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RÉSUMÉ. L’ objectif de ce travail est de fournir un modèle mathématique stochastique qui décrit
l’agrégation chez le phytoplancton, à partir de la modélisation d’un système de taille grande mais finie
de cellules de phytoplancton sujettes à une dispersion aléatoire, des interactions spatiales qui donnent
aux mouvements des cellules une certaine dépendance et un branchement (division cellulaire ou
mort). Nous présentons le passage de la description microscopique à une description macroscopique,
lorsque le nombre de cellules devient très grand (grandes populations de phytoplancton). La limite du
système est une extension du superprocessus de Dawson-Watanabe : c’est un superprocessus avec
interactions qui peut être décrit par une équation aux dérivées partielles stochastique non linéaire.

ABSTRACT. The aim of this work is to provide a stochastic mathematical model of aggregation in
phytoplankton, from the point of view of modelling a system of a large but finite number of phytoplank-
ton cells that are subject to random dispersal, mutual interactions allowing the cell motions some
dependance and branching (cell division or death). We present the passage from the ”microscopic”
description to the ”macroscopic” one, when the initial number of cells tends to infinity (large phyto-
plankton populations). The limit of the system is an extension of the Dawson-Watanabe superpro-
cess: it is a superprocess with spatial interactions which can be described by a nonlinear stochastic
partial differential equation.

MOTS-CLÉS : Agrégation du phytoplancton, Modèle Lagrangien, Processus de branchement diffu-
sion interactif, Problème de martingales, Convergence faible, Superprocessus de Dawson-Watanabe,
Equation aux dérivées partielles stochastique.
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1. Introduction

Phytoplankon play a key role in the marine ecology. These microscopic single-celled
organisms have the ability of forming large aggregates which provide food for a tremen-
dous variety of marine animals, including zooplankton (microscopic animals), bivalve
molluscan shellfish (mussels, oysters, scallops and clams), and small fish (such as ancho-
vies and sardines). These animals, in turn, provide food for other animals, including crabs,
fish, marine birds, marine mammals and humans. Thus, spatial and temporal patterns of
phytoplankton are very important to fisheries and the mathematical modelling of phyto-
plankton dynamics is a very interesting subject both for biologists and mathematicians.

Despite extensive field evidence for aggregate formation ([2],[14],[19]), the factors re-
gulating aggregation are still unclear. Coagulation theory has more recently been applied
to describe aggregation of marine aggregates and specifically phytoplankton aggregation.
According to coagulation theory, aggregation of phytoplankton results from the repetitive
collision of cells and their subsequent attachment to form larger aggregates. Brownian
motion, fluid shear may all cause collision. Although some laboratory experiments, me-
socosm experiments and field observations have demonstrated that coagulation theory at
times provides an accurate description of phytoplankton aggregate formation (see [18]),
the factors most critical to predicting aggregation in nature using coagulation theory re-
main unclear ([3],[6]).

In contrast with the coagulation theory which generally bases on pure physical pro-
cesses, many studies of marine aggregates at small scales emphasize biological mecha-
nisms for the phytoplankton aggregate formation. Indeed, some planktonic species (algae,
bacteria, dinoflagellates) have chemosensory abilities that would be useless if the ocean
was chemically homogeneous ( [13],[26],[27]). Dinoflagellates and more generally motile
algae are known to leak organic matter such as amino-acids and sugar into water [21] and
this leakage creates a zone around individual cells called the ” phycosphere”, where ex-
tracellular products exist in enhanced concentrations over background [4]. The chemosen-
sory responses allow dinoflagellates and algae that are present in a suitable neighborhood
to find the leaky cells and to stay near them forming aggregates. Experiments studies on
the chemosensory capabilities in dinoflagellates and motile algae ([13],[27]) show that
these organisms are attracted to many varieties of amino-acids, organic compounds and
sugar but it has been reported that high concentrations of these products inhibit the che-
mosensory behavior.

