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RÉSUMÉ. Dans ce papier, on considère un problème d’optimisation de forme lié aux équations de
Stokes. On propose une approche basée sur une analyse de sensibilité topologique. On donne un dé-
veloppement asymptotique d’une fonction coût par rapport à la perturbation du domaine par l’insertion
d’un petit obstacle. Des résultats théoriques sont donnés en 2 D et 3 D. Dans la partie numérique, on
utilise cette approche pour optimiser la forme des tubes liant l’entrée aux sorties d’un cavité.

ABSTRACT. In this paper, we consider a shape optimization problem related to the Stokes equations.
The proposed approach is based on a topological sensitivity analysis. It consists in an asymptotic
expansion of a cost function with respect to the insertion of a small obstacle in the domain. The
theoretical part of this work is discussed in both two and three dimensional cases. In the numerical
part, we use this approach to optimize the shape of the tubes that connect the inlet to the outlets of
the cavity maximizing the outflow rate.
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1. Introduction

Topological optimization is concerned with the variation of a cost function with res-
pect to a topological modification of a domain. The most simple way of modifying the
topology consists in creating a small hole in the domain. In the case of structural shape
optimization, creating a hole means simply removing some material. In the case of fluid
dynamics where the domain represents the fluid, creating a hole means inserting a small
obstacle. The situation is similar in electromagnetism. Unlike the classical shape opti-
mization, the topology of the domain may change during the optimization process. The
objective is to find an optimal shape without any a priori assumption about its topology.
The given approach is based on the analysis of the topological sensitivity. It provides an
asymptotic expansion of a cost function with respect to a small topological perturbation
of the domain. To present the basic idea, we consider Ω a domain of IRd, d = 2, 3 and
j(Ω) = J(Ω, uΩ) a cost function to be minimized, where uΩ is the solution to a given
PDE problem defined in Ω. For ε > 0, let Ωε = Ω\(x0 + εω) be the domain obtained by
removing a small part (x0 + εω) from Ω, where x0 ∈ Ω and ω ⊂ IRd is a fixed bounded
domain containing the origin. Then, an asymptotic expansion of the function j is obtained
in the following form :

j(Ωε) = j(Ω) + f(ε)g(x0) + o(f(ε))

f(ε) > 0 ∀ε > 0, lim
ε→0

f(ε) = 0.

The function g is called the topological sensitivity or topological gradient. It can be used
as a descent direction of the domain optimization process. Obviously, if we want to mi-
nimize j, the "best" place to create an infinitesimal hole is there where g(x) is the most
negative. Starting with this observation, topological optimization algorithms can then be
constructed [7].

The topological sensitivity analysis was introduced by Schumacher [17], Sokolowski
and Zochowski [18] for the minimization of the compliance in linear elasticity with Neu-
mann condition on the boundary of the inserted hole. A topological sensitivity framework
using an adaptation of the adjoint method [6, 14] and a truncation technique was introdu-
ced by Masmoudi [14]. It was generalized in [9] to the elasticity equations in the case of
arbitrary shaped holes. Recently, the topological asymptotic expansion was obtained for
various problems[11, 12, 13, 3, 2].

In this paper we consider the Stokes problem. This problem is considered by Guillaume
and Sid Idriss in [12]. They have obtained a topological asymptotic expansion for a large
class of cost functions and arbitrary shaped holes. The approach used in [12] is based on
an adaptation of the adjoint method and a domain truncation technique that provides an
equivalent formulation of the PDE in a fixed functional space. In this work we present
a simplified topological sensitivity analysis for the Stokes equations without using the
truncation technique. Our tools is an adjoint method that takes into account the variation
of the functional space when a Dirichlet condition is applied on the moving part of the
domain (Paragraph 3.1). Such an adjoint method brings several technical simplifications.
The asymptotic expansion we obtain (Theorems 3.2 and 3.3) is based on an asymptotic
formula for the velocity in the perturbed domain Ωε (Proposition 3.1).
In the numerical part, we propose a shape optimization problem. We consider an incom-
pressible fluid flow in a cavity Ω having one inlet Γin and some outlets Γi

out, i = 1,m.
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Figure 1. The cavity Ω.

