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RÉSUMÉ. On étudie une méthode numérique pour les équations HJB provenant des problèmes de
contrôle optimal avec contraintes sur l’état. Plus précisément on présente un schéma antidissipatif sur
une grille adaptative. La grille adaptative est générée en utilisant la structure des quadtree linéaires.
Cette technique facilite le stockage et la maniabilité des mailles.

ABSTRACT. We deal with a numerical method for HJB equations coming from optimal control prob-
lems with state constraints.
More precisely, we present here an antidissipative scheme applied on an adaptative grid. The adapta-
tive grid is generated using linear quadtree structure. This technique of adaptation facilitates stocking
data and dealing with large numerical systems.
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1. Introduction

In this paper, we deal with an optimal control problem (Ps,x) with state constraint :





min ϕ(yx,s(T )),
ẏx,s(t) = f(yx,s(t), a(t)) ∀t ∈ [s, T ]
yx,s(s) = x, x ∈ IRn,
a(t) ∈ A a.e , ∀t ∈ [s, T ],
yx,s(t) ∈ K ∀t ∈ [s, T ].

(1)

The set of controls A is a compact of IRm, ϕ : IRn → IR∪{+∞} is lower semi continuous
(l.s.c), and T is a fixed final time. The set K 6= ∅ is a compact convex set of IRn. The
dynamics f : IRn ×A → IRn is assumed to be Lipschitz and bounded.

Let v : [0, T ]×IRn → IR∪{+∞} be the value function defined by v(s, x) = inf(Ps,x).
For every s ∈ [0, T ] and x /∈ K, v(s, x) = +∞ and for x ∈ K, v(T, x) = ϕ(x).
It is known that the value function v satisfies the Dynamic Programming Principle (DPP) :

v(s, x) = inf
a(.)∈A(s,τ ;x)

v(τ, yx,s(τ)), ∀τ ∈]s, T ], ∀x ∈ K, (2)

where A(s, τ ; x) := {a : [0, +∞[→ A measurable, yx,s(t) ∈ K, ∀t ∈ [s, τ ]}. In the
case when the final cost function ϕ is continuous and K = IRn, the value function is the
unique continuous “viscosity” solution [B-CD, B, CD-L] of the Hamilton-Jacobi-Bellman
(HJB) equation :

{
−vt(t, x) − min

a∈A
f(x, a).vx(t, x) = 0, (t, x) ∈ [0, T ]×K,

v(T, x) = ϕ(x), x ∈ K.
(3)

Here, we are interested in the case when ϕ is given by

ϕ(x) =

{
0 if x ∈ C,
+∞ otherwise, (4)

where C 6= ∅ is a compact convex set of IRn, C ⊂ K and K 6= IRn. In section 4, we will see
that this case modelizes several control problems (target problem, Rendez-Vous problem,
viability kernels,...). Here, the value function v may clearly be discontinuous and takes its
values in {0, +∞}. It still satisfies equation (3) in a sense given by Frankowska and her
co-authors, see [FV, FP] and the references therein for all the details.

Several numerical schemes have been studied for discretizing (3). The most popu-
lar are the Semi-Lagrangian schemes [FF, FG, Gr] and the finite differences schemes
[S, CL]. These schemes provide a good approximation for a continuous value function.
However, they all use interpolation techniques at some level and are no more suitable
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for the approximation of discontinuous value functions. Indeed, the interpolation steps
produce more or less numerical diffusion, which causes an increasing loss of precision
mainly around the discontinuities. To our knowledge, the only scheme which doesn’t
use any interpolation technique is the one based on the viability algorithm developed by
P. Saint Pierre and his co-authors [SP]. But, as already shown in [BMMZ] this scheme
still diffuses.

