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ABSTRACT. To find an optimal domain is equivalent to look for its characteristic function. At first sight
this problem seems to be nondifferentiable. But it is possible to derive the variation of a cost function
when we switch the characteristic function from 0 to 1 or from 1 to 0 in a small area. Classical and
two generalized adjoint approaches are considered in this paper. Their domain of validity is given
and illustrated by several examples. Using this gradient type information, it is possible to build fast
algorithms. Generally, only one iteration is needed to find the optimal shape.

RESUME. Trouver un domaine optimal est équivalent a la recherche de sa fonction caractéristique. A
premiére vue, ce probléme semble non différentiable, mais il est possible de calculer la variation de la
fonction codt lorsque la fonction caractéristique passe de 1 a 0 ou de 0 a 1 dans une région de petite
taille. On s’appuyera sur une approche adjointe classique et deux généralisations de cette méthode.
Le domaine de validité de ces différentes approches est donné et illustré par différents exemples.
Cette information de type gradient permet de construire des algorithmes tres efficaces : en général,
une seule itération suffit pour trouver le domaine optimal.
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1. Introduction

Most of the important contributions in topological optimization concern structural me-
chanics and particularly the optimization of the compliance (strain potential energy) under
a volume constraint. Following the idea that the optimal structure has a lot of small holes,
some authors [A1K93, Ben96] use a class of composite materials. This approach leads
to homogenization theory [All02]. The field of applications of these methods is quite
restricted. Global optimization techniques like genetic algorithms are used in order to
solve more general problems [KaS97, SKJ96]. Unfortunately these methods are very
slow.

Level-set methods give interesting results [San96, AIT02]. It consists of making the
boundary of the domain evolve according to a transport equation. This allows the number
of holes in the domain to decrease, but not to increase.

The topological asymptotic expansion is general and efficient. As a background, we
cite the contribution of Schumacher [EsS94, Sch95] under the name of bubble method in
the context of compliance optimization with a Neumann boundary condition on the un-
known boundary. It consists in inserting a small hole according to topological sensitivity
information, then this small hole blows following classical shape optimization methods.
Let us mention recent promising results, that have been obtained by coupling level-set
methods with a topological asymptotic method [BHR04, WYWO04, AGJ05, AmAOS].

This paper is an introduction to topological asymptotic expansion methods [11i92,
S0799, MNP00O, AVV01, GGMO1, GuS01, Mas02, AVV03, SAMO03, HaM04, MPS05,
AHMOS5, Ams05]. More exactly, a shape optimization problem consists in minimizing a
functional j(Q) = J(Q,uq) where ug is the solution to a Partial Differential Equation
defined in the domain Q. Let us consider Q. = Q\B(z, ) where B(z,¢) is the ball of
radius € about the center x. An asymptotic expansion of the functional j can be obtained
in the following form:

3(Q) = 3(Q) + f(e)g(x) + o(f(e))

lim /() = 0, /() > 0.

The function g is called the topological gradient.

Most of shape optimization problems could be considered via material properties op-
timization: we look for the distribution of a material property c taking two values ¢; and
co. If the cost function ¢ — J(c) is differentiable on LP, p < 2, then the topological
sensitivity ¢ is derived easily from the classical gradient of 7, it gives the variation of
J if we switch the material property from ¢; to co or from ¢ to ¢; in a small region.
In section 2, we recall the classical adjoint approach. Its basic concept is to say that the
gradient of the cost function is equal to the partial derivative of the Lagrange operator
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with respect to c: it is not necessary to calculate the variation of the state (the solution of
the direct problem) with respect to c.

Unfortunately, in many relevant cases from the practical point of view, the cost func-
tion is differentiable with respect to ¢, but in L>°. To derive a topological sensitivity,
we will consider two ways to generalize the adjoint approach. In both cases, it will
be necessary to take into account the variation of the state with respect to topologi-
cal perturbation to obtain the variation of the cost function. This variation is known
[AVVO01, AVV03, AmKO04, MNPOO], it depends on the shape of the hole and on the
boundary condition on the boundary of the hole. When the hole is simple (disc, ellipse,
straight crack, ...), we obtain an explicit expansion of the solution and for more general
holes, this expansion could be obtained numerically.

In section 3, we consider the first generalization technique. The existence of a Frechet-
like expansion of the Lagrange operator is assumed. In particular, the leading term of the
expansion is continuous with respect to state and adjoint variables. This hypothesis is
satisfied if we consider a domain truncation technique around the hole and a boundary
condition based on a Dirichlet-to-Neumann operator. We work in a fixed domain and a
fixed functional space. The variation of the Lagrange operator with respect to the size
of the hole € is given by the variation of the Dirichlet-to-Neumann operator. Calculating
this variation requires the knowledge of the expansion of the solution associated to the
Dirichlet-to-Neumann problem with respect to e.