This work addresses the issue of modelling phytoplankton aggregation. Our model-
ling strategy is to start with a microscopic Lagrangian description of the evolution ofN
phytoplankton cells and then we pass to a continuous limit describing the spatial distribu-
tion of the population. The Lagrangian model provides an explanation of the aggregation
behavior in phytoplankton cells in terms of attraction mechanisms among cells due to the
chemosensory behavior, random branching (cell division and natural death), in addition
to individual random dispersals described by independent Brownian motions. The advan-
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tage of this approach is to catch the main characteristics of the individual dynamics at
small scales that are responsible at larger scale for the formation of aggregating patterns.

In [24], the authors have investigated the modelling of spatially structured populations
with fixed sizes. Here in this paper, we add branching mechanisms for our interacting
particle system, that is particles can divide into two or die. So, our model can be conside-
red as a generalization of the class of models reviewed in [24]. We do not consider other
processes for the planktonic particles such us growth, gravitational sinking or grazing by
higher animals. We stress on the fact that, owing to the branching, the technique proposed
in [24] for the derivation of the continuum model fails in our situation. So, to derive the
limit, we use the approach in [22] based on martingale properties of a sequence of approxi-
mating interacting branching diffusion processes. The limit obtained is a ” superprocess
with spatial interactions” which is an extension of the Dawson-Watanabe superprocess.

The paper is organized as follows : in the next section, we describe the Lagran-
gian aggregation model of phytoplankton cells. In section3, we present the interacting
branching-diffusion process to describe the spatial and temporal distribution of phyto-
plankton cells. We set the martingale problem associated to this process and characterize
the latter as the unique solution to this martingale problem.

Section4 is devoted to the limit of the system when the initial number of particles
tends to infinity. Using the "Feller rescaling", we prove the weak convergence of the
rescaled interacting branching-diffusion process to a "superprocess with interactions" and
state the nonlinear stochastic partial differential equation satisfied by this superprocess.
At the end of this section, we derive the heuristic nonlinear stochastic partial differential
equation that should be satisfied by the density (if it exists) of the limiting process.

Finally, some remarks about notations and hypotheses in this paper :
−C2

b (R) is the space of bounded functions of classC2 onR, endowed with the supremum
norm||.||∞.
− MF (R) is the space of non negative finite measures onR, endowed with the weak
topology and〈 , 〉 is the duality bracket. That is, a sequence of measures{µn} in MF (R)
converges (weakly) to the measureµ asn→∞ if, for eachψ ∈Cb(R), 〈µn, ψ〉 → 〈µ, ψ〉
asn→∞.
− For any metric spaceS, we denote byD([0,∞[,S) the space of càdlàg (right continuous
with left limits) mappings from[0,∞[ to S.
− B(R) is theσ-field of Borel sets ofR.
− When taking the expectation of a function of a Markov process or the distribution of a
process, we use a subscript to specify the initial value of the process.

2. Lagrangian aggregation model

Let us considerN (N ∈ N) phytoplankton cells, each of them having at some time
a certain position in the spaceR. Here,R represents the vertical axis oriented downward
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from the surface to the seabed. The ith cell in the system is described by its positionXi

and its massm.
The positions of theN cells in the system evolve according to :

dXi(t) =
N∑

j=1,j 6=i

K(Xi(t), Xj(t)) dt +
√

2D dBi(t) i = 1, . . . , N, [1]

whereBi(t), i = 1, ..., N are independentR-valued Brownian motions. The dispersion
term in (1) expresses the vertical diffusion of phytoplankton cells in water, which is simi-
lar to molecular diffusion ([5],[15]) andD is the coefficient of diffusion. The drift term
indicates the attractive force exerted on theith cell due to the interaction of this cell with
all others in the system.