The approximation method we study here is a mixture of the antidissipative UltraBee
(UB) scheme [DL, BZ] and of an adaptative gridding technique. The UltraBee scheme has
been studied by B. Désprès and F. Lagoutière [DL] for solving the transport equation with
positive constant velocity. It has been extended by O. Bokanowski and H. Zidani [BZ] for
the transport equation with a changing sign velocity and applied for the resolution of
Hamilton Jacobi equations (3) on a regular grid.
In our case, the value function takes only values 0 and 1 (the value 1 coding in fact the
+∞ value). In this special situation, the UltraBee scheme has a nice property : it is able
to localize accurately the discontinuity of v corresponding to the interface Γt separating
the region where v(t, .) takes the value 1 from the region where it takes the value 0.
This property allows us to design a simple method for adaptative gridding. Moreover, the
real calculations at every time tn = n∆t (∆t being the time step) have only to be done
on a small neighborhood of the interface Γtn . Hence adaptative gridding is particularly
interesting in our case. Moreover, we use linear quadtrees which provide a good way to
handle easily adaptative grids and to achieve a significant save of memory.

Adaptative gridding for solving HJB equations has already been studied in the case
of a continuous value function [CY1, CY2, Gr]. In [Gr] for example, L.Grune has hand-
led the Semi-Lagrangian scheme to solve (3) and explained the criteria he used for the
refinement and coarsening steps. These criteria are based on a fixed tolerance for the in-
terpolation error. The presence of discontinuities in our case makes these criteria no more
suitable.

The paper is organized as follows. In section 2 we give the formulation of the UltraBee
scheme and some of its properties. In section 3 we present the adaptative technique that
we use and explain the steps of the proposed method. Finally in section 4, we give several
numerical simulations in 2 dimensions coming from control problems and propagating
front problems.

2. The UltraBee scheme

Notice that when we deal with only one control, the HJB equation (3) becomes a
transport equation. Hence we will first present the UltraBee scheme in this simple case in
one space dimension (n = 1).
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2.1. Transport equation

Let f : IR → IR be Lipschitz and bounded and u0 : IR → IR be lower semi continuous.
We consider the transport problem :

{
ut(t, x) + f(x)ux(t, x) = 0, x ∈ IR, t ≥ 0,
u(0, x) = u0(x), x ∈ IR.

(5)

In all the sequel, we will use the following notations : ∆t denotes the time step, ∆x is the
space step of a regular grid G of IR and νj is the local CFL number at cell Mj defined by :

νj :=
f(xj)∆t

∆x
.

Consider the following scheme of finite volumes type :





Un+1
j − Un

j

∆t
+ f(xj)

Un,L

j+ 1
2

− Un,R

j− 1
2

∆x
= 0, ∀j ∈ ZZ, ∀n ∈ IN,

U0
j =

1

∆x

∫

Mj

u0(x)dx, ∀j ∈ ZZ.
(6)

where xj is the middle point of cell Mj = [xj− 1
2
, xj+ 1

2
], Un

j is an approximation of

the mean value 1

∆x

∫

Mj

u(tn, x)dx of u on cell Mj at tn, and Un,L

j+ 1
2

, Un,R

j+ 1
2

are fluxes

respectively on the left and on the right of the interface of cells Mj and Mj+1 at time tn.
For the UltraBee scheme, these fluxes are defined in the following way.

• In the case when the velocity f(.) ≡ f is a positive constant, the fluxes U n,L

j+ 1
2

and Un,R

j+ 1
2

coincide and we have Un,L

j+ 1
2

= Un,R

j+ 1
2

=: Un
j+ 1

2

. The scheme becomes :

Un+1
j − Un

j

∆t
+ f(xj)

Un
j+ 1

2

− Un
j− 1

2

∆x
= 0.

The UltraBee scheme, as defined in [DL], is a downwind choice of the fluxes under some
stability conditions. This choice replaces the classical Upwind flux which is stable but
dissipative. More precisely, the flux Un

j+ 1
2

is given by solving the minimization problem :
min

b
n,+

j
≤U≤B

n,+

j
|U − Un

j+1| where bn,+
j and Bn,+

j are defined by :

bn,+
j =

1

νj

(Un
j − max(Un

j , Un
j−1)) + max(Un

j , Un
j−1),

Bn,+
j =

1

νj

(Un
j − min(Un

j , Un
j−1)) + min(Un

j , Un
j−1).