The second generalization of the adjoint technique is presented in section 4. The
Lagrange operator does not admit a Frechet-like expansion. In this case, it is necessary
to consider its total variation and to take into account the asymptotic expansion of the
state. We give at the end of this section some applications of the topological asymptotic
expansion to crack detection. The topological gradient at the first iteration gives a good
localization of the cracks.

When an iterative algorithm is needed, we refer to [GGMO1, GuS01, Mas02, SAMO03,

HaMO04, Ams05] for the presentation of a fixed point method based on the work of Céa et
al. [CGM73].

2. From differential calculus to 0-1 optimization

We show in this section that it is possible, under weak hypotheses, to derive topologi-
cal asymptotic expansion from classical gradient.

Let us consider a bounded domain Q@ ¢ R (N = 1,2, 3) and the elliptic problem

V- (aVu)+pu=">b in Q, )
B.C. on 0f.
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where o and 3 are two functions defined in §2. The functions «, (3, and the boundary
condition B.C'. will be specified so that the problem (1) and its topological perturbations
admit one and only one solution.

If a goes to 0 in w CC €, the corresponding solution u,, tends to the solution uy of
the problem with Neumann boundary condition:

V- (aVuny)+ funy =b  inQ\w,
Opuny =0 on Jw,
B.C. on 0.

If 8 goes to oo in w CC €2 the corresponding solution tends to the solution up of the
problem with Dirichlet boundary condition:

V- (aVup)+ pfup =b inQ\w,
up =0 on Jw,
B.C. on 0f2.

This second case recalls the standard penalization method used in finite elements methods
for the implementation of a Dirichlet condition.

2.1. From classical gradient to topological sensitivity
Let 1 < p < 2, we denote by J a differentiable functional on LP(2)

J: LPQ) — R
c —  J(c)

and let g € L¥' () be the Riesz representation of its differential 7’(c). For all éc €
L?(Q)) we have:

Tle+ ) =T+ [ gla)iclz)da +of|loc] ).

Q

We wish to study the variation of the functional 7 with respect to a finite topological
perturbation §c.. What we have in mind is a perturbation of a finite value in a region of
small volume, described as follows: let s be a real

[ & in B(zo,e¢)
Oce = { 0 elsewhere. @

Hypothesis 1 Ler 1 < p < 2. We make the following assumptions:

1-a) there exists a constant v1 > 0 such that for all ¢ € LP(Q) and for all dc €
LP(QY) we have:
T (c+be) = T(e) = T'(e).0¢] < mlldell,”.
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1-b) the function g is Lipschitz continuous, in other words there is a constant vy > 0
such that for all x,y € €

l9(x) = g(y)| < el —yl|.
Theorem 1 Let dc. be defined by (2) and the cost function j defined by
J(e) = T(c+ dce).
If hypothesis 1 holds, then when ¢ — 0,
j(€) = 3(0) + rp(e)g(zo) + o(p(e)),
where p(e) = meas(B(xg, €)).

The function g is called the topological gradient (of the cost function [J, relative to a
Jjump of k).

Proof: The perturbation dc, given by (2) is small in L?(€2) when ¢ — 0 since
l[oce]lp = “P(E)l/p'
The right-hand side in hypothesis 1-a) is then
l18¢ell; = (rp(e)'/7)? = Kp(e)*/? = o(p(e)),

since p < 2. The derivative J'(c).dc, can be estimated as follows using hypothesis 1-b):

T (0)-8ce — rg(zo)ple)] = /Q g6ce — rg(zo)ple)

< [ wlgo)-gla]dz < rarepe)
B(zg,€)
These two results give:

13(€) = 3 (0) — rp(€)g(wo)| = olp(e))-

2.2. The Dirichlet condition

Let us consider a C' bounded domain @ C RY, with N = 1,2 or3andletV C
H'(€) be a Hilbert space. Let a be a bilinear, continuous and coercive form on V.

For all ¢ € LP(Q2), we denote by a. € L2(V) the bilinear form defined on V by:
a.: VxV — R

(u,v) +— ac(u,v):a(u,v)—i—/ cuvdx
Q

3
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Lemma 1 The map
Lr(Q) — La(V)

c [ — Qe

is continuous for
p>1 when N =1
p>1  when N =2 @
p>3/2 when N =3

Since it is an affine map, it is then (twice) differentiable on LP ().