(see Figure 1). Our objective is to determine the optimal shape of the tubes that connect
the inlet to the outlets of the cavity maximizing the outflow rate by inserting some small
obstacles in the cavity.

The paper is organized as follows. In section 2, we give a precise statement of the
optimization problem. In section 3, we describe the adjoint method and we present the
main results. Finally in Section 4, we present some numerical experiments.

2. Formulation of the problem

Consider a viscous incompressible fluid F , governed by Stokes equations, in steady-
state regime. The Eulerian velocity vector u and the pressure p of F fulfil the system







−ν∆u+∇p = F in Ω
div u = 0 in Ω

u = 0 on Γ,

where Ω ⊂ IRd, d = 2, 3, is the domain occupied by the fluid, ν is the (constant) kinematic
viscosity coefficient of F , and F is a given body force per unit of mass.

2.1. Stokes equations in the perturbed domain

We denote by Ωε the perturbed domain, obtained from inserting a small obstacle ωε

in Ω. We suppose that the obstacle has the form ωε = x0 + εω, where x0 ∈ Ω, ε > 0 and
ω is a given fixed and bounded domain of IRd, containing the origin, whose boundary ∂ω
is connected and piecewise of class C1.
In Ωε, the velocity uε and the pressure pε of F are solution to















−ν∆uε +∇pε = F in Ωε

div uε = 0 in Ωε

uε = 0 on Γ
uε = 0 on ∂ωε.

[1]

Note that for ε = 0, Ω0 = Ω and (u0 , p0) is solution to






−ν∆u0 +∇p0 = F in Ω,
div u0 = 0 in Ω,

u0 = 0 on Γ.
[2]
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2.2. Topological optimization problem

Consider now a cost function j(ε) of the form

j(ε) = Jε(Ωε, uε), [3]

where Jε is defined on H1(Ωε)
d for ε ≥ 0 and J0 is differentiable with respect to u, its

derivative being denoted by DJ0(u).
Our aim is to determine the optimal location of the obstacle ωε in the domain Ω in order
to minimize the cost function Jε(Ωε, uε). Then, the optimization problem we consider is
given as follows :

min
ωε⊂Ω

Jε(Ωε, uε) such that, for some pε, [4]

(uε, pε) is a solution of (1) in Ωε.

To this end, we will derive a topological asymptotic expansion of the function j with
respect to ε.

3. Topological sensitivity analysis

In this section we consider a topological sensitivity analysis for the Stokes equations.
We present a topological asymptotic expansion of a cost function j with respect to the
insertion of a small obstacle ωε inside the domain Ω. The proposed approach is based on
the following general adjoint method.

3.1. General adjoint method

Let (Vε)ε≥0 be a family of Hilbert spaces depending on the parameter ε, such that,
∀ε ≥ 0 Vε ↪→ V0. For ε ≥ 0, we consider
• Aε : Vε × Vε −→ IR a bilinear, continuous and coercive form on Vε,
• lε : Vε −→ IR a linear and continuous form on Vε.
We assume that for all ε ≥ 0, the problem

Aε(uε, w) = lε(w), ∀w ∈ Vε [5]

has a unique solution uε ∈ Vε.
Consider now a cost function of the form j(ε) = Jε(uε), where Jε is defined on Vε for
ε ≥ 0 and J0 is differentiable with respect to u, its derivative being denoted by DJ0(u).
Our aim is to derive an asymptotic expansion of j with respect to ε. We consider the
following assumptions.