It follows that
Un

j+ 1
2

= min(max(Un
j+1, b

n,+
j ), Bn,+

j ). (7)
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• In the case when f is of changing sign, the UltraBee generalized scheme (UB-
G) [BZ] is defined as follows

a) if νj > 0, Un,L

j+ 1
2

= min(max(Un
j+1, b

n,+
j ), Bn,+

j ) as proposed in (7).

b) if νj < 0, we define symetrically Un,R

j− 1
2

= min(max(Un
j−1, b

n,−
j ), Bn,−

j ) with
bn,−
j = 1

|νj |
(Un

j − max(Un
j , Un

j+1)) + max(Un
j , Un

j+1), and
Bn,−

j = 1
|νj |

(Un
j − min(Un

j , Un
j+1)) + min(Un

j , Un
j+1).

c) if νj ≤ 0 and νj+1 ≥ 0, Un,L

j+ 1
2

= Un
j , Un,R

j+ 1
2

= Un
j+1.

d) if νjνj+1 > 0, Un,R

j+ 1
2

= Un,L

j+ 1
2

(if νj > 0) or Un,L

j+ 1
2

= Un,R

j+ 1
2

(if νj+1 < 0).

When the velocity is constant, and under the CFL condition,

|νj | ≤ 1 ∀j ∈ ZZ, (8)

one interesting property of the UltraBee scheme is an exact advection [DL, Theorem 3]
for a class of step functions defined by : ∃k0 ∈ [0, 1[ such that ∀j ∈ ZZ,

U0
3j+1 = U0

3j , U0
3j+2 = k0U0

3j+1 + (1 − k0)U0
3j+3. (9)

Exact advection means that the computed value Un
j is the exact mean value,

Un
j =

1

∆x

∫

Mj

u(tn, x)dx,

where u is the exact solution of the advection problem. For the convergence proofs of the
UltraBee scheme, we refer to [DL, BZ].

2.2. HJB equation

Here, we are still in dimension 1. First, we consider the simple change of variable,

v̂(t, x) = v(T − t, x), ∀t ∈ [0, T ], ∀x ∈ IR.

Then the function v̂ satisfies
{

v̂t(t, x) − min
a∈A

f(x, a).v̂x(t, x) = 0, ∀(t, x) ∈ [0, T ]×K,

v̂(0, x) = ϕ(x), ∀x ∈ K.
(10)

The application of UB-G to the HJB equation (10) consists, on a regular grid G of K, in
the following steps (UB-HJB) :

• Step 1 : We compute the discrete initial condition

V 0
j =

1

∆x

∫

Mj

ϕ(x)dx, ∀j ∈ J := {j ∈ ZZ, Mj ∈ G}.
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• Step 2 : We discretize the set of controls A into Na controls, a1, a2, ..., aNa
.

• Step 3 : For n ≥ 1, knowing the approximation (V n
j )j∈J of v̂(tn, .)

- We compute, for each i = 1...Na, (Un+1
j (ai))j∈J given by the UB-G scheme :





Un+1

j (ai) = Un
j (ai) −

f(xj , ai)∆t

∆x
(Un,L

j+ 1
2

(ai) − Un,R

j− 1
2

(ai)),

Un
j (ai) = V n

j , ∀j ∈ J.

- We take V n+1
j := min

i=1..Na

Un+1
j (ai), ∀j ∈ J. This defines the numerical approxi-

mation of v̂ at tn+1.

In dimension 2, we apply the UB-HJB using the classical Trotter splitting : the nume-
rical solution evolves during a time step in the x1-direction and then during another time
step in the x2-direction. The resolution using this splitting technique is stable under the
CFL condition,

max(|
f1(xj , ai)∆t

∆x1
|, |

f2(xj , ai)∆t

∆x2
|) ≤ 1, ∀j ∈ J, ∀i = 1, .., Na. (11)

Here, the dynamics f is defined by f := (f1, f2), ∆x1 and ∆x2 are the space steps
respectively in the x1-direction and in the x2-direction, and xj ∈ IR2 is the center of the
cell Mj .

