
A kinetic model for a two phases flow
simulation

M. Abdelwahed *, 1 R. Badé *, 2 H. Chaker *, 3

* LAMSIN-Ecole Nationale d’Ingenieurs de Tunis, BP: 37, 1002 Tunis, Tunisie
E-mails: 1 mohamed.abdelwahed@lamsin.rnu.tn, 2 rabe.bade@lamsin.rnu.tn,
3 hedia.chaker@enit.rnu.tn

RÉSUMÉ. Dans ce travail, nous nous intéressons à la modélisation et la simulation de l’effet d’injection
des bulles d’air dans un réservoir d’eau. La phase eau est modélisée par les équations de Navier-
Stokes dans lesquelles on intègre l’effet des bulles d’air par un terme source. Ce dernier dépend
d’une fonction densité de probabilité qui est décrite par une équation cinétique de type Vlasov. Pour
les aspects numériques, on utilise la méthode particulaire pour l’équation cinétique et la méthode des
éléments finis mixte pour les équations de Navier-Stokes. Enfin, nous présentons quelques résultats
numériques pour illuster les méthodes utilisée.

ABSTRACT. This work deals with the modelling and simulation of the air bubble injection effect in a
water reservoir. The water phase is modelled by a Navier-Stokes equation in which we integrate the
air bubble effect by a source term. This one depends on probability density function described by a
kinetic model. For the numerical aspects we used particular method for kinetic equation and mixed
finite elements method for Navier-Stokes equations. Finally, we present some numercial results to
illustrate the used method.

MOTS-CLÉS : Ecoulement diphasique, équation de Vlasov, équations de Navier-Stokes, méthode
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1. Introduction

This paper deals with the numerical simulation of a two phases water-air bubbles flow
occuring in aeration process of an eutrophication lake. The eutrophication is a complex
process caracterized by a progressive degradation of water quality due to the low level
of the dessolved oxygen concentration in water. Many restoration techniques against lake
eutrophication are known. Due to the high cost and the relative effeciency of some of
them, the dynamic aeration process is one of the most promesing techniques. It consists
in injecting air in the bottom of the lake in order to create some dynamics and aerate the
water. In this work we interested to the study of this generated two phases flow.

To obtain a physical and significant solution by numerical simulaion of the air injec-
tion phenomena, one has to consider a two phases flow model. The most useful model in
industrial applications is the two fluids one which is an Eulerian formulation. It consists
to consider each phase separatly as a single flow occupying the whole domain. The model
is constituted by the equations of conservation of mass, momentum and energy for each
phase, written in terms of averaged parameters and containing some phase interaction
terms representing the effects of one phase in the other [9]. Nevertheless, the derivation
of such model is usually tricky and involves a large number of unknowns, numerous phy-
sical parameters and coefficients, so that the numerical treatment of this model is usually
a difficult task. Another model can be used based on the lagrangian formulation in which
physical laws are easily included. In this model, each bubble is followed in its movement
individually in order to calculate its position and velocity. The interaction with water
phase modelled by Navier-Stokes equations is taken into account through a source term.
Writing a Lagrangian model is much easier than writing an Eulerian one.This model can
be used for a small number of bubbles [6]. But in our case, the studied two phases flow
involve more than 106 bubbles and it is of course impossible to compute so many bubbles
trajectories especially with the addition of the dimension of physical domain. Further-
more, we are not interested in the precise locations of bubbles but the global behaviour.
In this work, we used kinetic method to model the effect of bubbles on the water, this
method enables us to have the overall movement of the bubbles without following them
one by one. From a numerical point of view, the idea consists in considering numerical
bubble containing some “true bubbles” in the phase space. Provided that the velocity and
bubble distributions of the cloud are smooth enough, this method is efficient and enable
the use of the Lagrangian model.