To describe interactions between phytoplankton cells, we propose the ideas involving
non-uniformity of the concentration fields around organisms and consider planktonic spe-
cies having chemosensory abilities (dinoflagellates, motile algae) and hence some know-
ledge about their neighbors. However, each cell has a limited knowledge of the spatial
distribution of its neighbors because it is sensory limited ([5],[16],[17])).
So, to model interactions between phytoplankton cells, we may take into account these
biological considerations :

1) A cell in positionx interacts with a cell in positiony, if the distance|x− y| is
betweenr0 andrmax (r0 andrmax belong toR∗+, r0 ¿ rmax).

2) If the distance|x− y| > rmax, the two cells do not interact because they cannot
perceive differences in concentration at a distance overrmax.

3) If the distance|x− y| < r0, the cell inx stops to be attracted to the cell in
positiony because of the largest concentration in the closest vicinity ofy [13].

Therefore, we define pair interaction forces as follows :
the interaction between two cells at positionsx andy depends on the distance between
the two cells and is determined by :

K(x, y) = mFa(x− y)

whereFa is an attractive force defined by :

Fa(z) =
{

− |z|2 + (r0 + rmax) |z| − r0rmax if r0 < |z| < rmax

0 otherwise
.

The sum
N∑

j=1,j 6=i

K(Xi(t), Xj(t)) in (1) represents the effect of all cells on theith cell

located inXi(t) at timet.
The cells also branch. In phytoplankton, the most common mean of reproduction is

asexual cell division (mitosis). This process splits the cell into two identical copies. The-
refore, we describe the dynamics of the system as follows :
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a phytoplankton cell performs a motion in some region inR, according equation (1). In a
time interval[t, t + h], the cell has a probabilityµh + o(h) of branching : it either splits

into 2 identical cells or it dies out with probability
1
2

each. If it splits, the2 new cells

begin their life at the branching point. They continue their motion following equation (1)
until the time themselves branch and so on.

We suppose that the initial configuration of the system is described by a measure
ν ∈ MF (R) and that the initial number of cells,N, is large but finite.

3. Spatial and temporal distribution of a finite system of
phytoplankton cells

The collective behavior of phytoplankton cells at timet is described by the empirical
random measure process{ηt} (the interacting branching-diffusion process) onR :

ηt =
N(t)∑

i=1

δXi(t),

whereδXi(t) is the Dirac measure at the locationXi(t) ∈ R of the celli at timet and
N(t) is the total number of alive cells in the system at timet. For everyB ∈ B(R), ηt(B)
counts the number of alive cells present inB at timet.
In [8], we show that the infinitesimal generator of the interacting branching-diffusion
process{ηt} which we denote by£, can be written as :

£Fψ(ε) = £dFψ(ε) + £bFψ(ε)

with

£dFψ(ε) = 〈ε, Dψ′′ + m(Fa ∗ ε)ψ′

ψ
〉 exp〈ε, log ψ〉

and

£bFψ(ε) = 〈ε, µ[Φ(ψ)− ψ]
ψ

〉 exp〈ε, log ψ〉

whereΦ is the generating function of the offspring distribution(Φ(s) = 1
2 + 1

2s2),
Fψ(ε) = exp〈ε, log ψ〉 with ε ∈ MF (R), ψ ∈ C2

b (R) and‖ψ‖∞ ≤ 1. The term£d

is relative to the spatial motion dynamics and£b is induced by the branching dynamics.
The domain of£ is all such functionsFψ for which£Fψ is bounded.

Our approach is to characterize the distribution of the process{ηt} as a solution to cer-
tain martingale problem. Martingale characterizations are very useful techniques which
make good mathematical sense in situations where for example stochastic partial dif-
ferential equation technology breaks down. Furthermore, they are well suited to weak
convergence methods. We recall :
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Definition 1 ( Martingale Problem)
We say that a stochastic process{ε(t)}t, or equivalently its distributionPπ, solves the

(£, π) martingale problem(where π ∈ MF (R)) if :

Pπ[ε(0) = π] = 1

and

F (ε(t))− F (ε(0))−
t∫

0

£F (ε(s))ds

is aPπ -martingale for any functionF ∈ D(£).