In [BMZ], under some suitable assumptions, we prove in one space dimension the
convergence of the UB-HJB scheme towards the value function for any initial condition
ϕ which is C1-piecewise regular with compact support.

Notice that, at the first step of UB-HJB scheme, when we compute the average values
(V 0

j )j∈J , the only components whose values are strictly between 0 and 1 are those corre-
ponding to the cells containing the front Γ0 (we recall that Γ0 is the interface separating
0-values of v̂(t = 0, .) and its 1-values). In dimension 1, we prove in [BMZ] that, for
every n ≥ 0, the interface Γtn is localized on no more than one cell. In dimension 2, we
shall verify numerically that Γtn is still well localized by the UB-HJB scheme, but we
don’t have yet any precise theoretical result to claim.

3. The adaptative method

We explain in this section the details of the method that we propose. For sake of
simplicity, we take n = 2 and K = [X1

min, X
1
max] × [X2

min, X
2
max]. Before dealing with

details, we start by presenting the linear quadtrees technique that we use for stocking data.
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3.1. Linear quadtrees

As we deal with adaptative grids, we look for a technique that facilitates stocking and
finding data relative to each cell of the grid. This technique is explained by I. Gargantini
in [Ga] and uses the notion of linear quadtree. If we represent our final adapted grid by a
tree, each cell is a leaf (final node of the tree) and the initial quadrant (all the domain K
before adaptation) is the root of the tree. The method for stocking data using quadtrees is
based on coding each leaf of the tree with a quaternary function. This code representation
is implicitly the path from the root to the concerned leaf.
Every code is composed of 0, 1, 2, 3. When dividing a cell into four subcells, the NW
quadrant is indexed by 0, the NE by 1, the SW by 2 and the SE by 3. The code of each
subcell is the concatenation of the code of the mother cell with the index of the subcell
(as shown in figure 3.1). Here cells 20, 21, 22 and 23 are sisters and 2 is the mother cell.

2

0 1

3
22

20

23

21

0X 1X

3X

Figure 1. Refinement of a cell by quadtrees

Notice that when coding the grid using a tree, all intermediate cells have to be memo-
rized, for example we memorize cells 2, 20, 21, 22, 23. However, in a linear quadtree, we
have to stock only final cells of the grid, i.e. cells 20, 21, 22, 23. Then, to find the inter-
mediate cells, we have just to truncate the codes. Furthermore the use of linear quadtrees
allows to manage efficiently the adapted grid. In fact, thanks to fast algorithms, operations
like encoding a cell into its quaternary code and finding adjacencies of a cell are run in
logarithmic time [Ga].

3.2. Algorithm of the method

Our contribution consists in finding a suitable criterion to adapt the computational
domain. This criterion must be compatible with the fact that we deal with mean values
on each cell and that our value function is discontinuous. Let Lmax be a fixed integer

that corresponds to the maximal level of refinement. We set ∆X1
min =

|X1
max − X1

min|

2Lmax

and ∆X2
min =

|X2
max − X2

min|

2Lmax
. Then (∆X1

min, ∆X2
min) is the minimal cell size. The

maximal level Lmax is chosen such that the following CFL condition holds :

max(|
f1(xj , ai)∆t

∆X1
min

|, |
f2(xj , ai)∆t

∆X2
min

|) ≤ 1, ∀j ∈ J, ∀i = 1, .., Na. (12)
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In all the sequel, for every n ≥ 0, we denote by Gn the adaptative grid at time tn = n∆t.
We also use the notation Gl, l = 1, · · · , Lmax, for the regular grid with mesh steps :
∆lX

1 =
|X1

max−X1
min|

2l , ∆lX
2 =

|X2
max−X2

min|
2l .