Proof: It follows from Rellich-Kondrachov’s theorem (see e.g. [Bre83]), that H1(Q) C
L1() for
1<¢g<o>~ whenN =1
1<g< o when N =2 ®)]
1<q¢g<6 whenN =3

1 2
Let g satisfy (5), and let p be such that — + — = 1. We have for u,v € V:
p q

/Q(c —uv

|ac(u, v) = ac(u, v)| = < lle—=lplluvllg/

<le = lp lullq [Jvllq
< Klle =y llullvllvllv,
where the two first inequalities follow from Holder’s inequality and the last one from the
continuity of the inclusion V C L?(2).
For N =1,1 < g <oogivesp > 1.
For N =2,1<¢g <oogivesp > 1.
For N =3,1<¢g<6givesl <p<3/2. O
Let £ be a linear continuous form on V and u. € )V be the unique solution of the
following variational problem:

ae(te,v) = £(v) Yv e V. (6)

Lemma 2 Let p satisfy (4) and J be a differentiable functional defined on V, we consider
the cost-function
J: LP(Q) — R
c —  J(c) = J(ue)-
Let u, be the direct state solution of (6), and let p. € V be the adjoint state solution of
the adjoint problem

ac(¥,pe) = —DJ(uc)p Vi V. (N
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Then the functional J is differentiable and for all 6¢ € LP(Q):

J'(c).0c = / dcue.pede.
Q
In other words, the Riesz representation of the differential g of [J is
g = UcPc-

Proof: We use the Lagrangian method introduced in [Lio76] and [Cea86]. Let us
consider the Lagrangian £ defined on LP(2) x V x V by

L(c,u,v) = J(u) + ac(u,v) — £(v).

The Lagrangian £ admits partial differentials with respect to each of the 3 variables and
we have:

D1 L(c,u,v).0c = asc(u,v) — a(u,v), DyL(e,u,v).¢p = DJ(u).¢ + ac(p,v).

Moreover, the map LP — V), ¢ — u, is differentiable because of lemma 1, equation
(6) and implicit functions theorem. When v € V is fixed, for every ¢ € LP(2) we have
J(c) = J(u.) = L(c, ue,v). It follows that for every dc € LP(Q),

J'(¢).6¢ = D1L(c, U, v).6¢c + Do L(c, te,v).De(ue).dc.

Note that if v = p, then Dy L(c, ue, pe) = 0, hence
J'(c).0c = D1L(c,ue, pe) = / dcue.pe dx. O.
Q

Theorem 2 Let p < 2 satisfy (4). Let a. be given by (3) and u. the solution of (6). We
assume that J is twice differentiable on V and consider the particular case of ¢ = 0 and
dc = Oce defined by (2). We assume that the direct state uy and the adjoint state py are
such that ugpg is a Lipschitzian function.

The cost function j defined by j(€) = J (us., ) has the following expansion:
J(€) = j(0) = rp(e)uo-po + o(p(e€)).

Proof : Lemma 2 proves that 7 is differentiable on V. When looking at the proof, it ap-
pears that it is even twice differentiable, hence hypothesis 1-a) holds, and 7'(0) = uopo.
Our assumptions imply that hypothesis 1-b) is also satisfied. The asymptotic expansion
of j follows from theorem 1. (]

When the parameter r is large, the solution us., is close to zero in B(xg, €). A penal-
ization technique provides a good approximation of the solution in  \ B(xo, €) with a
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homogeneous Dirichlet condition on the boundary of the hole B(xo, €). The topological
gradient g = ugpo is exactly what is obtained in next section using a more sophisticated
approach (see also [GGMO1, GuS01, HaM04, Mas02, SAMO03]).

We consider now two one-dimensional examples, where the solution can be explicitly
calculated. In the first example the classical gradient is equal to the topological gradient.
In the second example, the classical gradient and the topological gradient are different.

2.3. First example

Consider the following one-dimensional elliptic state equation:

—u"+cu=0 for0<a <1
u(0) =0 (8)
u'(1) =1,

its variational formulation is

find © € V such that

/ o (z)w'(x) do —l—/ c(x)u(x)w(z)dr = w(l) Yw eV, ©)
0 0

where V = {w € H'(0,1) | w(0) = 0}.

Let u. € V be the unique solution of the problem (9). We want to compute the
sensitivity of the functional

J: Ll(O,l) — R
c — ue(1).

The associated Lagrangian is
1 1
L(c,u,w) =u(l) +/ o (z)w' (x) dz —l—/ c(x)u(x)w(z)de — w(l).
0 0
The adjoint state is p. = —u.. It follows from lemma 2 that for all 5c € L'(0, 1),
1
J'(c).0c = —/ Sc(z)u?(x) de.
0

Let us detail this result with ¢ = 0 and dc. defined by:

Se. — 1 ifzxe [x(),ac()—l—e]
710 elsewhere.
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The direct state g is defined by ug(z) = x for all x € [0, 1]. According to theorem 2, the
variation of the cost function j defined by j(¢) = J(dc) is:

3(€) = 3(0) = —eaf + oe).