Now, we can state the main result on the characterization of the process{ηt} :

Theorem 1 (Martingale characterization)
1) The process{ηt}t with initial measureν is the unique solution of the martingale pro-
blem(£, ν) : that is, the lawPν of {ηt} satisfies :
∀ψ > 0, ψ ∈ C2

b (R) and‖ψ‖∞ ≤ 1

Fψ(ηt)− Fψ(ν)−
t∫

0

£Fψ(ηs)ds

is aPν−martingale.
2) ∀ϕ > 0, ϕ ∈ C2

b (R)

Mt(ϕ)
4
= 〈ηt, ϕ〉 − 〈η0, ϕ〉 −

t∫

0

〈ηs, Dϕ′′ + m(Fa ∗ ε)ϕ′〉ds [2]

is aPν−martingale. Moreover, the quadratic variation ofMt(ϕ) is

〈M(ϕ)〉t =

t∫

0

〈ηs, 2D(ϕ′)2 + 2µ
Φ(exp(−ϕ))− exp(−ϕ)

exp(−ϕ)
〉ds. [3]

Proof.
1) Since{ηt}t is a Markov process, it is the unique solution of the martingale problem
for its generator£ ( See [11], chap 4).
2) Letϕ ∈ C2

b (R) > 0 and takeψ = exp(−θϕ) for some real constantθ ≥ 0. Since(ηt)t

is a solution of the martingale problem(£, ν), it is easy to check that :

Eν [Fψ(ηt+u)− Fψ(ηt)−
t+u∫

t

£Fψ(ηs)ds/t] = 0
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with
Fψ(ηt) = exp(〈ηt, log ψ〉) = exp(−〈ηt, θϕ〉).

Using that

£Fψ(ηs) = 〈ηs,−Dθϕ′′ + Dθ2(ϕ′)2 −mθ(Fa ∗ ηs)ϕ′

+µ
Φ(exp(−ϕ))− exp(−ϕ)

exp(−ϕ)
〉 exp(−〈ηs, θϕ〉),

differentiating with respect toθ and settingθ = 0, we obtain :

Eν [〈ηt+u, ϕ〉 − 〈ηt, ϕ〉 −
t+u∫

t

〈ηs, Dϕ′′ + m(Fa ∗ ηs)ϕ
′〉ds/t] = 0,

that is (2) is aPν-martingale and〈ηt, ϕ〉 is a semimartingale.
Applying Itô’s formula, we have thatexp(−〈ηt, ϕ〉) is a semimartingale and

exp(−〈ηt, ϕ〉)− exp(−〈ν, ϕ〉) +
t∫
0

exp(−〈ηs, ϕ〉)〈ηs, Dϕ′′ + m(Fa ∗ ηs)ϕ′〉ds

− 1
2

t∫
0

exp(−〈ηs, ϕ〉)d〈M(ϕ)〉s
[4]

is aPν−martingale.
On an other hand,

exp(−〈ηt, ϕ〉)− exp(−〈ν, ϕ〉) +
t∫
0

exp(−〈ηs, ϕ〉)〈ηs, Dϕ′′ −D(ϕ′)2

+m(Fa ∗ ηs)ϕ′ − µ
Φ(exp(−ϕ))− exp(−ϕ)

exp(−ϕ)
〉ds

[5]

is aPν-martingale. Equating(4) with (5) leads to (3), that gives the second assertion of
the Theorem.

4. Weak convergence and limit of the system of particles

Now, we show that the empirical process{ηt} when it is renormalized, converges to
a measure-valued process which is an extension of the Dawson-Watanabe superprocess
[10].