Hypothesis 3.1 There exist a real number δA and a scalar function f : IR+ −→ IR+

such that ∀ ε ≥ 0

A0(u0 − uε, v0) = f(ε)δA+ o(f(ε)),

lim
ε→0

f(ε) = 0,
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where v0 ∈ V0 is the solution to the adjoint problem

A0(w, v0) = −DJ0(u0)w, ∀w ∈ V0. [6]

Hypothesis 3.2 There exists a real number δJ such that ∀ ε ≥ 0

Jε(uε)− J0(u0) = DJ0(u0)(uε − u0) + f(ε)δJ + o(f(ε)).

Under the assumptions 3.1 and 3.2, we have the following theorem.

Theorem 3.1 If the assumptions 3.1 and 3.2 hold, the function j has the following asymp-
totic expansion

j(ε) = j(0) + f(ε)
(

δA+ δJ
)

+ o(f(ε)).

Proof : From hypothesis 3.2, we have

j(ε)− j(0) = Jε(uε)− J0(u0),

= DJ0(u0)(uε − u0) + f(ε)δJ + o(f(ε)).

Using (6) and hypothesis 3.1

j(ε)− j(0) = A0(u0 − uε, v0) + f(ε)δJ + o(f(ε))

= f(ε)
(

δA+ δJ
)

+ o(f(ε)).

3.2. Topological sensitivity for the Stokes problem

In this section, we derive a topological asymptotic expansion for the Stokes equations.
In order to apply the adjoint method described in the previous paragraph, first we esta-
blish a variational problem associated to the Stokes system. From the weak variational
formulation of (4), we deduce that uε ∈ Vε is solution to

Aε(uε, w) = lε(w), ∀w ∈ Vε,

where the functional space Vε, the bilinear formAε and the linear form lε are defined by

Vε =
{

w ∈ H1
0 (Ωε), div w = 0 in Ωε

}

, [7]

Aε(v, w) = ν

∫

Ωε

∇v∇w dx, ∀u, v ∈ Vε, [8]

lε(w) =

∫

Ωε

F w dx, ∀w ∈ Vε. [9]

Next we have to distinguish the cases d = 2 and d = 3. This is due to the fact that the
fundamental solutions to the Stokes equations in IR2 and IR3 have an essentially different
asymptotic behaviour at infinity.
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3.2.1. The three dimensional case

Let (U, P ) denote a solution to














−ν∆U +∇P = 0 in IR3\ω
div U = 0 in IR3\ω

U −→ 0 at∞
U = −u0(x0) on ∂ω.

[10]

The existence of (U, P ) is most easily established by representing it as a single layer
potential on ∂ω (see [8])

U(y) =

∫

∂ω

E(y − x)η(x) ds(x), y ∈ IR3\ω

P (y) =

∫

∂ω

Π(y − x)η(x) ds(x), y ∈ IR3\ω

where (E, Π) is the fundamental solution of the Stokes equations

E(y) =
1

8πνr

(

I + ere
T
r

)

, Π(y) =
y

4πr3
,

with r = ||y||, er = y/r and eT
r is the transposed vector of er. The functions η ∈

H−1/2(∂ω)3 is the solution to the boundary integral equation,
∫

∂ω

E(y − x) η(x) ds(x) = −u0(x0), ∀y ∈ ∂ω. [11]

One can observe that the function η is determined up to a function proportional to the
normal, hence it is unique in H−1/2(∂ω)3/IRn.

We start the derivation of the topological asymptotic expansion with the following
estimate of the H1(Ωε) norm of uε(x) − u0(x) − U(x/ε). This estimate plays a crucial
role in the derivation of our topological asymptotic expansion. It describes the velocity
perturbation caused by the presence of the small obstacle ωε.

Proposition 3.1 There exists c > 0, independent on ε, such that for all ε > 0 we have

‖uε(x)− u0(x)− U(x/ε)‖
1,Ωε
≤ c ε.

The following corollary follows from Proposition 3.1. It gives the behaviour of the velo-
city uε when inserting an obstacle. The principal term of this perturbation is given by the
function U , solution to (10).