Let us check this result. When ¢ = Jc, the solution u. = wus., can be explicitly
computed:

2z
(xo + 1) exp(e) — (xg — 1) exp(—e)

if z € [0, o]

) (mo+1)exp(x — x0) + (w0 — 1) exp(z0 — 7) e oo o e
ue(x) = (zo + 1) exp(e) — (zo — 1) exp(—¢) fz € [zo, 20+ ]

(xo + 1) exp(e) + (xo — 1) exp(—e)
(zo + 1) exp(e) — (zg — 1) exp(—e)

x— (zo+e€)+ if z € [z +€,1]

Therefore
J(€) = 3(0) = ue(1) — uo(1)
= —22e + xo(x2 — 1)€? + o(€?)

This confirms the result obtained using theorem 2.

2.4. Example 2

Let us consider the problem

(cu') =0 in]0,1]
w(0) = 0 (10)
c(Du'(1) =1,
for c € L>(0, 1), and the cost function 7 (¢) = u.(1), where u, is the solution to (10).
It is straightforward to check that the adjoint state is p. = —u., and that

T(c)oe = — /0 Se(z)(ul(x))? dz.

We consider ¢ = ¢ (a constant) and the perturbation defined by

P if x € [xg, z0 + €]
710 elsewhere.
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After calculation of the exact solution u., the value of the cost function is found to be

1—
ue(l): € €

co co+ kK’

hence

-0 = (- 1). (an

co+ K Co

On the other hand, the value of the gradient J'(c).0c is

—€(uL)’k = —€—. (12)

Important remark: We observe that the classical gradient (12) is different from the
topological gradient obtained in (11). In this example, theorem 1 can not be applied.
The only possibility for the bilinear form a. to be continuous is to have ¢ € L*. The
requirement in theorem 1 that ¢ € LP with 1 < p < 2 is not met.

Note that if x is small the expressions (11) and (12) are close, but when & is close to
—cp the classical gradient (12) remains bounded, while the topological gradient (11) goes
to infinity .

3. First generalized adjoint method

In this section, we present a more general framework for topological sensitivity than
theorem 2, since the conditions of application of this theorem appear to be restrictive
in many interesting cases. In section 2.4, we noted that when the parameters belong to
L®°, the classical gradient is inadequate. We consider here the solution of a variational
problem in a fixed Hilbert space, where both the bilinear and the linear form depend on
a parameter. We give in theorem 3 the variation of a differentiable cost function. This
section ends with an example and a counterexample.

3.1. The general frame

Let V be a fixed Hilbert space, and £()) denote the space of linear continuous forms
onV and L5(V) the space of bilinear continuous forms on V. For € > 0, let a. € L2(V)
and (. € L(V).

Hypothesis 2 We make the following assumptions:
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2-a) There exists a real function f, a bilinear form 6, € L2(V) and a linear form
d¢ € L(V) such that

f(e) — 0 whene =0 (13)
llac = a0 = f(€)dallc,(v) = o(f(€)) (14)
[[6c = Lo = f(€)dellcevy = o(f(€)) (15)

2-b) the bilinear form ay is coercive : there exists a constant o > 0 such that

Vu eV, ao(u,u) > aflul|?.

According to (14), the bilinear form a. depends continuously on ¢, hence there exist
€0 > 0and 8 > 0 such that for every € € [0, €], the following uniform ellipticity
condition holds:

Vu eV, ac(u,u) > Bllull’.

According to Lax-Milgram’s theorem, for ¢ € [0, o] the following problem has a unique
solution :

find u. € V such that
{ ae(te,v) = Le(v), Yv € V. (16)
Lemma 3 If hypothesis 2 holds, then
[lue = uollv = O(f(€)).
O

3.2. A generalized adjoint method

We consider now a cost function j(¢) = J(u.), where the functional J is differen-
tiable: for every u € V there exists a linear continuous form DJ(u) € £(V) such that

J(u+h)=Jw)+ DJ(u).h+ o(]|h||y). a7
Under hypothesis 2-b), the adjoint problem:

{ find p € V such that (18)

ao(Y,p) = —DJ(uo)(v), Vi € V.

admits a unique solution pg called the adjoint state.

For ¢ > 0 we define the Lagrangian operator L. by
Le(u,v) = J(u) + ac(u,v) — Le(v), for u,v € V.

The asymptotic expansion of j : j(¢) = J(ue) is given by the following
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Theorem 3 If hypothesis 2 holds then
j(€) = j(0) = f(€)dz(uo, po) + o(f(€)),
where uyg is the solution of (16) for € = 0, pg is the solution of (18), and

Yu,v €V, dr(u,v) = dq(u,v) — de(v).