The idea to pass to the limit consists in applying the Feller rescaling [12] : the number
of particles, their mass and the branching rate are rescaled by considering that there are a

very large numberN of particles, each of mass
1
N

and of lifetime
1

Nµ
.
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Let {Y (n)
. }n≥1 be the sequence of rescaled processes and consider at thenth stage an

initial measure consisting ofNn cells each of whom is assigned a mass
1

Nn
and has an

independent exponential lifetime of parameterµn = Nnµ, during which it moves accor-
ding equation (1). At the end of its lifetime, it dies and leaves behind, at the location where
it died, a random number of offspring (0 or 2) determined by the generating functionΦ.

Suppose that the initial condition{Y (n)
0 }n≥1 is convergent.

We prove the following convergence result :

Theorem 2 If Nn −→ +∞ asn −→ +∞ , the sequence of rescaled processes{Y (n)
. }n≥1

converges weakly (in distribution) in the spaceD([0, +∞[,MF (R)) to a measure-valued
continuous process{Yt, t ≥ 0}, whose distributionP satisfies the following martingale
problem :
∀ϕ ∈ C2

b (R),

Mt(ϕ)
4
= 〈Yt, ϕ〉 − 〈Y0, ϕ〉 −

t∫

0

〈Ys, Dϕ′′ + (Fa ∗ ηs)ϕ
′〉ds [6]

is aP -martingale with the quadratic variation

〈M(ϕ)〉t = µ

t∫

0

〈Ys, ϕ
2〉ds. [7]

Proof. To prove weak convergence for the sequence of rescaled processes{Y (n)
. }n≥1 in

D([0, +∞[,MF (R)), we may show tightness of{Y (n)
. }n≥1 in D([0, +∞[,MF (R)) and

then uniqueness of its limit points.
Part1 : Tightness.
By Theorem1.18 in ([10], page11), we have just to show that the sequence{〈Y (n)

. , ϕ〉}n≥1

is tight in D([0, +∞[,R) for any functionϕ in a dense subset ofC+
b (R), provided that

the following compact containment condition holds :
∀ ε > 0, ∀ T > 0, ∃ a compact setΓε,T ⊂MF (R) such that :

inf
n

P [Y (n)
t ∈ Γε,T for 0 ≤ t ≤ T ] ≥ 1− ε.

We show that the latter is satisfied when we replaceR by its compactificationR =
R ∪ {∞}.
The compact containment of{Y (n)

. }n≥1 in MF (R) follows from the compact contain-

ment of{〈Y (n)
. , 1〉}n≥1 in R. Indeed, as〈Y (n)

t , 1〉 is a martingale for eachn, we have :

P [ sup
0≤t≤T

〈Y (n)
t , 1〉 > K] ≤ 1

K
E〈1, Y

(n)
0 〉
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Since the initial measures(Y (n)
0 ) are convergent,1K E〈1, Y

(n)
0 〉 tends to0 uniformly in n

asK −→∞. This implies that for each fixedT > 0, givenε > 0, ∃K > 0 such that

P [ sup
0≤t≤T

〈Y (n)
t , 1〉 ≤ K] ≥ 1− ε.

We are only concerned with boundedϕ, so the tightness of〈Y (n)
t , ϕ〉 for fixed t follows

a fortiori.
Now, we use the Aldous-Rebolledo criterion to show the tightness of{〈Y (n)

. , ϕ〉}n in
D([0, +∞[,R) (see Theorem1.17 in [10]).
For eachn ∈ N, we consider a positive stopping timeτn bounded by some finite constant
T and letε > 0. We must check that for any sequence(δn) such thatδn → 0 asn →∞,

lim
n−→∞

En(

τn+δn∫

τn

∣∣∣∣〈Y (n)
s , Dϕ′′ +

1
Nn

(Fa ∗ Y (n)
s )ϕ′〉

∣∣∣∣ ds) = 0 [8]

and

lim
n−→∞

En(

τn+δn∫

τn

∣∣∣∣〈Y (n)
s , 2D(ϕ′)2 + 2µ

Φ(exp(−ϕ))− exp(−ϕ)
exp(−ϕ)

〉
∣∣∣∣ ds) = 0. [9]

Thanks to the Strong Markov property satisfied by the process{Y (n)
s }, We show that :

