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RÉSUMÉ. Cette étude est la continuation des travaux [7],[8] et [9] qui sont basés sur l’étude faite par
Glowinski & Al [3] et [4] ainsi que Bernardi & Al (voir [1] et [2]). Ici nous proposons un Algorithme
pour résoudre un problème non-linéaire issu de la mécanique des fluides. Dans [7] nous avons étudié
le probléme de Stokes en adaptant la technique de Glowinski, grace à laquelle, on peut découpler
la pression de la vitesse lors de la résolution du probléme de Stokes. Dans ce travail, nous éten-
dons notre étude et montrons que cette technique peut être utilisée dans la résolution d’un problème
non-linéaire comme les équations de Navier Stokes. Des tests numériques confirment l’intérêt de la
discrétisation.

ABSTRACT. This study is a continuation of the one done in [7],[8] and [9] which are based on the
work, first derived by Glowinski & Al in [3] and [4] and also Bernardi & Al [1] and [2]. Here, we propose
an Algorithm to solve a nonlinear problem arising from fluid mechanics. In [7], we have studied Stokes
problem by adapting Glowinski technique. This technique is userful as it decouples the pressure from
the velocity during the resolution of the Stokes problem. In this paper, we extend our study to show
that this technique can be used in solving a nonlinear problem such as the Navier Stokes equations.
Numerical experiments confirm the interest of this discretisation.

MOTS-CLÉS : Algorithmes Numériques, Approximations Spectrales, Problèmes de Stokes & Navier-
Stokes.
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1. Introduction

Over the last decade, there has been considerable interest in studying axisymmetric
problems and their approximations. These problems have been studied by many authors,
namely, Glowinski & Al [3],[4], Bernardi & Al [1],[2] and Nouri & Al [7],[8],[9] and
references therein. The numerical discretisations relying on the current, the whirpool and
the pressure formulation has first been performed for finite element methods see [10], in
the much simpler case of the Stokes problem, and extended to the case of spectral methods
[2] and [7], where spectral analogues of Nédelec finite elements [10] are used. Relying
on the work in [7] and [8], we propose a discretisation of the Navier Stokes equation in
the situation where the domain is axi-symmetric. We present some numerical experiments
which confirm the optimality of the discretisation. The analysis of Navier-Stokes equa-
tions for incompressible viscous flows in a connected bounded domain can be reduced to
analysing the corresponding Stokes problem.
First, we consider the Stokes problem in the tridimensional domain

��
that we suppose

invariant by rotation around the axis of the cylinder. Then, we use the cylindrical coordi-
nates �������	��
��
����������������������� �!�#" and 
$������% The domain

��
is denoted by :��'&)( ��*+��,#��
��-������.0/1�2����
��-� ��3�46587�96: �;�=<'�$<>�@?A�

where
4 5

is the interior part of the boundary of
�

in the axis BC� &ED	F
and we denote

by :
4G&IH#� / 4 5 %

First, we introduce the functional spaces :J@KL � � � & B0M integrable in
� � such that NO M K �����P
��Q� : � : 
SRUT F

with the norm

V M VXWZY[P\ O^] &`_a NO M K �����P
��Q� : � : 
bRETdce
[Y �gfhM�� J@KL � � �
%

and the corresponding weighted Sobolev spaces :

i LL � � � & ( MS� JjKL � � �X�lkmM & � H�n Mh� H�o Mp����� JjKL � � ��� K ? %
ARIMA

290  -  An algorithm for the Navier-Stokes problem 

ARIMA  -  numéro spécial TAM TAM'05



ARIMA – Volume  5 - 2006i LL
q 5 � � � &)( MS� i LL � � �-r�M &UD
on

Hs� / 4 5 ?8%
tmuL � � � & ( Mb� ivuL � � �X�w�yx �6z|{ u H xn H zo MS� J K L � � �X� D <'}Z~��w<�� ?

t LL
q 5 � � � &�( MS� t LL � � �
��M &ID
on

4 ?�%
Then, the Stokes problem can be written as :

���� ��� �A�s� H Kn�� n ~ Ln H n � n � Ln Y � n ~ H Kn�� o ~ H Ko�� o �+~ H nQ� &I� n �;� 9���A�s� H Kn�� o ~ Ln H n � o ~ H Ko�� o �+~ H o�� &�� o �;� 9��H n � n ~ Ln � n ~ H o � o &ID ��� 9��� n &ID � � o &IDI�y9�4 % [1]