Proof: Forallv € Vande > 0,

Setting v = py we obtain

j(€) = j(0) =Le(ue, po) — Lo(uo, po)
=J(ue) — J(uo) + ac(ue, po) — ao(uo, po) + Lo(po) — £e(po)
=J(ue) — J(uo) + [ac(ue, po) — ao(ue, po) + ao(ue — uo, po)]
— [le(po) — Lo(po) — f(€)de(po)] — f(€)de(po)-

Using (17), we know that
J(ue) — J(uo) = DI (ug).(ue — uo) + o(||ue — uo||v)-
It follows that

J(€) = §(0) =ac(ue, po) — ao(ue, po) + ao(ue — o, po) + DJ (uo)-(ue — uo)
+ o([[ue — uollv) = [le(po) — Lo(po) — f(€)de(po)] — f(€)de(po)-
But py is the adjoint state, hence
J(€) = j(0) =ac(ue, po) — ao(ue, po) + of||ue — uol|v)
— [le(po) — Lo(po) — f(€)de(po)] — f(€)de(po)-

=(ac — ao)(uo, po) + (ac — ao)(ue — uo, po) + o([[ue — uollv)

— [€e(po) — €o(po) — f(€)de(po)] — f(€)de(po)-

It follows from hypothesis 2-a) that

j(€) = §(0) =f(€)da(uo, o) + o(f(€)) + f(€)da(ue — o, po) + o(f(€))[[te — uolly
+ o(|lue — uollv) — f(€)de(po)-
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Finally, it follows from lemma 3, the continuity of d, and the fact that f(¢) — 0 when
e — 0 that
j(€) = j(0) + f(€)[da(uo, o) — de(po)] + o(f(€)).
([

The generalized Lagrangian technique presented above have been applied to the sev-
eral problems, we refer the reader to [GGMO1, GuS01, Mas02, SAM03, HaM04, MPS05].
To satisfy the assumptions of hypothesis 2, we consider a domain truncation technique
that we present in the next section on an example.

3.3. Example 3: Dirichlet condition for Poisson equation

We expose here the calculation of the topological sensitivity for a hole with a Dirich-
let condition for the Poisson equation. We describe the domain truncation technique
[GGMO1, GuS01, Mas02, SAMO03, HaM04, MPS05] that allows to work in a fixed Hilbert
space and to satisfy Hypothesis 2.

Let Q C R? with C! boundary. The boundary of € is decomposed in two parts 9 =

I'p UT' N, with strictly positive measure. We consider a source term h € H, é({ 2(F ~)'. Let
uq € H'(2) be the unique solution of

Au=0 in Q)
u=0 onTp (19)
Opu=h only,

where ,,u is the normal derivative of u. Let .J be a differentiable function on H((Q).

Our aim is to derive the topological sensitivity of J relatively to a circular perforation
of radius € with Dirichlet condition at some point z € ). The point z € € is fixed,
Q. = Q\ B(x,e¢) is the perforated domain (for ¢ small enough). The solution in the
perforated domain is given by the problem

Aug, =0 in Q.
up, =0 onl'p
ug, =0 on X,
Opuq, =h only,

(20)

where X is the boundary of B(z, ¢).

Let R > ¢ be such that B(z, R) C Q. The boundary of B(x, R) is denoted Xz and
D, denotes the corona B(z, R) \ B(z,¢), see figure 1.

For a given ¢ € H'/?(Xr), we consider uy, the (unique) solution to the problem
Aufp =0 inD,
uy =1 onXp
uy =0 on X,
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‘7F\\,
DI
SQR

Figure 1. Domain truncation.
and the Dirichlet-to-Neumann operator
T<: H'Y?(%p) — H '*(Zp)
P — T = Vug.n|s,,
where n|s,, is the outward normal to the boundary X .

We consider the truncated problem

Aue =0 in QR
Ue =0 onl'p
Optte + Tu. =0 onXp @h
Opte = h onTI'y,

the variational formulation associated to (21) is:

find u. € Vg such that
ae (e, v) = £(v) Yv € Vg,

with Vg = {u € H'(Qgr) |lu=00onTp} and
ac(u,v) = Vu.Vu d:E—i—/ (T u)v ds, 0(v) :/ hv ds.
Qr Xr I'nv

It is standard to prove that (21) has a unique solution in V that is the restriction to Q2 of
the solution of (20).

We now have a fixed Hilbert space, as required by theorem 3. It suffices to estimate
the variation of the bilinear form a. (since in this example the linear form £ is independent
of €). We have [Mas02]:

ac(u,v) = ao(u,v) = / (T° = T)u)vds = f(e)u™"p" + o(f(e)),

YR
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where T>R, resp. ]_)E”, is the mean value of u, resp. p, on Y. Since ug and pgy are
harmonic,

da(uo, po) = ua(x).po(z),
where uq, is the solution and pg, is the adjoint state in 2 without a hole.