En(
τn+δn∫

τn

∣∣∣∣〈Y
(n)
s , Dϕ′′ +

1
Nn

(Fa ∗ Y
(n)
s )ϕ′〉

∣∣∣∣ ds)

≤ δn(K1En〈Y (n)
τn , 1〉+ K2En〈Y (n)

τn , 1〉2)
whereK1 andK2 are real constants independent ofn. On another hand, we can see that :

〈Y (n)
t , 1〉 = 〈Y (n)

0 , 1〉+ Mn
t (1)

whereMn
t (1) is a martingale with quadratic variation

〈Mn(1)〉t =

t∫

0

〈Y (n)
s , 2µ

Φ(exp(−1))− exp(−1)
exp(−1)

〉ds.

Hence
En〈Y (n)

τn
, 1〉 = En〈Y (n)

0 , 1〉.
Using Itô’s formula, we have :

En〈Y (n)
τn

, 1〉2 ≤ En〈Y (n)
0 , 1〉2 + K3En〈Y (n)

0 , 1〉
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whereK3 is a real constant independent ofn. Consequently, ifδn → 0 asn → 0, then
we obtain(8). The same techniques of calculation show that(9) holds.
The tightness of the sequence{Y (n)

. }n≥1 in D([0, +∞[,MF (R)) is proved.
Using Prohorov theorem, we conclude that the sequence{Y (n)

. }n≥1 is relatively compact
in the weak topology onMF (R).
Part2 : Identification of limit points of the sequence{Y (n)

. }n≥1.

We consider a sequence of test functions of the formfn = 1 − ϕ

Nn
with ϕ ≥ 0, ϕ ∈

C2
b (R) and apply the martingale characterization toNnY (n)

. . Using Taylor’s theorem, the
expression for the martingale becomes :

exp〈Y (n)
t , Nn log(1− ϕ

Nn
)〉 − exp〈Y (n)

0 , Nn log(1− ϕ

Nn
)〉

−
t+u∫
t

〈Y (n)
s ,

−Dϕ′′ − (Fa ∗ Y
(n)
s )ϕ′

1− ϕ/Nn
+

1
2µϕ2

1− ϕ/Nn
〉 exp〈Y (n)

s , Nn log(1− ϕ

Nn
)〉ds

[10]
is aP (n)-martingale. LettingNn −→ +∞ whenn tends to infinity,(10) gives that for
any limit pointY. of Y (n)

. :

exp(−〈Yt, ϕ〉)− exp(−〈Y0, ϕ〉)−
t∫

0

〈Ys,−Dϕ′′ − (Fa ∗ Ys)ϕ′ + µ
ϕ2

2
〉ds

should be a martingale.
To justify this conclusion, we use Theorem8.10 in ([11], page234). We may show that :
∀ 0 ≤ t1 ≤ ... ≤ tk ≤ t < t + u, h1, . . . , hk ∈ Cb(MF (R)), ϕ ≥ 0 andϕ ∈ C2

b (R)

limn−→∞E[(exp(−〈Y (n)
t+u, ϕ〉)− exp(−〈Y (n)

t , ϕ〉)−
t+u∫
t

〈Y (n)
s ,−Dϕ′′ − (Fa ∗ Y

(n)
s )ϕ′

+µ
ϕ2

2
〉)

k∏
i=1

hi(Y
(n)
ti

)] = 0.

[11]
Since all thehi are bounded and using the calculation above to apply the Aldous-Rebolledo
criterion, we can easily obtain(11) by the Dominated Convergence Theorem.
It follows that a limit point process{Yt, t ≥ 0} satisfies :
∀ϕ ≥ 0, ϕ ∈ C2

b (R), 〈Yt, ϕ〉 is a semimartingale and

Mt(ϕ)
4
= 〈Yt, ϕ〉 − 〈Y0, ϕ〉 −

t∫
0

〈Ys, Dϕ′′ + (Fa ∗ Ys)ϕ′〉ds

is a martingale with〈M(ϕ)〉t = µ
t∫
0

〈Ys, ϕ
2〉ds.