Corollary 3.1 We have

uε(x) = u0(x) + U(x/ε) +O(ε), x ∈ Ωε.

We are now ready to derive the topological asymptotic expansion of the cost function j.
It consists in computing the variation j(ε) − j(0) when inserting a small obstacle inside
the domain. The leading term of this variation involves the function η, the solution to the
boundary integral equation (11). The main result is described by Theorem 3.2.

ARIMA
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Theorem 3.2 If Hypothesis 3.1 holds, the function j has the following asymptotic expan-
sion

j(ε) = j(0) + ε
[(

−

∫

∂ω

η(y) ds(y)
)

.v0(x0) + δJ
]

+ o(ε).

In the particular case where ω = B(0, 1), the density η is given explicitly η(y) =

−
3ν

2
u0(x0), ∀y ∈ ∂ω.

Corollary 3.2 If ω = B(0, 1), under the hypotheses of theorem 3.2, we have

j(ε) = j(0) + ε
[

6πν u0(x0).v0(x0) + δJ
]

+ o(ε).

3.2.2. The two dimensional case

In this paragraph, we present the topological asymptotic expansion for the Stokes
equations in the two dimensional case. The result is obtained using the same technique
described in the previous paragraph. The unique difference comes from the expression of
the fundamental solution of the Stokes equations. In this case (E, Π) is given by

E(y) =
1

4πν

(

− log(r)I + ere
T
r

)

, Π(y) =
y

2πr2
.

Theorem 3.3 Under the same hypotheses of theorem 3.2, the function j has the following
asymptotic expansion

j(ε) = j(0) +
−1

log(ε)

[

4πν u0(x0).v0(x0) + δJ
]

+ o
( −1

log(ε)

)

.

3.3. Proof

First we need some definitions and preliminary lemmas.
Let O be a bounded open domain of IR3 and ∂O its boundary, assumed polygonal and
simply connected.
•We denote by H1/2

V (∂O) the subspace of traces ( H1/2

V (∂O) ⊂ H1/2(∂O) )

H
1/2

V (∂O) =

{

φ ∈ H1/2(∂O),

∫

∂O

φ .n ds = 0

}

.

• Let ε > 0 ; for a function u defined on a givenO, we define the function ũ on Õ := O/ε
by

ũ(y) = u(x), y = x/ε.

We have the following relations

|u|
1,O = ε1/2 |ũ|

1,Õ , ‖u‖0,O = ε3/2 ‖ũ‖
0,Õ . [12]

• Let R > 0 be such that the closed ball B(x0, R) is included in Ω and ωε ⊂ B(x0, R).
We denote by ΓR the boundary of B(x0, R) and we define the domains

ΩR = Ω\B(x0, R) and Dε = B(x0, R)\ωε.
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3.3.1. Preliminary lemmas

The aim of this section is to give some technical results which will be used in section
3.3.2 and 3.3.3. For more details and proof one may consult [12] or [13].

Lemma 3.1 For φ ∈ H1/2

V (∂ω)3 ; let (w, s) be the solution to the Stokes exterior pro-
blem















−ν∆w +∇s = 0 in IR3\ω

div w = 0 in IR3\ω
w = 0 at infinity
w = φ on ∂ω.

Then, there exist a constants c > 0, independent of φ and ε, such that

‖w‖
0,Dε/ε ≤ cε−1/2 ‖φ‖

1/2,∂ω

‖w‖
0,ΩR/ε ≤ cε−1/2 ‖φ‖

1/2,∂ω

|w|
1,Dε/ε ≤ c ‖φ‖

1/2,∂ω

|w|
1,ΩR/ε ≤ cε1/2 ‖φ‖

1/2,∂ω .

Lemma 3.2 For a given ε > 0, ϕ ∈ H1/2

V (Γ)3 and ψ ∈ H1(D0)
3 such that div ψ = 0,

let (vε, qε) be the solution to the Stokes problem














−ν∆vε +∇qε = 0 in Ωε

div vε = 0 in Ωε

vε = ϕ on Γ
vε = ψ on ∂ωε.