We begin by introducing this model based on kinetic theory, then we presented the
water phase model based on Navier-Stokes equations and the coupling between the two
models. Sections 3 is devoted to the numerical study. A mixed finite elements method for
the computation of the water flow and the treatment of the interaction between the bubbles
and the water is proposed. Numerical results are shown in section 4.
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2. Modelling

As indicated in the introduction, we use the kinetic theory to model the movement of
the bubbles. In this theory, the unknown is a distribution function f(t, x, v) in the phase
space. This function represents the probability density of presence of particles at time t
around the position x and having a velocity next to v. If we don’t take into account the
interactions between particules, f is the solution of the Vlasov equation

{

∂f

∂t
+ v∇xf + ∇v .(Ff) = 0 for t ∈ [0, T ], x ∈ Ω et v ∈ R

2

f |t=0 = f0 in Ω × R
2

[1]

which Ω is the domain of study, T is the time of simulation, f0 is the initial distribution
and mpF represents the forces applied on particules. In our case we consider these forces
as follow :

mpF = gVB(ρG − ρL) − FD(v − uL) [2]

where the first term is the Archimede force and the second term is the drag force.
mp, g, VB , ρG, ρL, v, uL are respectively the bubble mass equal to ρGVB , the gravitational
force, the bubble volume, the air density, the water density, the bubble velocity and the
water velocity. The coefficient FD is equal to :

FD = CD

πR2

2
|uG − uL|

where R is the bubble radius and CD is the drag coefficient given by [5]

CD =
24

Re
(1+0.15 Re0.687) for Re ≤ 1000 and CD = 0.44 for Re > 1000

Re is the bubbles Reynolds number given by Re =
2|uG − uL|R

ν
; with ν the cinematic

viscosity of water. In this work, we assume that FD is constant.

The kinetic unknown f(t, x, v) remains nevertheless very difficult of access (from a
practical point of view) owing to the fact that it is defined in the phases space [0, T ] ×
R

2 × R
2 . To overcome this difficulty, one introduces the macroscopics quantities which

are now defined in physical space :

ρp(x, t) =

∫

R2

f(t, x, v) dv macroscopic density [3]

(ρu)p(x, t) =

∫

R2

vf(t, x, v) dv macroscopic velocity [4]
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The water flow is modelled by Navier-Stokes equations



















ρL(
∂uL

∂t
+ (uL.∇x)uL) + ∇xp − µL4xuL = =(f) in Ω × [0, T ]

∇x.uL = 0 in Ω × [0, T ]
uL|t=0 = u0 in Ω

[5]

where p and uL are respectively the pressure and the velocity of the water. The function

=(f) = −

∫

R2

mpFf dv [6]

represents the density of forces exerced by bubbles on the water with f the solution of (1)
and mpF given by (2).

In the following, we are interesting to the resolution of system (1).

Proposition 2.1 Let f0 ∈ C1(R2 × R
2), then the system

{

∂f

∂t
+ v∇xf + ∇v.(Ff) = 0

f(t0, x, v) = f0(x, v)
[7]

has a unique solution in C1([0, T ] × R
2 × R

2) given by

f(t, x, v) = f0(X(s; x, v, t), V (s; x, v, t))e2C(t−s)

where (X(s; x, v, t), V (s; x, v, t)) are respectively the position and the velocity at time t,
in the space phase of the particle which was at the position x0 with the velocity v0 at the
time s. �

The solution f is depending of (X, V ) which are solutions of the following system



































dX

dt
= V

dV

dt
= −C(V − uL) + g(1 −

ρL

ρG

)

X(s; x, v, s) = x
V (s; x, v, s) = v

[8]

where C =
3FD

4πR3ρG

40  -  ARIMA  -  Volume 5  -  2006

ARIMA  -  numéro spécial TAM TAM'05



Proposition 2.2 Let uL, ρL and ρG be given, then the system (8) has a unique solution
given by :