Part3 : Uniqueness of the limit points.
To prove that the solution to this martingale problem is unique, we appeal to Theorem
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V.5.1 in ([25], page310) based on the techniques in ( [7], page201 and [20]). So we only
have to show that the functionFa ∗ µ is Lipschitz in the sense of Perkins [25], that is, if :

LIP (R) = {ϕ : R→ R : ‖ϕ‖∞ ≤ 1 and |ϕ(x)− ϕ(y)| ≤ |x− y| ,∀x, y ∈ R}

andd denotes the Wasserstein metric onMF (R) :

d(µ, ν) = sup{|〈µ, ϕ〉 − 〈ν, ϕ〉| : ϕ ∈ LIP (R)},

we have to show that there exists a non-decreasing function L :R+ −→ R+ such that :

|(Fa ∗ µ)(x)− (Fa ∗ ν)(y)| ≤ L(µ(1) ∨ ν(1))[d(µ, ν) + |x− y|],∀x, y ∈ R.

Let x, x′ ∈ R etµ, µ′ ∈ MF (R), we have that

|(Fa ∗ µ)(x)− (Fa ∗ µ′)(x′)| ≤
∣∣∫
R Fa(x− y)µ(dy)− ∫

R Fa(x− y)µ′(dy)
∣∣

+
∣∣∫
R Fa(x− y)µ′(dy)− ∫

R Fa(x′ − y)µ′(dy)
∣∣

Let us chooseK1 large so that

∥∥∥∥
Fa

K1

∥∥∥∥
∞
≤ 1. SinceFa is bounded and Lipschitz conti-

nuous inR (see [8]), then
Fa

K1
∈ LIP (R).

We obtain :

|(Fa ∗ µ)(x)− (Fa ∗ µ′)(x′)| ≤ K[1 + µ(1) ∨ µ′(1)](d(µ, µ′) + |x− x′|)

whereK is a constant. We takeL(r) = K(1+ r), that completes the proof of uniqueness
for the martingale problem (6).
Hence, the sequence of rescaled processes{Y (n)

t , t ≥ 0}n≥1 converges weakly to the
process{Yt, t ≥ 0} which is the unique solution to the martingale problem (6).
Since we have worked in the spaceMF (R) to guarantee the compact containment condi-
tion, we have to check that the limit of the sequence of processes{Y (n)

. }n≥1 takes its
values in the spaceMF (R), that is no mass escaped to infinity when we passed to the
limit. This is done by using a similar technique to that in [22].

From (6) and (7), we recognize that{Yt, t ≥ 0} is a generalization of the Dawson-
Watanabe superprocess.

5. From a martingale characterization to a stochastic partial
differential equation

Our first result in this direction :
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Theorem 3 The process{Yt, t ≥ 0} is solution of the non linear stochastic differential
equation in a space of measures :

dYt = D
d2

dx2
Ytdt− d

dx
[Yt(Fa ∗ Yt)]dt + dMt,

whereMt is a continuous martingale measure (in the sense of [28]), with covariance
measureµYs(dx)ds.

Proof. The proof of this theorem is based on the arguments used in [22]. We would like
to represent the martingale termMt(ϕ) in (6) as a stochastic integral with respect to a
white noise. We use the extension result in ([23], Proposition 2.6), and extend the map
ϕ −→ M.(ϕ) from C2

b (R) to L2(γ), whereγ is the measure onR defined by :

γ(dx) = E




T∫

0

µYs(dx)ds


 .

This defines a continuous finite orthogonal martingale measure. Hence, there exists a
random predictible real-valued measureI on B([0, T ]) ⊗ F , defined by〈M(A)〉t =
t∫
0

∫
A

I(dx, ds) P-p.s,∀t > 0. Moreover, we can construct a stochastic integral with res-

pect toM , for all functionf such that :E

[
t∫
0

∫
A

f2(s, , x)I(dx, ds)
]

< ∞. This stochastic

integral is denoted by
t∫
0

∫
A

f(s, x)M(dx, ds).

