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ABSTRACT

One-class classifiers employing for training only the data from one class are justified when the data from other classes

is difficult to obtain. In particular, their use is justified in mobile-masquerader detection, where user characteristics are

classified as belonging to the legitimate user class or to the impostor class, and where collecting the data originated from

impostors is problematic. This paper systematically reviews various one-class classification methods, and analyses their

suitability in the context of mobile-masquerader detection. For each classification method, its sensitivity to the errors in

the training set, computational requirements, and other characteristics are considered. After that, for each category of

features used in masquerader detection, suitable classifiers are identified.
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1 INTRODUCTION

The problem of classification can be defined as a prob-
lem of assigning an object represented by a vector of
feature values to a category of objects — class. Using a
set of objects from the training set, a classifier learns
to assign the category/class labels to previously un-
seen objects from the test set. One-class classification
can be seen as a special type of two-class classification
problem, where data only from one class is available
for training the classifier (referred to as one-class clas-
sifier). One-class classifiers are applied when the data
from other classes is extremely hard or impossible to
collect. One such application is mobile-masquerader
detection, which can be defined as the detection of an
attempt to impersonate the legitimate user of a mobile
terminal in order to obtain an unauthorized access to
sensitive data or services authorized for that user. The
risk of such impersonation is high, since the terminals
are carried and, due to their small size, they are often
lost [1, 2]. Furthermore, since smartphones and PDAs
are often used to store personal and business names
and addresses, to receive and view emails, to store cor-
porate information, etc. [3], an impersonation of the
user of such a terminal may result in an abuse of the
critical personal or corporate information.

The problem of detecting masqueraders may be
approached as the classification problem where the
user behavioural or environmental characteristics are
classified as belonging to the legitimate user or to an
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impostor [4]. While the data originated from the le-
gitimate user of the device may be relatively easily
collected, the data originated from the behaviour of
impostors might be very difficult, if at all possible to
achieve, due to privacy and coverage issues [5]. There-
fore, the use of one-class classifiers is justified.

This paper is aimed at the analysis of various types
of one-class classifiers and the examination of their ap-
plicability to the problem of mobile-masquerader de-
tection. The classifier’s applicability is analysed ac-
cording to a simple framework taking into account
both the type of the features the classifier deals with,
and the characteristics of the classification method,
such as robustness, computational and storage re-
quirements, and the number of parameters to be es-
timated or set. The same analysis framework may,
however, be adopted when considering the applica-
bility of one-class classifiers for other application do-
mains, where the use of one-class classifiers is justified:
machine fault diagnosis, credit card fraud detection,
insurance fraud detection, etc.

The paper is organized as follows. In the next Sec-
tion, the problem of one-class classification is formally
stated, a taxonomy of one-class classification methods
is presented, and the analysis framework is described.
In Section 3, multiple one-class classifiers are consid-
ered according to the introduced analysis framework.
Section 4 considers the behavioural and environmental
features to be used in mobile-masquerader detection,
and identifies one-class classifiers potentially suitable
for processing these features. Finally, conclusions to
the paper are provided in Section 5.
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2 ONE-CLASS CLASSIFICATION

In this Section, the classification problem is formally
stated, and the process of learning classifiers’ models is
discussed. The Section also proposes taxonomy of one-
class classifiers, and specifies the criteria, according
to which the one-class classifiers are reviewed in this

paper.

2.1 C(lassification problem

Let an object Z be represented by a vector x =
(71,...,2n,) of the values of ny features from the fea-
ture space X, to which we will refer to as to the clas-
sifier’s observation vector. The classification problem
can be defined as a problem of assigning the object Z
by to a class C;, where C;, i = {1,..., N¢} denotes
the label of class i. The training dataset DSt is the
set of observation vectors along with the correspond-
ing class labels: DSt = {((z1,...,%n;)j,¥5)li =
1,...,|DS7|}, where y; is the class label. In turn,
the test dataset of observations to be classified de-
noted as DS consists of the vectors of feature values
without class labels: DSc = {((z1,...,%n,)j)li =
1,...,|DScl}.

Using a training data-set, the classifier learns
the set of parameters © constituting the model of
the classifier. After that, given an unlabeled ob-
servation vector x, the classifier produces an out-
put u(x,0). Possible values of the output can be
u(x,0) € {Cy,...,Cng}, ie. the classifier can assign
to the object the label of one of N¢ classes.

Alternatively, for each class C;, the classifier
may implement a real-valued discriminant function
uc; (x,0) [6], such that the greater values of the func-
tion correspond to the higher probability of class mem-
bership P(Z € C;|x) = P(C;|x). In this case, the
class with the highest value of discriminant function
is selected:

v(x,0) = agrmax uc,(x,0), (1)
i=1,...,No
where v is a mapping function. If the classifier outputs
approximated probabilities P(C;|x), this function im-
plements Bayes decision rule, assigning the object to
the class with the highest posterior probability. This
rule is known to provide the optimal classification ac-
curacy when different classification errors have equal
costs [7].
For two-class classification problem, a single dis-
criminant function in a form

u(x,0) = P(Ci]x) — P(Ca[x) (2)
is sufficient to implement the classification as [6]:

Cy, ifu(x,0) >0,
7(%,0) = Cy, if u(x,0) < 0. (3)

While in the expressions above the discriminant
was calculated as a function of posterior probabilities,
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some classification methods calculate the value of dis-
criminant without explicit estimation of these poste-
rior probabilities.