We give now the algorithm of the method which begins by an initialization step. First,
we handle refinement steps in order to localize the discontinuity. At every refinement
level, a cell which is surrounded by cells not having the same mean value is refined.
After these refinement steps, the grid we obtain may contain sister cells having the same
mean value (0 or 1) as their immediate neighboring cells. These cells do not contain any
discontinuity and have to be coarsened : this is the coarsening steps. Finally, we get the
grid G0 where a cell of minimal size either contains a discontinuity or is a neighbor of a
cell containing a discontinuity or is a sister of such a cell.

Step 1 : The construction of the grid G0.
– Step 1.1 : Take G0,0 = K (one cell), and define G0,1 as the domain K splitted into

four cells. Set l = 1.
– Step 1.2 : For 1 ≤ l ≤ Lmax − 1. For all cells Mj ∈ G0,l \ G0,l−1, compare the

value on Mj with its neighboring values. If the values are different, then refine cell Mj .
We obtain a new grid denoted G0,l+1. Set l = l + 1 and go to Step 1.2.
Otherwise, set l = Lmax and go to Step 1.3.

– Step 1.3 : Set G̃0,Lmax = G0,Lmax .
– Step 1.4 : For l = Lmax, · · · , 2, for every cell Mj ∈ G̃0,l ∩ Gl, if the sisters of Mj

have the same mean value (0 or 1) and if the neighboring cells of the four sisters have also
the same value, then coarsen Mj with its sisters. We obtain a new grid denoted G̃0,l−1.
Set l = l − 1, and go to Step 1.4. Otherwise, set l = 1, and go to Step 1.5.

– Step 1.5 : Set G0 := G̃0,1 and define V 0 on G0.
For example, the construction of the adapted grid G0 follows the refinement steps ex-
plicited in figure 3.2 for Lmax = 3. The value function here takes value 1 below the
discontinuity and value 0 beyond. At the second level of refinement, cell 2 is refined as its
mean value is in ]0, 1[. Cells 0, 1, 3 are refined too because their value 0 differs from the
value of their neighbor cell 2. Notice that, at level 3, G0,3 is such that all cells containing
the discontinuity are of minimal size as well as their neighboring cells. After refinement,
we carry out a coarsening step. Following the test of the algorithm, we coarsen subcells
of 21, 30, 32 and then subcells of 0, 1 and 3.

Now, for n ≥ 0, we have the adapted grid Gn (at time tn) and the numerical solution
V n on Gn. The discontinuity at tn lies in the region of Gn where the cells are of minimal
size. Because of the CFL condition (12), we know that the discontinuity is still in this
region at tn+1 (as already explained the discontinuity does not evolve of more than one
cell of size (∆X1

min, ∆X2
min) during a time step). We conclude that V n+1

j = V n
j (=0 or

1) whenever Mj ∈ Gn is not of minimal size, and the only computations which remain to
be done correspond to the cells of minimal size.
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Figure 2. Construction of G0, the discontinuity is plotted with dots.

Step 2 : UB-HJB computation and construction of Gn+1.

– Step 2.0 : Do an iteration of UB-HJB scheme on the cells of minimal size
(∆X1

min, ∆X2
min) of Gn. We obtain V n+1 on Gn.

– Step 2.1 : Define Gn+1,0 := Gn, and V n+1,0 := V n+1 on Gn.
– Step 2.2 : For 1 ≤ l ≤ Lmax − 1, for all cells Mj ∈ Gn+1,l ∩ Gl, compare the

value1 V n+1,l
j on Mj with its neighboring values. If the values are different, then refine

cell Mj , attribute to the daugther cells of Mj the same value V n+1,l
j . This defines a new

grid Gn+1,l+1. Set l = l + 1, and go to Step 2.2.
Otherwise, set l = Lmax and go to step 2.3.

– Step 2.3 : Set G̃n+1,Lmax := Gn+1,Lmax and Ṽ n+1,Lmax := V n+1,Lmax .