Then, there exist a constant c > 0 (independent of ϕ, ψ and ε), and ε1 > 0 such that for
all 0 < ε < ε1

|vε|1,ΩR
≤ c

(

‖ϕ‖
1/2,Γ + ε ‖ψ(εy)‖

1/2,∂ω

)

‖vε‖0,Dε
≤ c

(

‖ϕ‖
1/2,Γ + ε ‖ψ(εy)‖

1/2,∂ω

)

|vε|1,Dε
≤ c

(

‖ϕ‖
1/2,Γ + ε1/2 ‖ψ(εy)‖

1/2,∂ω

)

.

3.3.2. Proof of Proposition 3.1

Define

zε(x) = uε(x) − u0(x) − U(x/ε), sε(x) = pε(x) − p0(x)− P (x/ε). [13]

From (1), (2) and (10) it follows that (zε, sε) is solution to














−ν∆zε +∇sε = 0 in Ωε

div zε = 0 in Ωε

zε = −U(x/ε) on Γ
zε = −u0(x) + u0(x0) on ∂ωε.

Due to Lemma 3.2, there exists a constant c > 0, independent of ε, such that

‖zε‖1,Ωε
≤ c

(

‖U(x/ε)‖
1/2,Γ + ε1/2 ‖u0(x0 + εx)− u0(x0)‖1/2,∂ω

)

. [14]
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By trace theorem

‖U(x/ε)‖
1/2,Γ ≤ ‖U(x/ε)‖

0,ΩR
+ |U(x/ε)|

1,ΩR
.

Changing variables and using (12)

‖U(x/ε)‖
1/2,Γ ≤ ε

3/2 ‖U(x/ε)‖
0,ΩR/ε + ε1/2 |U(x/ε)|

1,ΩR/ε .

Due to Lemma 3.1 we obtain

‖U(x/ε)‖
1/2,Γ ≤ c ε. [15]

Expanding u0(x0 + εx) = u0(x0) + ε∇u0(ξx)x, ξx ∈ ωε, and using the fact that ∇u0

is uniformly bounded, the second term in (14) may be estimated by

‖u0(x0 + εx)− u0(x0)‖1/2,∂ω ≤ c ε. [16]

Finally, combining (14), (15) and (16) we deduce the desired estimate

‖uε(x)− u0(x)− U(x/ε)‖
1,Ωε
≤ c ε.

3.3.3. Proof of Theorem 3.2

Due to Theorem 3.1, it suffices to derive an asymptotic expansion ofA0(uε−u0, v0).
Using (8) and the fact that uε = 0 in ωε, we have

A0(uε − u0, v0) = ν

∫

Ω

∇(uε − u0)∇v0 dx

= −ν

∫

ωε

∇u0∇v0 dx + ν

∫

Ωε

∇(uε − u0)∇v0 dx. [17]

Thanks to elliptic regularity,∇u0 and ∇v0 are uniformly bounded on ωε, then it follows
that

−ν

∫

ωε

∇u0∇v0 dx = O(ε3). [18]

Using (14), the second term in (17) can be written

ν

∫

Ωε

∇(uε − u0)∇v0 dx = ν

∫

Ωε

∇U(x/ε)∇v0 dx + ν

∫

Ωε

∇zε∇v0 dx.

Using Green formula and taking into account that v0|Γ = 0, we obtain

ν

∫

Ωε

∇(uε − u0)∇v0 dx =

∫

∂ωε

σ(U, P )(x/ε).n v0 ds +

∫

∂ωε

σ(zε, sε).n v0 ds,

where σ is the stress tensor ; σ(U, P ) = ν(∇U +∇UT )− PI and σ(zε, sε) = ν(∇zε +
∇zT

ε )− sεI .
By trace theorem, Proposition 3.1 and the fact that v0 is uniformly bounded on ωε

∣

∣

∣

∣

∫

∂ωε

σ(zε, sε).n v0 ds
∣

∣

∣

∣

≤ ‖zε‖1,Ωε
‖v0‖1,ωε

= o(ε). [19]
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Changing variables,
∫

∂ωε

σ(U, P )(x/ε).n v0 ds = ε

∫

∂ω

σ(U, P )(y).n v0(x0 + εy) ds(y).