X(t; x0, v0, s) = x0 −
v0

C
(e−C(t−s) − 1) + [uL +

g

C
(1 −

ρL

ρG

][t − s]

[
g

C2
(1 −

ρL

ρG

) +
uL

C
][e−C(t−s) − 1]

[9]

V (t; x0, v0, s) = [v0 −
g

C
(1 −

ρL

ρG

) − uL]e−C(t−s) +
g

C
(1 −

ρL

ρG

) + uL [10]

Proof 2.1 We have
dV

dt
= −C(V − uL) + g(1 −

ρL

ρG

)

By the constant variation methods we have

V (t; x0, v0, s) = Ke−C(t−s) − (
g

C
(1 −

ρL

ρG

) + uL)e−C(t−s) +
g

C
(1 −

ρL

ρG

) + uL

By using the following initial condition

V (s; x0, v0, s) = K −
g

C
(1 −

ρL

ρG

) − uL +
g

C
(1 −

ρL

ρG

) + uL = v0

we obtain

V (t; x0, v0, s) = v0e
−C(t−s) − (

g

C
(1 −

ρL

ρG

) + uL)e−C(t−s) +
g

C
(1 −

ρL

ρG

) + uL

by using this equality in the first equation of (8) and integrating with respect to t we obtain

X(t; x0, v0, s) = x0 −
v0

C
(e−C(t−s) − 1) + ( g

C2 (1 −
ρL

ρG

) +
uL

C
)(e−C(t−s) − 1)

+(uL +
g

C
)(1 −

ρL

ρG

))(t − s) �

3. Numerical analysis

3.1. Particular method

The goal of the kinetic model is the computation of the probability density function f
solution of the system (1) which allows us to compute the macroscopic variables (3) and
(4). The procedure that we used in this work is based on the particular method. This me-
thod consists to approximate f by a sum of simple functions called numerical particules
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which represent a set of real particules. Then, the probability density f is approximated
by

f =
N

∑

k=1

fk

where N is the number of numerical bubbles and each fk is solution of (1)

The definition of this numerical bubble depends on the problem studied. In this work,
we used the function defined by Domolevo [7] :

fk = ξ(x, xk)E(v, gk , uk, ek) [11]

where x 7−→ ξ(x, xk) is a Gaussian function centered in xk and given by

ξ(x, xk) =
1

π
e−(x−xk)2

v 7−→ E(v, gk, uk) is a Gaussian function given by

E(v, gk, vk) = C1e
−

(v−vk)2

C2

where (xk , vk) is the solution of (8), C1 = gk

πv2
k

, C2 = v2
k and gk =

∫

R2

Edv = C1

√

C2π

Using particular method, we obtain

ρp =

N
∑

k=1

ρk =

N
∑

k=1

ξ(x, xk)

∫

R2

Edv =

N
∑

k=1

gkξ(x, xk)

(ρu)p =

N
∑

k=1

(ρu)k =

N
∑

k=1

(gv)kξ(x, xk)

[12]

where (gv)k =

∫

R2

Evdv

3.2. Numerical algorithm

3.2.1. Bubbles effects

Let T > 0 and [0, T ] be the time interval, T = K∆t, with ∆t = tn+1 − tn, n ∈ N,
the time step. The goal is the computation on each time step of : xn

k , vn
k , ρn

k , (ρu)n
k , un

L

and pn
L.

At time t = 0, we have :

f0(x, v) =
N

∑

k=1

f0
k (x0

k , v0
k) [13]
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where f0
k is given by

f0
k = ξ(x, x0

k)E(v, g0
k, v0

k)

Then we have ρ0
k and (ρu)0k, which gives ρp and (ρu)p at time t = 0.