– Step 2.4 : For l = Lmax, · · · , 2, do a corsening step following the same idea as in
Step 1.4. If there is no coarsening to do, then set l = 1, and go to Step 2.5.

– Step 2.5 : Set Gn+1 := G̃n+1,1, and V n+1 := Ṽ n+1,1. This corresponds to the
approximation on Gn+1 of the solution v̂ of (10) at t = tn+1.

By construction, we have the following equivalence result :
Theorem : Let Lmax be a fixed integer. Under the CFL condition (12), the approximation
of (10) using the UB-HJB scheme on an adaptative grid gives the same numerical solution
as the resolution using the UB-HJB scheme on a regular grid GLmax

.

4. Numerical simulations

In the graphics through all this section, we use the black color for cells with mean
value strictly between 0 and 1, white for cells with value 0 and light gray for cells with
value 1. We also use the notation B(c0, r) for the ball centered in c0 and with radius r.

Example 1 : A propagating front problem
We first start with a propagating fronts problem. The initial condition is here two sources

1. Recall that for every Mj ∈ Gn+1,l ∩ Gl, with l < Lmax, the mean value V
n+1,l
j is equal to 0 or 1.

A method for optimal control problems  -  264

ARIMA  -  numéro spécial TAM TAM'05



from which a fire spreads. Let ϕ be a function that modelizes the burnt region at t = 0,
and defined as :

ϕ(x) =

{
0 if x ∈ B(c1, 0.1) ∪ B(c2, 0.1),
1 otherwise,

with c1 = (0.4, 0.4) and c2 = (0.6, 0.6). LetK denote the domain [−0.5, 2.5]×[−1.5, 1.5].
We associate to this problem the function v̂ which takes value 0 in (t, x) ∈ [0, T ] ×K if
the flame front has already reached x at t, and 1 otherwise. In fact, v̂ satisfies the Eikonal
equation,
{

v̂t(t, x) + ||∇v̂(t, x)|| + (−x2, x1)
t.∇v̂(t, x) = 0, ∀t ∈ [0, T ], ∀x = (x1, x2) ∈ K,

v̂(0, x) = ϕ(x), ∀x ∈ K.
(13)

The discontinuity of v̂ at time t is the position of the flame front at time t. Hence the set
{x ∈ K, v̂(t, x) = 0} represents the burnt zone at time t.
Although this problem comes from front propagation, it takes place in the formalism we
study. Indeed, the Eikonal equation (13) can be written as an HJB equation :

{
v̂t(t, x) − mina∈A f(x, a).∇v̂(t, x) = 0, ∀t ∈ [0, T ], ∀x ∈ K,
v̂(0, x) = ϕ(x), ∀x ∈ K,

where the set of controls is A = [0, 2π], and the dynamics is given by :

f(x, a) = (x2 − cos(a),−x1 − sin(a))t, ∀x ∈ IR2, ∀a ∈ A.

In the numerical tests, we discretizeA into Na = 8 controls, and we choose Lmax = 6
as maximal level of refinement. We visualize the computed solution and the error which
is defined on each cell Mj , for j ∈ J , by εn

j = |V n
j − Ṽ n

j |. Here Ṽ n
j is the average value

of the exact solution v̂ on cell Mj at time tn.

We display graphics at T = 0.11 (figure 3) when the two fronts meet, and then at T =
0.87 (figure 4) when we get only one front which is already far from the sources of fire.
Notice that the error is localized in a thin region around the discontinuity of bandwidth of
no more than twice the size of a minimal cell. This is the antidissipative behavior of the
scheme. Notice also that the approximation quality isn’t distorted when the discontinuity
evolves in time. This is another feature of the antidissipative behavior.