For the known
�;& � ��n � ��o ����� t L5 �Q���d� i L5 �Q��� there exists � & � � n � � o ���E� t LL�q 5 �8�� i LL
q 5 �
% The equation for the divergence can be written as :H�n �2� � n ��~ H�o ��� � o � &UD �;� 9�� [2]

Equation [2] show that the vector ��� � n q � � o � is of divergence free. From theorem 3.1
in chapter 1 of [5], there exists a function � verifying� � � n� � o�� & � � & � �y� �2� � & � H�o �� H�n � � %
By taking � & �0 |� we have

H�o � & � H�o   and � H�n � & �� ��;� H�n  A� then we set :

¡ � nA&UH�o  � o|& � Ln � H�n ���y -��� [3]

Now, let us denote [2] by
: ��M n � which can also be written asH�n � n ~£¢� � n ~ H�o � o�&UD

[4]

and by � �y� n   the vector � H o  |�C� Ln H n ���y -���
% We also introduce the operator � �y� given by :� �y� ��Mp� &IH�n M o � H�o M n � M & ��M n �!M o � [5]
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and the operator � �y� such that for any   , we have :

� �y�   & � H�o  � H�n   � [6]

We can then write � �y� �2� �y�  �� & �A¤¥  [7]

Remark 1
If
: ��M�M &ID

, we have � �y� � �y� �2M�� & �A¤mM . If we define the operator ¤ n by :

¤ n   &EH Kn  ;~ ¢� H n  ¦� ¢� K  =~ H Ko   [8]

we can then show that � �y� ��� �y�Qn  -� & �A¤ n   [9]

(For details see proposition 3.3.2 in [7]).

2. Continuous Problem

The question is now what are the necessary boundary conditions to ensure the exis-
tence and uniqueness of the current function   defined by :¡ � nA&UH�o  � o|& � Ln H�n ���y -� [10]

and then deduce its regularity from the regularity of the velocity � � the solution of the
Stokes problem, see [7] for details. We consideri L � : �§M n � � � &¨( MS��� JjKL � � ��� K / : �§M n MS� J@KL � � �©?
with the norm : V M VXª [ \¬«�­�®P¯ q OZ] &�° V M V K \�WZY[P\ O^]�] Y ~ V : ��M n M V KW	Y[P\ O^]Q± [Y [11]

Note that the boundary operator is defined and continuous from
i LL � � � onto

i [YL � 4 �X%
Note also that

i { [YL � 4 � coincides with
i [YL � 4 � in the points away from

465y² 4 % In the same

way, we define the normal boundary operator which is continuous from
i LL � : �§M n � � � ontoi { [YL � 4 � (The dual of

i [YL � 4 ��� by :
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f#MS� i L � : ��M n � � � and ³¥� i LL � � �#�
�2M^% 9 ��³��Q´ & N O � : ��M n M^% ³��X�2����
��µ� : � : 
¶~>N O ��Mh% k�³��C������
��µ� : � : 
^% [12]

�!%��©% �!´ is the scalar product of duality between
i [YL � 4 � and

i { [YL � 4 � with the measure:�·b& � : � on the side which is parrallel to
� 
 and

&I: 
 on the two sides of
4 %

It has been shown in [7] that :

Proposition 1fhM�� i L � : �§M n � � � such that
: �§M n M &UD

and M^% 9s¸µ¹�&ID �»ºp�>� t LL � � � such that M & � �y� n �j%
From theorem 3.1 of [5], ºp�>� i L � � � such that �yM & � �y� � . If we set ¼ & Ln � verifyingM & � �y�Qn ¼ , we have

H�o ¼½� J K L � � � and
Ln H�n �2��¼���� J K L � � � . By integrating by parts, we

get : H ����¼��H^· &IDI�y9�4 % [13]

where ¾y¿¾0À is the tangential derivative given by :H �Hh· & k��-% · % [14]

The function ��¼ &ÂÁ ­
on each connected component

4 ­�ÃyÄ­�Å L
of
Hs�

where
Á ­ &�D

on
all the ones that touch the axis B©� &IDpF

. Hence �¦� t LL � � �#%
Let us now define the boundary conditions for the current function. For, we considerMU� i L � : �§M n � � � such that