For the following, Let known, xn
k , vn

k , ρn
k and (ρu)n

k at time t = tn, i.e. The goal is to
compute xn+1

k , vn+1
k , ρn+1

k and (ρu)n+1
k at time t = tn+1

Step 1 : xn+1
k , vn+1

k are computed by solving the following system



















dXk

dt
= Vk ,

dVk

dt
= −Ck(Vk − uLk) + g(1 −

ρL

ρG

)

Xk(tn; xn
k , vn

k , tn) = xn
k

Vk(tn; xn
k , vn

k , tn) = vn
k

[14]

Following the proposition (2.2) we find that

xn+1
k = Xk(tn+1; xn

k , vn
k , tn)

vn+1
k = Vk(tn+1; xn

k , vn
k , tn)

[15]

Remark 3.1 The quantity uLk which appears in the system (14) represents the velocity
of water in the neighbourhood of the numerical bubble. This velocity is given by :

uLk = λ1uLS1
Tj

+ λ2uLS2
Tj

+ λ3uLS3
Tj

Where uLSi
Tj

is the velocity of water at the node Si
Tj

of the grid, λj for j = 1, 2, 3 are

barycentric cordinates and Tj is the element containing the numerical bubble.

Step 2 : ρn+1
k , (ρu)n+1

k are given by calculating the following integrals :

ρn+1
k =

∫

R2

fk(tn+1, x, v) dv (ρu)n+1
k =

∫

R2

vfk(tn+1, x, v) dv [16]

which are given by the following resulte

Proposition 3.1 We have
ρn+1

k = ρn
k

and
(ρu)n+1

k = ρn
kVk(tn+1, xn

k , vn
k , tn)
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Proof 3.1 Following (12), we have

ρn+1
k =

∫

R2

fk(tn+1, x, v) dv =

∫

R

∫

R

fn
k (xn

k , vn
k )e2C4t dv1 dv2

=

∫

R

∫

R

fn
k (xn

0 , vn
0 )e2C4t( dvn

01e
−C4t)( dvn

02e
−C4t)

= ρn
k

which ensures the mass conservation.
By the same way we obtain

(ρu)n+1
k =

∫

R2

vfk(tn+1, x, v) dv

=

∫

R

∫

R

vfn
k (xn

k , vn
k )e2C4t dv1 dv2

Noting that C1 = −( g
C

(1− ρL

ρG
)+un

Lk)e−C4t+ gVB

C
(ρG−ρL)+un

Lk , the first component
is written as follow :

(ρu)n+1
k 1 =

∫

R

∫

R

(vn
k1e

−C4t + C1
1 )fn

k (xn
k1, v

n
k1)e

2C4t( dvn
k1e

−C4t)(dvn
k2e

−C4t)

=

∫

R

∫

R

vn
k1e

−C4tfn
k (xn

k1, v
n
k1) dvn

k1 dvn
k2

+C1
1

∫

R

∫

R

fn
k (xn

k1, v
n
k1) dvn

k1 dvn
k2

= ρn
k (un

k1e
−C4t + C1

1 ) = ρn
kVk1(t

n+1, xn
k1, v

n
k1, t

n)

We have also (ρu)n+1
k 2 = ρn

kVk2(t
n+1, xn

k2, v
n
k2, t

n)

Then
(ρu)n+1

k = ρn
kVk(tn+1, xn

k , vn
k , tn)

�

Step 3 : By using (6) and the particular approximation, we can compute the source terme
for a numerical particle k as follows :

=(f)n+1
k = −

∫

R2

(gVB(ρG − ρL) − FD(Vk − un
Lk))fn+1

k dv

= FD

∫

R2

Vkfn+1
k dv − (FDun

Lk + g(ρG − ρL)VB)

∫

R2

fn+1
k dv

= FD (ρu)n+1
k − (FDun

Lk + gVB(ρG − ρL))ρn+1
k
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so that the source term at each point of the mesh is given by :

=(f)n+1
Si

Tj

=
∑

k∈Tj

λ
Tj

k i=(f)n+1
k [17]

where λ
Tj

k i is the barycentric cordinate of the node Si
Tj

associated to the numerical particle
k contained in the triangle Tj .