Using Theorem 3, we obtain the final result

i(€) = j(0) = f(e)u(zo)p(wo),

the topological gradient ¢ = w.p is exactly what we obtained by Theorem 2 using a
straightforward way based on a penalization technique.

3.4. Example 4: interface between two material properties

LetV = {u € H*(0,1) | u(0) = 0}. For 7y €]0, 1] and € sufficiently small we define

ro+e€ 1
ac(u,v) :/ ciu'v' dx—l—/ cou'v' dz,
0 To+€

where c; and c; are two positive constants. We consider the following variational prob-
lem:

{ find v € V such that (22)

ae(u,v) = £(v) Yv eV,
where the linear form £ is given by: £(v) = v(1).

We want to determine the variation of the cost function j(¢) defined by

J(€) = J(ue) = uc(1).
The solution of (22) is explicitly given by

1
— for x € [0, 20 + €]
a1

= 1
—(xo+e)+ —(r—z9g—€) forx>x0+e
C1 C2

1 1

It is straightforward to compute j’(€) and check that j'(0) = — — —. On the other hand,
(6] Co

let us compute the variation of the Lagrangian, that is é, (since d; = 0). For u,v € V,

ro+e€

ac(u,v) — ap(u,v) = / (c1 — co)u'v'.

o

When € — 0, this quantity is equivalent to €(c; — co)u’(zd )v' (zd). Hence a.(u,v) —

ao(u,v) — €6, (u,v) = o(€) with &, (u,v) = (c1 — co)u/(xf v (z ).
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Since DJ(u.).u = —£(u), the adjoint state is pg = —ug, hence I (ug,po) =
+ C2—C1
) =

Sa (o, po) = (c1 — c2)uf(ad )vh(x

Important remark: We have d.(uo,po) # j'(€). In this example hypothesis 2-a) is
not satisfied: the bilinear form §, is not continuous, since pointwise evaluation is not
continuous on L?(0, 1). Theorem 3 can not be applied. We suggest to the reader to apply
theorem 3 when a domain truncation method is considered.

4. Second generalization of the adjoint approach

As shown in the previous example, in some cases of interest hypothesis 2 does not
hold: the variation of the Lagrange operator with respect to the state is not small. An
adaptation of theorem 3 is required in order to calculate topological sensitivity. The va-
riation of the cost function is splitted in several terms, namely when the Lagrange operator
is defined by

E(e, u, U) = J(u) + ae(ua U) - ée(v),
the variation of cost function is given for any v € V by
.7(6) - .7(0) = ‘C(e? Ue, U) - ‘C(Oa Uo, U)'

The variation of j must take into account 9L/ J¢, but also the variation induced by v, —uo.
The variation of u. — ug has been studied in [AVV01, AVV03, AmK04, MNPOQO].

See [Ams05] for the nonlinear case.

4.1. A general framework

We propose here a general result [ADS04], taking into account the variation of the
Lagrange operator via the bilinear form a., the linear form /., the state u. and also the
cost function J,, in case it depends on e.

Let V be a Hilbert space and, for ¢ > 0, let a. be a bilinear continuous and coercive
form on V and /. be a linear continuous form on V. Let u, be the direct state, solution to

find u. € V such that
ae(Ue,v) = L (v), Yv e V.

We consider also a cost function j(e€) = J.(uc), where the functional J is differen-
tiable at the point ug: there exists L. € £(V, R) such that

Je(uo + h) = Je(uo) + Le(h) + o([[R[]v).
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Let p. be the adjoint state, solution to

{ find p. € V such that
ae(vae) = _Le<u0)'wv Yy e V.

Hypothesis 3 There exists a real function f tending to zero with €, and four real numbers
0a,0¢,0J1,0J2 € R such that

3-a) (ae - aO)(anpe) = f(e)(sa + O(f(G)),

3-b) (e — Lo)(pe) = f(€)dr + o(f(€)),

3-¢) Je(ue) = Je(uo) + Le(ue — uo) + f(€)0J1 + o( f(€)),

3-d) Je(uo) = Jo(uo) + f(€)d.J2 + o( f(e)).

The quantity d.J; takes into account the variation of u. — ug when it is not O(f(¢)),
and the quantity ¢.J, takes into account the variation of .J. with respect to €.

The topological sensitivity analysis of j is then given by
Theorem 4 If hypothesis 3 holds, then

3(e) = 3(0) = f(e)dj + o(f(e)),
where 65 = §J1 + 0J2 + da — 6L.