: �§M n M &ÆD
. Let us denote by � the function associated toM , From proposition 1, we have ��� &ÈÇ

(a constant) on
4 % However

4
touch the axisBC� &UD	F

, hence
Ç�&UD

and ��É ´ &ID
. We set the following result :

Corollary 2
Let M�� i L � : ��M n � � � such that

: �§M n M &ÂD
and Mh% 9 É ´ &ÂD

. If � is the current function
associated to M^� then � is the solution of the following problem :

¡ �d� t LL
q 5 � � �Ê �2� �y�Qn �-% � �y�Qn©Ë �C�����P
��Q� : � : 
 & Ê �2M^% � �y�Qn0Ë �X�2����
��µ� : � : 
^�µf Ë � t LL�q 5 � � � [15]

To study this problem (see [5] and [7]), we introduced the space :
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i L �2� �y� � � � & ( MS�;� J@KL � � �!� K /�� �y� ��Mp��� J@KL � � � ? [16]

and we define the boundary operator from
i L �2� �y� � � ) onto

i { [Y � 4 � as :f#M�� i L ��� �y� � � �X�µf Ë � t LL � � �
�
Ì M^% · � Ë�Í ´ & N O ��Mh% � �y� n Ë �X�2����
��µ� : � : 
m� N O � �y� �2M�� Ë �2����
��µ� : � : 
 [17]

Hence we can write :

�� � �A¤ n � & � �y� ��Mp��� 9ÏÎ ��� � ���É ´ &ID� Ln ¾ \ n ¿ ]¾0Ð ~�Mh% · �CÉ ´ &ED [18]

where ¾y¿¾0Ð & k��j% 9 %
Proposition 3
We suppose that M'� t LL
q 5 � � �¶� i LL
q 5 � � � /

: �§M n ��Mp� &�D
and Mh% 9 É ´ &�D

, then there
exists a current function � in

t KL � � � / M & � �y� � verifying � &½D
on
Hs�

and ¾0¿¾0Ð &ÑD
on4

, where
t KL � � � is defined by :t KL � � � & ( �¦� J K L � � �P/I�0x �6z|{ K H xn H zo �>� J K L � � �X� D$Ò �2}Z~d�Ó� Ò�Ô ? %

Remark 2
For the proof of this proposition, we use Hardy inequality (See [7] and references therein).
Remark 3
In [8], we showed how we can generalise this result.

3. Current-Whirpool function formulation

In this section, we introduce a new unknown called whirpool function Õ & � �y� � � �
which gives : �A¤ � & � �y�Qn Õ [19]
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¤ is applied to � � n � � o � in the two first equations of [1].

If we substitute this result in [1], we obtain¡ ��Ö H�o ÕG~ H�n � &I��n��Ö Ln H�n ���0Õj�+~ H�o � &���o [20]

The interesting point of this formulation is to decouple the pressure from the velocity
to obtain a separate problem for the pressure. We have

�A¤ n Õ & ¢Ö � H�o���n � H�n0��o � [21]

where � & � �y�!n   and Õ & �A¤ n  A%
Hence we can conclude that this formulation is equivalent to the one derived by Glo-

winski and Pironneau in [3] and [4].

3.1. The reduced Problem

The advantage of this decoupling is to write [1] as :

�2×Ø� ���� ��� �A¤ n Õ & � �y� � � � �y9Ó��A¤ n   & Õ �y9G� �É ´ &UD¾©Ù¾©Ú É ´ &UD
Problem (P) is exactly a Dirichlet problem for the biharmonic operator ¤ Kn , where the

solution is the current function   such that :

× 5 � �� � �A¤ Kn   & � �y� � � � �y9Ó� �É ´ &ID¾0Ù¾©Ð É 4v&ED
Problem �2× 5 � can be written in a matrix form as :Î�ÛÑ&UÜ
where

Î
is the matrix with the entries

7pÝ �ßÞ ­ }�à���Þ n } u � defined by :