=(f)n+1
Si

Tj

= FD

∑

k∈Tj

λ
Tj

k i(ρu)n+1
k −FD

∑

k∈Tj

λ
Tj

k iu
n
Lkρ

n+1
k −g(ρG−ρL)VB

∑

k∈Tj

λ
Tj

k iρ
n+1
k

which gives finally

=(f)n+1
Si

Tj

= FD(ρu)n+1
Si

Tj

−

(

FDun
LSi

Tj

+ gVB

(

ρG − ρL

)

)

ρn+1
Si

Tj

[18]

with

(ρu)n+1
Si

Tj

=
∑

k∈Tj

λ
Tj

k i(ρu)n+1
k

ρn+1
Si

Tj

=
∑

k∈Tj

λ
Tj

k iρ
n+1
k

ρn+1
Si

Tj

un
LSi

Tj

=
∑

k∈Tj

λ
Tj

k iu
n
Lkρn+1

k

[19]

3.2.2. Water flow

The water flow is discribed by (5). For time discretization we used the characteristics
method [10] which consists in giving an approximation of the total derivative of uL by

duL

dt
(., tn+1) =

∂uL

∂t
+ uL∇uL =

un+1
L − un

L ◦ χn

∆t
[20]

where χn = χ(x, tn+1; tn) is the position at time tn of the fluid particle which is at point
x at time tn+1 and χ is the solution of :

{

dχ

dt
= uL

χ(x, t; t) = x
[21]

Hence, by time discretization of (5), we obtain











1

4t
ρLun+1

L + ∇pn+1 − µ4uL
n+1 = Gn+1

∇ · un+1
L = 0

[22]
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where Gn+1 = =(f)n+1 +
1

∆t
ρLuL

n ◦ χn

=(f)n+1 is given by (6) at time tn+1.

By the characteristics method, the problem (5) is equivalent on each time step to a
Quasi-Stokes problem [2] :



















1

4t
ρLuL + ∇p − µ4uL = G in Ω

∇ · uL = 0 in Ω

uL = ud on Γ

[23]

The variational formulation of the above problem is given by















Find (uL, p) ∈ H1
0 (Ω)

2
× L2

0(Ω) such that

a(uL, v) + b(v, p) = G(v) ∀ v ∈ H1
0 (Ω)

2

b(uL, q) = 0 ∀ q ∈ L2
0(Ω)

[24]

where

L2
0(Ω) = {f ∈ L2(Ω) |

∫

Ω

f dΩ = 0}

and
H1

0 (Ω) = {v ∈ L2(Ω), ∇v ∈ L2(Ω) et v| Γ = 0}

with

a(uL, v) =
ρL

4t

∫

Ω

uLv dΩ + µ

∫

Ω

∇uL ∇v dΩ [25]

b(v, p) = −

∫

Ω

p divv dΩ [26]

G(v) =

∫

Ω

G v dΩ [27]

Uniquess and existence of the solution of (24) can be found for example in [1].

For the space discrete problem, we used the ‘P1+bulle/P1’ mixed finite element me-
thod where the degree of freedom are the three nodes and the center of gravity of the
triangle for the velocity and the three nodes for the pressure [3].

The bubble function associated to a triangle K is given by

bK =

3
∏

i=1

λK
i
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where λK
i are the barycentric cordinates of K. It’s a polynom of degree 3 which is equal

to 1
27 at the center of gravity of K and vanishes at each of its vertices.

