j , C3jρ
j−1 ≤

‖f̄k+j‖

‖Y T fk‖
≤ C4jρ

j−1, (16)

provided that‖Y T fk‖ 6= 0.

Proof. If λi is real, there is an invertible real matrixT such that the first column ofT
is xi and

J̃ =

[

T−1 0
0 TT

] [

A 0
B AT

] [

T 0
0 T−T

]

=









λi 0 0 0
0 A22 0 0

B11 B12 λi 0
B21 B22 0 AT

22









,

whereB11 = xT
i Bxi. Sinceλi is simple, the matrixA22 − λiI is invertible. Setting

R1 = B12(A22 − λiI)−1 andR2 = (λiI − AT
22)

−1B21 yields

Ĵ = R−1J̃R =









λi 0 0 0
0 A22 0 0

B11 0 λi 0
0 B22 0 AT

22









with R =









1 0 0 0
0 I 0 0
0 R1 1 0

R2 0 0 I









. (17)

If yi denotes the first column ofT−T thenyi is a left eigenvector belonging toλi. This
implies|yT

i fk+j | = ρj |yT
i fk| while |xT

i f̄k+j | = jρj−1|B11y
T
i fk| + O(ρj).

If λi = λi,R + ıλi,I is complex there is an invertible real matrixT such that the first
two columns ofT arexi,R, xi,I and

J̃ =

[

T−1 0
0 TT

] [

A 0
B AT

] [

T 0
0 T−T

]

=









A11 0 0 0
0 A22 0 0

B11 B12 AT
11 0

B21 B22 0 AT
22









,

(18)
with

A11 =

[

λi,R λi,I

−λi,I λi,R

]

, B11 =

[

xT
i,RBxi,R xT

i,RBxi,I

xT
i,IBxi,R xT

i,IBxi,I

]

=:

[

b11 b12

b21 b22

]

.

If R1 andR2 denote the solutions of the Sylvester equationsR1A22 −A11R1 = B12 and
R2A

T
11−AT

22R2 = B12, respectively, then the same transformation as in (17) can be used
to eliminate the off-diagonal blocksB12 andB21 in (18), see also [3]. Decompose

B11 = V + W :=
1

2

[

b11 + b22 b12 − b21

b21 − b12 b11 + b22

]

+
1

2

[

b11 − b22 b12 + b21

b12 + b21 b22 − b11

]

.
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SinceV is in the range of the Sylvester operatorR 7→ RAT
11 − A11R, we can elimi-

nate this part by a similarity transformation and setB11 = W , which is under the given
assumptions different from zero. Then we haveB11A11 = AT

11B11 and therefore

[

A11 0
B11 AT

11

]j

=

[

Aj
11 0

j(AT
11)

j−1B11 (AT
11)

j

]

.

If yi,R andyi,I denote the first two columns ofT−T thenyi = yi,R + ıyi,I is a left eigen-
vector belonging toλi. This implies‖[yi,R, yi,I ]

T fk+j‖ = ρj‖[yi,R, yi,I ]
T fk‖, while

‖[xi,R, xi,I ]
T f̄k+j‖ = jρj−1‖B11‖ ‖[yi,R, yi,I ]

T fk‖ + O(ρj).

Altogether, this shows the existence of constantsC̃1, C̃2, C̃3, C̃4 > 0 such that

C̃1ρ
j‖Y T fk‖ ≤ ‖Y T fk+j‖ ≤ C̃2ρ

j‖Y T fk‖,

C̃3jρ
j−1‖Y T fk‖ ≤ ‖XT f̄k+j‖ ≤ C̃4jρ

j−1‖Y T fk‖,
(19)

where the columns ofX ∈ R
n×r form a basis forx1, . . . , xr. This concludes the proof

as‖fk+j‖ = ‖Y T fk+j‖+O(ρ̂j) and‖f̄k+j‖ = ‖XT f̄k+j‖+O(ρ̂j) for someρ̂ < ρ.

Several remarks are in order :

1) The second condition in Lemma A.1 can be written in the morecompact form
xH

i Bxi 6= 0 with xi = xi,R + ıxi,I .

2) If B is skew-symmetric then the two conditions in Lemma A.1 are always vio-

lated, independent of the eigenvectors ofA. Moreover,
[

A
B

0
AT

]

is a so called skew-

Hamiltonian matrix, which can always be put into block diagonal form
[

A
0

0
AT

]

by a

similarity transformation [1, 2]. Hence, the second inequality in (16) does not hold for
this case.

3) In the applications considered in this paper,B is symmetric and it is also reaso-
nable to assumeB to be positive definite. In this case, the two conditions in Lemma A.1
are always satisfied, independent of the eigenvectors ofA.

Lemma A.2 Consider a linear recurrence of the form








fk+1

f̄k+1

gk+1

ḡk+1









=









A 0 0 0
B AT 0 0
P 0 A 0
H PT B AT

















fk

f̄k

gk

ḡk









,

whereA,B,H, P are real n × n matrices. Assuming that the spectral radiusρ of A
satisfies0 < ρ < 1, letλ1, . . . , λr denote the eigenvalues ofA with |λi| = ρ. Moreover, it
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is assumed that eachλi is simple and satisfiesxH
i Bxi 6= 0, xH

i Hxi 6= 0, andxH
i Pyi 6= 0,

wherexi andyi are right and left eigenvectors belonging toλi.

Let the columns ofY ∈ R
n×r form a basis for the space spanned by the left eigen-

vectorsy1, . . . , yr belonging toλ1, . . . , λr. Then there exist constantsC1, . . . , C8 > 0 so
that (16) is satisfied, and additionally

C5jρ
j−1 ≤

‖gk+j‖

‖Y T fk‖
≤ C6jρ

j−1, C7j
2ρj−2 ≤

‖ḡk+j‖

‖Y T fk‖
≤ C8j

2ρj−2, (20)

provided that‖Y T fk‖ 6= 0.

Proof. If λi is real then by similar arguments as in the proof of Lemma A.1,we may
restrict ourselves to the iteration









yT
i fk+1

xT
i f̄k+1

yT
i gk+1

xT
i ḡk+1









=









λi 0 0 0
B11 λi 0 0
P11 0 λi 0
H11 P11 B11 λi

















yT
i fk

xT
i f̄k

yT
i gk

xT
i ḡk









,

whereB11 = xT
i Bxi, H11 = xT

i Hxi andP11 = yT
i Pxi. Since









λi 0 0 0
B11 λi 0 0
P11 0 λi 0
H11 P11 B11 λi









j

=

=









λj
i 0 0 0

jλj−1B11 λj
i 0 0

jλj−1P11 0 λj
i 0

jλj−1H11 + (j2 − j)λj−2H11P11 jλj−1P11 jλj−1B11 λj
i









for j > 1, we have

|yT
i fk+j | = ρj |yT

i fk|,

|xT
i f̄k+j | = jρj−1|B11y

T
i fk| + O(ρj),

|yT
i gk+j | = jρj−1|P11y

T
i fk| + O(ρj),

|xT
i ḡk+j | = j2ρj−2|H11P11y

T
i fk| + O(jρj),

The complex case is treated analogously. Altogether, thereexist constants̃C1, . . . , C̃8 > 0
so that (19) is satisfied, and additionally

C̃5jρ
j‖Y T fk‖ ≤ ‖Y T gk+j‖ ≤ C̃6jρ

j‖Y T fk‖,

C̃7j
2ρj−2‖Y T fk‖ ≤ ‖XT ḡk+j‖ ≤ C̃8j

2ρj−2‖Y T fk‖,
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which concludes the proof using the same argument that concludes the proof of Lemma A.1.
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