Table 1 summerizes the gain we obtain in terms of number of cells when we apply
adaptation by comparison to an equivalent regular grid. We can notice that, as expected,
we obtain exactly the same error on an adaptative grid and on a regular one. Notice that
when we increase the refinement level by 1, the gain is multiplied by 2 and the error is
multiplied by 2

3 . This reflects optimization in the management of cells. We can also notice
at T = 0.11 that when we fix Lmax = 10 we handle almost 4000 cells on an adaptative
grid, as much cells as if we did calculations on a regular grid corresponding to Lmax = 6.
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Figure 3. Computed solution and error at T=0.11, # cells=244, Lmax = 6.
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Figure 4. Computed solution and error at T=0.87, # cells=817, Lmax = 6.

Hence when we adapt the grid we improve the precision 3 times without spending any
additional memory cost. For refinement levels bigger than 10, it is no more possible to
handle calculations on a regular grid. Hence we can not have better precision on a regular
grid : this reflects the gain of precision achieved by the use of the adaptative algorithm.

Example 2 : A capture basin problem (Zermelo problem)
Let K := [−6, 2] × [−2, 2] and C := B(c0, r) with c0 = (0, 0) and r = 0.44. We define
the dynamics f : IR2 ×A → IR2,

f(x, a, θ) = (1 − βx2
2 + a cos(θ), a sin(θ)),

where the constant β = 0.1, and A denotes the set [0, 0.44]× [0, 2π[.
Our aim is to approximate the capture basin of C which is the subset of initial states

x ∈ K for which exists an admissible control (a, θ) ∈ L∞([0, +∞[;A) and a finite time
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Grid Lmax L1 error # cells gain
adapt 6 8.8E-3 244 16.78
reg 6 8.8E-3 4096 -

adapt 7 5.67E-3 547 29.95
reg 7 5.67E-3 16384 -

adapt 8 4E-3 1108 59.14
reg 8 4E-3 65536 -

adapt 9 3E-3 1939 135.195
reg 9 3E-3 262144 -

adapt 10 2.46E-3 3940 266.14
reg 10 - 1048576 -

Tableau 1. Gain relative to each refinement level at T=0.11.

t ≥ 0 such that the trajectory yx,0(.) evolving with the dynamics f under (a, θ) lives in
K and reaches C at time t :

Captf (C) := {x ∈ K, ∃t ≥ 0, ∃(a, θ) ∈ L∞(IR+;A), yx,0(τ) ∈ K ∀τ ∈ [0, t], yx,0(t) ∈ C}.

We consider the capture basin of C before time T :

Captf (T, C) := {x ∈ K, ∃t ∈ [0, T ], ∃(a, θ) ∈ L∞([0, T ];A), yx,0(.) ∈ K, yx,0(t) ∈ C}.

It is clear that T 7→ Captf (T, C) is increasing for inclusion. Moreover, we can prove
[BMMZ] that limT→+∞ Captf (T, C) = Captf (C). Let us set

ϕ(x) = 0 if x ∈ C, and 1 otherwise,

and consider the set-valued map defined by

Λ(x) =





0 if x ∈
◦

C,
[0, 1] if x ∈ ∂C,
{1} if x ∈ K \ C.

Let vT be the value function of the following control problem :

min{ϕ(yx,s(T )),

ẏx,s(t) = λ(t)f(yx,s(t), a(t), θ(t)), yx,s(s) = x,

(a(t), θ(t)) ∈ A & λ(t) ∈ Λ(yx,s(t)) for a.e. t ∈ (0, T ),

yx,s(t) ∈ K ∀t ∈ [0, T ].

We use the classical change of variable : v̂(t, x) = vT (T − t, x), ∀t ∈ [0, T ], ∀x ∈ K.
Then, following [BMMZ], we have :

Captf (T, C) = {x ∈ K, vT (0, x) = 0} = {x ∈ K, v̂(T, x) = 0}.
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Then as in [BMMZ], in order to approximate Captf (C), we compute an approximation
V n of v̂(tn, ·), with tn := n∆t, for n large enough and satisfying the stopping test

||V n − V n−1||L1 :=
∑

j

∆x1
min∆x2

min|V
n
j − V n−1

j | ≤ 10−4. (14)
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(a) Lmax=6, T = 12.96, # cells=478 (b) Lmax=7, T = 7.18, # cells=952
Figure 5. Capture basin of a Zermelo problem.