Expanding v0(x0 + εy) = v0(x0) + ε∇v0(ξy)y, ξy ∈ ωε, and using the fact that ∇v0 is
uniformly bounded,

∫

∂ωε

σ(U, P )(y).n v0(x0 + εy) ds = ε
(

∫

∂ω

σ(U, P )(y).n ds
)

v0(x0) +O(ε2).[20]

Due to the jump condition of the single layer potential (see [8]),

σ(U, P ) = −η + σ(W,Q)

where (W,Q) is the solution to the associated interior problem






−ν∆W +∇Q = 0 in ω
div W = 0 in ω

W = U on ∂ω.

From the fact that div σ(W,Q) = −ν∆W +∇Q = 0 in ω, we have
∫

∂ω

σ(W,Q)(y).n ds = 0.

Therefore
∫

∂ωε

σ(U, P )(x/ε).n v0 ds = −ε
(

∫

∂ω

η(y) ds
)

.v0(x0) + O(ε2). [21]

From equations (17), (18), (19), (20) and (21) we deduce

A0(uε − u0, v0) = −ε
(

∫

∂ω

η(y) ds
)

.v0(x0) + o(ε).

Then, Hypothesis 3.1 holds with

δA = −

∫

∂ω

η(y) ds and f(ε) = ε.

4. Numerical results

Here, we limit ourselves to the two dimensional case. We consider a cavity with one
inlet Γin and three outlets Γi

out, i = 1, 2, 3, having the same section. We assume that the
flow satisfies the following boundary conditions :
• On the inlet Γin we define the normal component of the stress tensor :

σ(u, p).n = φ on Γin,
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where σ(u, p) = ν(∇u+∇uT )− pI and I is the 2× 2 identity matrix.
• On the outlets, we use a free surface boundary condition :

σ(u, p).n = 0 on ∪3
i=1 Γi

out.

The cost function measuring the outflow rate is given by

J(u) =

3
∑

i=1

∫

Γi

out

|u.n| ds.

Our implementation is based on the following optimization algorithm. We apply an itera-
tive process to build a sequence of geometries (Ωk)k≥0 with Ω0 = Ω. At the k-th iteration,
the topological gradient is denoted by gk, and the new geometry Ωk+1 is defined by a le-
vel set curve of gk.

The algorithm :

• Initialization : choose Ω0 = Ω, and set k = 0.
• Repeat until gk ≥ 0 in Ωk :

– solve the direct problem and its associated adjoint problem in Ωk,
– compute the topological sensitivity gk,
– set Ωk+1 = {x ∈ Ωk, gk(x) ≥ ck}, where ck is chosen in such a way that the cost

function decreases as most as possible,
– k ←− k + 1.
This algorithm can be seen as a descent method where the descent direction is determi-

ned by the topological sensitivity gk and the step length is given by the volume variation
meas(Ωk\Ωk+1).
In the above algorithm, the direct and the adjoint problems are discretized by a finite ele-
ment method using a Reynold number Re = 100. The computation of the approximate
solution is achieved by Uzawa algorithm.
The results are presented in figures 2 and 3. We illustrate the topological gradient and the
geometries obtained during the optimization process in figure 2. The topological gradient
corresponding to the initial geometry is shown in Figure 2-(a). The shape obtained after
optimization is presented in figure 2-(d). In figure 3, we present the velocity field com-
puted in the geometry obtained during the optimization process. The optimal velocity is
given in figure 3-(d).
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