Proof: We have

g(€) = 3(0) = [Je(ue) — Jo(uo)] + [ac(ue; pe) — ao(uo, pe)] — [e(e) — Lo(pe)]-

it follows from hypothesis 3 and the definition of adjoint state that

7(€) = 3(0) = Je(ue) — Jo(uo) + ac(ue — uo, pe) + f(€)(da — ) + o(f(€))
= [Je(ue) = Je(uo)] + [Je(uo) — Jo(uo)] + ac(ue — uo, pe)
+ f(e)(6a = d¢) + o(f(€))
= ac(te = uo, pe) + Le(ue — uo) + f(€)(0J1 + 8.J1 + da — d¢) + o(f(€))
= f(e)(0J1 + 0J1 + 0a — d¢) + o(f(€)).
(]

The topological expansion (Hypothesis 3) of a, £, and J requires the knowledge of the
topological asymtotic expansion of u. and p.. This subject is covered by a huge litterature
[KoV87, Frv89, MNPOO, 11192, AVV01, AVV03, AmKO04]. In the next section we present
an example of application of these methods.
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4.2. Insertion of inhomogeneities for Poisson equation
We present in this section the results obtained in [Ams03, ADS04].

4.2.1. The problem

We consider 2 a smooth domain in R, N = 2 or 3. The boundary of €2 is divided
in two parts of positive measure 02 = I'y UT'p. We assume that ) contains a small
inhomogeneity around the origin w. = €B, where B C R is a bounded smooth domain
containing the origin. We consider the piecewise constant function:

a.(z) ={ a0 infd\we (23)

aq in we,

where ap and «; are positive constants. Let g € LQ(F). For ¢ > 0, we denote u, the
solution of the following Poisson problem:

V- (aVue) =0 in Q
aoanue =g on FN» (24)
ue =0 onl'p.

This study is general, since a translation reduces the case of an inhomogeneity located
around the point xg to an inhomogeneity located around the origin.

The variational formulation associated to (24) reads

{ find u. € V such that

ae(ue,v) = £(v) Vv eV, (25)

where V = {u € H*(Q) | u|r, = 0} and, for u,v € H'(Q),

ae(u,v):/QSVu.Vvdx é(v):ao/ guds.
Q o9

Since ag and «a; are positive, the bilinear form a. is continuous and coercive on V, and ¢
is a continuous linear form. Hence problem (25) admits a unique solution.

4.2.2. Variation of the bilinear form

Let ® be the solution of
A® =0in Band RV \ B,

® is continuous across 9B,

g—?(@nq))* - (0,®)” = —non 9B,
where n denotes the outward unit normal to 9B and superscript +, resp. —, denotes the
limits over 0B from outside, resp. from inside.
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It is proved in [ADS04] that hypothesis 3-a) is satisfied with f(¢) = ¢ and

e%y]
aq

da = (a1 — ag)Vug(0)T [( - 1> /BB n® ®(y)ds(y) + |B|I| Vpo(0),

where © ® v = wvT. Let us introduce the matrix

P=(2-1) [ neag)isw 6)

aq
The matrix P depends only on the shape of B and of the ratio g /1, and we have

da = (a1 — ag)Vuo(0)T (P 4 | B|T)Vue(0)T.

Unit ball: when B is the unit ball, the matrix P defined in (26) is equal to

Qo — Qg

P=——-5-———
(N —1Dap+ a1

B|I.

Ellipse in the plane: when B is the ellipse in the plane with major axis 2r; and minor
axis 2ro, the matrix P is equal to

1
- X @ 0
P =7mriry(ag — ay) < aor —(i)—om"g 1 >
oor2 Fairy

Elliptic hole with homogeneous Neumann condition: it is the limiting case of the el-
lipse with a; — 0. We obtain formally a well known result [S0Z99]

_ ) 0
P_ﬂ-<0 T1>

and da is straightforward to estimate.

Straight crack of length 2r; with normal n: it is formally the limit of the previous case
with r9 — 0. After calculations, one obtains

da = —mr1(Vue(0).n)(Vpo(0).n). (27)

This formula is proved to be exact using other methods in [AHMOS5].

The linear form £ does not depend on ¢, hence

00 =0.
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4.2.3. Variation of the cost function

The calculation of §.J; and d.J5 is given in [ADS04] for different cost functions.
Example 1: the cost function is defined by

Je(u):/nae|ue—ug|2da:

where u, € H?(Q) is a “target” function.

Hypothesis 3 is satisfied with f(e) = €V, L.(u) = 2/ aeu(ug — ug) dz for all
Q
u€ HY(Q),6J1 =0and §J2 = (1 — )| B Jup(0) — uy(0)|?.
Example 2: The cost function is defined by

Je(u) = /Q ae|V(ue — ug)|2 dx

where u, € H3(Q) is a “target” function.

Hypothesis 3 is satisfied with f(e) = €V, Lc(u) = 2/ aVuV(ug — ug) dz for all
Q
u€ HYQ),6J1 = (a1 — ag)Vue(0)T PVue(0) and
§Jo = (a1 — )| B| |[Vuo(0) — Vuy (0)|?, where the matrix P is defined by (26).