Next, we define

Bh = {wh ∈ C0(Ω)
2
; ∀K ∈ Th , wh|K = ζ bK , ζ ∈ R

2}

Yh = {y ∈ C(Ω) ; ∀K ∈ Th , y|K ∈ P 1}

where P 1 denotes the space of polynoms with degree 1.
We set

Wh = Y 2
h ∩ H1

0 (Ω)
2

Xh = Wh ⊕ Bh

Mh = Yh ∩ L2
0(Ω)

The space approximation of problem (24) is














Find uh ∈ Xh , ph ∈ Mh solution of

a(uh, vh) + b(vh, ph) = Gh(vh) ∀ vh ∈ Xh

b(uh, qh) = 0 ∀ qh ∈ Mh

[28]

where

Gh(v) =

∫

Ω

(

=(f)h +
ρL

∆t
un

h ◦ χn
h

)

v dΩ [29]

with =(f)h is given by (18).

The problem (28) is equivalent to the following linear system

Ahuh + Bhph = Gh [30]

BT
h uh = 0 [31]

in which

– The matrix Ah is computed from the bilinear form a(., .) and it takes the Dirichlet
boundary conditions into account.

– The matrix Bh is computed from the form b(., .).

– The vector uh represents the values of the velocity at the interior nodes of the finite
element related to the discrete space Xh.

– The vector ph represents the values of the pressure at the nodes of the finite elements
related to the discrete space Lh.

– Gh is associated to the second member (29).
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The algorithm used to solve (30)-(31) consists in writing from (30)

uh = A−1
h [fh − Bhph] [32]

and then using (31) to get
Nhph = BT

h A−1
h fh [33]

where Nh = BT
h A−1

h Bh is a symetric defined positive matrix.

A conjugate gradient algorithm with a Cahouet-Chabard preconditionner [4] is used
to solve (33). Once the convergence is reached for the pressure, the velocity is easily
retrieved from (32).

4. Numerical results

Numerical simulations have been carried out on a 2D cutting section of width 250m
and average height of 20m. The injector is placed at 17m depth, it measures 12m and has
100 holes of diameter 1cm. For the boundary conditions, we considered the wind velocity
equal to 3m/s, then the velcity us at the surface of the lake is given by [8]

us =

√

Cvρ

ρL

uv

where

Cv =

{

1.23 10−3 if uv ≤ 4m/s
(0.96 + (0.41uv))10−3 if uv > 4m/s

uv is the wind velocity at 10m of the water surface, ρ is the air density. Then, in our case,
us = 0.1m/s.

The used mesh contains 7485 nodes and 14320 elements figure (1).
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Figure 1. 2D cross section mesh
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Several numerical experiments have been carried out. We present in this work only
selected results corresponding to one simulation scenario.

We present in figures 2-9 the isovalues of the water velocity for differents time simu-
lations, from the begining to the stabilization of the process. These results show the effect
of the injected bubbles on the water flow and confirm that the mixing is located in the
ascending zone at the injector.
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Figure 2. time=10s Figure 3. time=1mn

Figure 4. time=1mn 30s Figure 5. time=2mn

Figure 6. time=3mn Figure 7. time=5mn

Figure 8. time=10mn Figure 9. time=15mn

We present in figures 10-14 the isovalues of the macroscopic density ρp of the bubbles
which confirm that the created dynamic is located where the bubbles are present. Then we
can conclude that the the best aerated zone is located in the separating domain between
the injector and the free surface. The figure 15 represents the macroscopic velocity field
of bubbles.
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4.0.3. Isovalues of macroscopic density of bubbles
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We present in figures 16-19 the isovalues of the water velocity for differents bubbles
injection velocity. We remark that more the velocity increase, more the effect is important
.
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Figure 16. Vinj=0.4m/s Figure 17. Vinj=2m/s

Figure 18. Vinj=6m/s Figure 19. Vinj=10m/s
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5. Conclusion

We presented in this work a coupled Navier-Stokes-Vlasov model simulating the ae-
ration process in an eutrophised lake. A numerical analysis of the presented model is
achieved using particular method for the kinetic model, the characteristics method for
time discretization and mixed finite element method for the space approximation for the
Navier-Stokes equations. The obtained numerical results on a 2D demain showed high
qualitatives results. This encourages us to extend this work to the 3D case ...
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