Heuristically, if we suppose that for everyt > 0, Yt is absolutely continuous with
respect to the Lebesgue measure onR, then the densityf(t, x) of Yt will satisfy :

Theorem 4 The densityf(t, x) of Yt, with respect to the Lebesgue measure, is a weak
solution to the following SPDE :

∂f(t, x)
∂t

= D
∂2f(t, x)

∂x2
− ∂

∂x
[f(t, x)(Fa ∗ f(t, .))(x)] +

√
µf(t, x)Ẇ (t, x), [12]

with Ẇ defined by :
W (dt, dx) = Ẇ (t, x)dtdx, [13]

whereW (dt, dx) is a Gaussian white noise (in the sense of [28]).

Proof. Using thatYt(dx) = f(t, x)dx, we should like to write :

Mt(ϕ) =

t∫

0

∫

R

√
µf(t, x)ϕ(x)W (dx, ds)
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whereW (dx, ds) is a Gaussian white noise.
To Mt(ϕ), there corresponds an orthogonal martingale measureM(dx, ds) in the sense
of ([28], chap2) whose quadratic variation measure is

〈M〉(dsdx) = f(s, x)dsdx.

We can construct the white noise as follows :

Wt(ϕ) =

t∫

0

∫

R

1√
µf(t, x)

1{f(t,x)6=0}ϕ(x)M(dx, ds)

+

t∫

0

∫

R

1{f(t,x)=0}ϕ(x)W̃ (dx, ds)

with W̃ a white noise independent ofYt(dx).
Then,Wt is a cylindrical Brownian motion that extends to a Gaussian white noiseW (dx, ds).
Substituting in(6), we get :

∫
R

ϕ(x)f(t, x)dx =
∫
R

ϕ(x)f(0, x)dx + D
t∫
0

∫
R

ϕ′′(x)f(t, x)dxds

+
t∫
0

∫
R

(Fa ∗ f(s, .))(x)ϕ′(x)f(s, x)dxds +
t∫
0

∫
R

√
µf(t, x)ϕ(x)W (dx, ds).

[14]

We recognize that(14) is a weak version of the nonlinear stochastic partial differential
equation(12).

6. Concluding remarks

A solution to(12) exhibits a kind of clustering phenomena : on one hand, the convolu-
tion form in the advective term of(12) expresses the attraction of cells to higher density,
a mechanism that leads to aggregation formation, and on the other hand, the last term in
(12) represents the stochastic imbalence between births and deaths in space and time. This
term occurs because birth is always next to a living cell, while death can occur anywhere.
The accumulation of these small scale density fluctuations develops patches and voids on
large scales. So, aggregation here is a consequence of both the nonlinear attractions bet-
ween cells due to the chemosensory behavior and the branching mechanism. These ideas
are still new for biologists and oceanographers.

To our knowledge, a stochastic partial differential equation of form(12) is unknown
in both biological and mathematical literatures. In [1], the authors have investigated the
mathematical analysis (existence, uniqueness and positivity of solutions) for the model
described by(12) without the stochastic term (that is the branching phenomenon has
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been ignored in the phytoplankton story). In addition, existence of nonuniform stationary
solutions has been established. This asymptotic result confirms that nonlinear interactions
between phytoplankton cells at small scales can produce aggregations at large scales. We
intend, in a future work, to explore the asymptotic behavior of the stochastic equation
(12).

Finally, we would like to point out that in [9], the authors have conceived and si-
mulated a numerical Individual-Based Model (IBM) showing the behavior of the system
of stochastic differential equations in (1). All the simulation results show formation of
clusters, qualitatively by visualizing aggregates formation and quantitatively by using an
aggregation indicator, confirming that our mathematical model is really an aggregation
model.
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