4.3. Crack detection for Poisson equation: numerical results

We present here results obtained in [AHMOS5]. A domain contains an unknown crack,
and the available data are measures of « and 0,,u on the boundary of the domain, where
u satisfies a Poisson equation in the domain and the crack is perfectly insulating.

Figure 2. The cracked domain.
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4.3.1. The problem

Let €2 be a domain containing a perfectly insulating crack o* whose location, orienta-
tion, shape and length are to be retrieved. We dispose of the temperature § measured on
the boundary I" for a heat flux ¢ prescribed: 6 = u(c*)|r, where u(c™*) is the solution to

Au(o*) = 0 in Q\o*,
Opu(c*) = ¢ on T, (28)
Opu(c*) = 0 on o

To ensure well-posedness of the above system, we assume the normalization condition

/gods:O
r

and we impose that the mean value of the solution is equal to zero:

/ u(o™)dzx = 0.
O\F

Since the boundary conditions (6, ¢) are over specified, we can define for any crack
o C  two direct problems similar to (28): the “Dirichlet” problem with Dirichlet bound-
ary condition u = 6 on I', and the “Neumann” problem with Neumann boundary condi-
tion d,u = ¢ on I'. The solutions of these direct problems are denoted up and uy. The
actual crack o* is reached (0 = ¢™*) when there is no misfit between both solutions, that
is, when the cost functional

T(0) = Jup(@),ux(0)) = 3 un(@) — un(0) 2, 29)

vanishes. This is the so-called Kohn-Vogelius criterion [KoV87]. To compute the corre-
sponding topological gradient, we need to solve numerically:

— two direct problems in the full domain €2, one Dirichlet problem and one Neumann
problem. Their solutions are denoted by up and uy.

— two adjoint problems (defined also in the full domain ) that are derived directly
from their variational formulations. Their solutions are denoted by pp and py.

The following value of the topological sensitivity is a straightforward application of
(27), a different proof can be found in [AHMOS5]:

T (04.cm) =T (0) = =7€* [(Vup(z).0)(Vpp(z)n) + (Vun (2).0)(Vpy (2).0)]+0(e?),

where 0, ¢ n is the line crack of length 2e, centered at the point  and of unit normal n.
The corresponding topological gradient

9(z;n) = —7[(Vup(z)n)(Vpp(z)n) + (Vuy (2)n)(Vpy (z).n)]
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can be written as follows:

g(xz,n) =nT M(z)n, (30)
where M (z) is the symmetric matrix defined by

M(z) = —g [VuD(x)VpD(x)T + VpD(x)VuD(:z:)T + VuN(x)VpN(:z:)T

+ Vpn (J:)VuN(a:)T] )

According to that expression, g(z, n) is minimal at the point  when the normal n = ny
is an eigenvector associated to the smallest eigenvalue A;(x) of the matrix M (z). Then,
g(z,mn1) = A1 (x). We will call topological gradient this value.

4.3.2. Numerical results in one iteration without noise

——— -4+ 05 0 05 1

Figure 3. Left : the unknown crack ; right : superposition of the actual crack and a negative
isovalue of the topological gradient (courtesy S.Amstutz, I.Horchani).

This leads to a simple and very fast numerical procedure. First, the two direct prob-
lems and the two adjoint problems (Dirichlet and Neumann) are solved. Then the matrix
M (x) and its eigenvalues are computed in each cell of the mesh. By using the previ-
ous asymptotic analysis, the crack is expected to lie in the regions where the topological
gradient is the most negative.

The heat flux ¢ is imposed on I" by ¢(x) = x2, the second coordinate of the point
z. In this experiment, the flux inside the full domain is not parallel to the crack, so only
one measurement is needed for the reconstruction (see [AnB96]). We apply formula (30),
the location of the unknown crack and the topological gradient are indicated in figure 3.
We observe that the most negative values of the topological gradient are located near the
actual crack.
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4.3.3. Numerical results in one iteration with noise

We focus here on simulated noisy measurements. A white noise is added to the ex-
act data. Figure 4 shows the results obtained for 5%, and 20% of noise. We observe
that the inversion procedure is quite robust with respect to the presence of noise in the
measurements.

Figure 4. Negative isovalues of the topological gradient. Noise: 5% (left) and 20% (right).
(courtesy S.Amstutz, I.Horchani).

4.3.4. Case of multi-cracks

The computation of the topological gradient does not depend on the number of cracks
inside the domain. This remark is illustrated by the following experiment. The actual
cracks and the topological gradient are represented in Figure 5. We use now two fluxes
1(z) = z1 and pao(x) = xo. The cost functional is the sum of the two quadratic misfits.
We emphasize again that these results are obtained in only one iteration.
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