7 Ý ��Þ ­ } à �PÞ n } u � & �ßÞ �­ } à ��Þ �n } u � Ý ~I�ßÞ ­ } �à ��Þ n } �u � Ý ~U� ¢� Þ ­ } à � ¢� Þ n } u � Ý �
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where � � �!Mp� Ý is given by :� � ��M�� Ý�& Ý � Lá­âÅ L Ýáà Å 5 � ��ã ­ ��ä�à0�µM#�ßã ­ ��ä�à0�§Õ ­2å à�� Ô <>�����¥<�æÓ� ¢ <�çè�P�¥<>æé� ¢ %
Here Þ ­ respectively }âà , are the Lagrange polynomials associated at the nodes ã ­ andä�à , ¢ <'�@<'æê~ ¢ and

D <�ç�<'æÓ%Û
is constructed by the values of the solution � Ý at the nodes ��ã ­ ��ä à � and

Ü
by the

terms,
� �ßã ­ ��ä à �§Õ ­ å à � where Õ ­ and

å à are the associated weights.

We remark that
Î

is a symmetric positive definite matrix, therefore the gradient conju-
gate Algorithm can be used. A study of the continuous problem was done by [2] and [3],
and the spectral discretisation was studied in [7] and [9]. Here we would like to extend
this study to the Navier-Stokes equation.

4. Numerical Study

In the same way we have applied the above analysis to a nonlinear problem (see [9]
for details) and analogues results have been found. Using the above formulation, we can
write the Navier Stokes equation as :

�2×Ø� �
��� ��� �A�	¤ n Õv~¦k n  |% � �y�Qn Õ & � �y� � � � �y9G��A¤ n   & Õ �y9G� �É ´ &UD¾0Ù¾0Ú É ´ &UD

where k n � &£ë Ln H�n �2�����X� H�o �£ì
and � �y�Qn � & ë H o �-�©� Ln H n �2����� ì for any regular function �-%
Therefore we set an Algorithm to solve problem (P).

4.1. Algorithm

We propose the following Algorithm

- Approximate   and B©  z F0íz Å L by :  z�� L &   z ~dî-�   z �;  z �
%
- Approximate Õ and BCÕ z Fyíz Å L by :
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Õ z�� L & Õ z ~dî-� Õ z �vÕ z �
%Õ z and   z are solutions of

�� � �A�	¤ n Õ z & � Ln H�n ���y  z � H�o Õ z � H�n ���0Õ z � H�o   z ~È� �y� � � ��A¤ n   z & Õ z  z É ´ &ED 7�96: ¾ ïpð¾0Ú É ´ &ED
Hence the nonlinear problem can be solved as four problems for ¤ n .
For the numerical tests, we have taken the following examples.

Example 1
The first test is the functionñ &UòXó�ô ���s��� ô�õâö �2�6
��C� ¢ �;� K � . � ¢ ��
 K �
Example 2
The second test is a singular streamñ & � ¢ �;���Q.�� ¢ ~d��� LPL!÷ K � ¢ ��
 K �

Numerical tests were carried out in the IRISA laboratory in Rennes (France)

4.2. Numerical Results

Numerical experiments turn out to be in agreement with the analysis done in [7] and
[9]. As shown in Figures 1, 2 and 3, numerical results for examples 1 and 2 were compared
to the exact solutions. The error plots are in the

J K
-norm. We noticed that :

1- The error analysis for the current function is qualitatively the same for both examples
1 and 2 (Figure 3).
2- The choice of the basis does not affect the quality of our numerical results. However,
when using the nodes to be the roots or the extremums of Chebyshev polynomials, better
results were found.
3- From Figure 2, where numerical investigations for a singular problem (example 2) was
considered, the error has a spectral behavior, that is to say, we do not have any spurious
modes that destruct the solution.
4- Many choices for the relaxation parameter were used and the optimal value was î &D %ùøp% For the choice of parameters for our plots, we have taken the viscosity � & ¢ , the
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Figure 1. Error Analysis for the velovity, Example 1

relaxation parameter î &UD %ùøp%
A Study of the pressure is under consideration.

5. Conclusion

In this paper, we proposed a new technique similar to the one by Glowinski & Al [5]
and show that we can reduce Stokes and Navier-Stokes problems to a set of saddle point
ones ; where the unknowns are the current and whirpool functions. Here the pressure is
completely decoupled from the velocity to give a simple Dirichlet problem to be solved.
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Figure 2. Error Analysis for the velocity, Example 2

It is clear that this technique can be very useful in nonlinear cases as it has been shown
above for the Navier Stokes equations. Optimal results were found.
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