In figure 5, we show the graphics we obtain for maximal level of refinement Lmax = 6
(figure 5 (a)) and Lmax = 7 (figure 5 (b)). In the graphics, the black circle is the border
of the target C. We give in the following table the gain obtained for each refinement level,
the stopping time (i.e time for which the stopping test (14) is fulfilled) and the value of
the residual ||V n − V n−1||L1 . Notice that when we increase the refinement level Lmax,

Grid Lmax # cells gain stopping time ||V n − V n−1||L1

adapt 5 232 4.41 26.125 3.89 E-7
reg 5 1024 - 26.125 3.89 E-7

adapt 6 478 8.56 12.96 1.82 E-8
reg 6 4096 - 12.96 1.82 E-8

adapt 7 952 17.21 7.187 2.38 E-5
reg 7 16384 - 7.187 2.38 E-5

Tableau 2. Gain relative to each refinement level with the value of the residual and the
stopping time.

the precision required in the stopping test is reached faster. For example, with Lmax = 7
we obtain a good solution on the adaptative grid at T = 7.187 using 952 cells, whereas
with Lmax = 5, the stopping test is fulfilled only after T = 26.125 and the correspon-
ding regular grid contains 1024 cells. Hence adaptative gridding allows not only to have a
better precision using almost the same number of cells but also to handle less calculations
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and to save time.

Example3 : A viability kernel problem (consumption problem)
Let K = [0, 2]× [0, 3], A = [− 1

2 , 1
2 ] and f(x, a) = (x1 − x2, a), ∀x ∈ IR2, ∀a ∈ A.

We define the viability kernel associated to K as the set of initial states x ∈ K such
that exists a control a ∈ L∞(IR+;A) and a trajectory yx,0(.) (evolving under the control
a) which never leaves K,

Viab(K) := {x ∈ K, ∃a ∈ L∞(IR+;A), yx,0(t) ∈ K ∀t ≥ 0}.

We define also Viab(T,K) := {x ∈ K, ∃a ∈ L∞([0, T ],A), yx,0(t) ∈ K ∀t ∈ [0, T ]}.
Let ϕ(x) = 0 if x ∈ K, and 1 otherwise. Consider the value function vT of the control
problem (1) associated to the dynamics f, the final cost ϕ and the set K.

Let v̂(t, x) = vT (T−t, x). From [BMMZ], we have : Viab(T,K) = {x ∈ K, v̂(T, x) =
0}, and Viab(T,K) −→T→+∞ Viab(K). As in the previous example, in order to approxi-
mate Viab(K), we compute an approximation V n of v̂(tn, ·) for n satisfying the same
stopping test (14).

We show the graphics we obtain for maximal level Lmax = 5 (figure 6 (a)) and
Lmax = 6 (figure 6 (b)). In these figures, the white line is the border of the exact viability
kernel. Here, the set of controls A is discretized into Na = 2 controls (a ∈ {− 1

2 , 1
2}).
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(a)Lmax=5, T ≈ 256, # cells=421 (b)Lmax=6, T ≈ 5, # cells=916

Figure 6. Viability kernel of the consumption problem.

In a previous work [BMMZ], the UB-HJB scheme has been compared to the viability
algorithm [SP]. Many numerical examples have been handled on a regular grid (among
others the Zermelo problem and the consumption problem) to prove the relevance of UB-
HJB in this kind of problems. In fact, UB-HJB provides a much better approximation of
these sets (viability kernels, capture basins). Here we continue in the same direction and

269  -  ARIMA  -  Volume 5  -  2006

ARIMA  -  numéro spécial TAM TAM'05



improve results given by UB-HJB scheme. The use of the adaptative method allows us to
reach a better precision by optimizing the management of the memory.
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