The probability density function (PDF) p(C;|x) or
the parameters © of discriminant functions are esti-
mated empirically using training set, e.g. by minimis-
ing an error function reflecting the misclassification
error over the training set. It is assumed that the val-
ues of parameters minimising the error function over
the training dataset, will also minimise the misclassi-
fication error over the complete set of allowed feature
values. This ability of a classifier to generalise beyond
the training dataset is referred to as generalisability.

In one-class classification, the training dataset
contains only the observation vectors belonging to a
class C7, while the testing dataset includes the ob-
servation vectors from both classes C7 and Cy. Two
types of classification errors can be encountered by
one-class classifiers. The type I error £ occurs if the
object of the class C is recognised as not belonging to
this class. The type II error £;; is encountered when
the object from the class Cy is considered as belong-
ing to the class C';. The type I errors are also referred
to as false negatives (in security they are also known
as false rejection errors), and the type II errors are
referred to as false positives (in security they are also
known as false acceptance errors). Note, that only
type I error can be estimated using training data-set.

In the context of one-class classification, the pa-
rameters of PDF or the parameters of discriminant
function can be evaluated only for the class C;. In
order to make the classification possible, an assump-
tion about the distribution of the data in the second
class (C3) can be made; e.g., uniform distribution of
p(x]|C2) may be assumed [8, 9]. After that, the calcula-
tion of posterior probabilities p(C;|x) is possible, and
the classification is performed using the discriminant
function (2). However, in practise, the value of PDF
or discriminant function is often compared against a

threshold t:
Cy, ifu(x,0)>t,
10V =9 ¢, irux,0) <t )

The value of ¢ is usually selected afterwards, when the
parameters of PDF or discriminant function are esti-
mated; it is selected such that the value of the type
I error would be limited by a predefined level. Some
methods, however, require the value of t to be spec-
ified in advance, and the selection of values of other
parameters depends on this threshold. An example of
such method is support vector data description [10].

2.2 Learning of classifiers

Before a classifier can be used to assign labels to ob-
jects, it should be trained, i.e. the parameters of the
classifier’s model should be determined. This is done
during learning phase (also called as training phase),
using training data-set. During this phase, either the
probability density functions P(C;|x) should be esti-
mated, or the parameters © of discriminant functions
are to be determined.
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2.2.1 Probability density estimation

When the probability density function should be esti-
mated, parametric or nonparametric density estima-
tion methods can be employed.

Parametric methods assume that the data are gen-
erated according to a distribution of a specific form
whose parameters are to be estimated using training
dataset. The task of estimating the distribution pa-
rameters is often approached as the task of maximis-
ing a likelihood function. For example, if the assumed
distribution is Gaussian, i.e. © = {u,X}, the pa-
rameters of the distribution can be estimated through
maximising the likelihood in the form

E(M,Z): H p(xi|/1’72)' (5)

1€DS T

For the above example of Gaussian distribution,
the analytical solution maximising the likelihood is
known. Often, however, the task of likelihood max-
imisation is analytically intractable. In such cases,
the parameter estimation can sometimes be performed
using Expectation-Maximisation (EM) algorithm [11].
This algorithm iteratively applies two procedures re-
ferred to as expectation and maximisation steps, re-
spectively. During the expectation step (E-step), the
distribution of hidden parameters z (e.g. the variable
indicating which component of a mixture of Gaussians
generated the observation vector) is approximated,
and the expectation E of the log-likelihood of param-
eters © with respect to these hidden parameters is
calculated. During the maximisation step (M-step),
the parameters © are reassigned the values maximis-
ing the expectation of log-likelihood. These E- and
M-steps are iteratively repeated until convergence.

Non-parametric density estimation methods, con-
trary to the parametric ones, do not make specific as-
sumptions about the underlying distribution. Rather,
the form of the distribution is induced directly from
the data (training dataset). Examples of these meth-
ods are Parzen density estimator, K-nearest neigh-
bours algorithm, histograms, etc. These methods will
be described in Section 3.

2.2.2 Estimation of the parameters of discriminant
function

Parameters O of a discriminant function may be esti-
mated by minimizing an error function of these param-
eters (such as sum-of-squares error function or cross-
entropy error function) over the data from the training
set. The error function value is evaluated using em-
pirical data, and it reflects the degree of classifier’s
misclassification error over the training set. For ex-
ample, the cross-entropy error function is calculated
as [6]:

Eop = — Z Zyiklnuk(xi,@). (6)

x;€EDST k=1

where y;, = 1, if x; € C, and y;; = 0, otherwise.
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However, in order to apply these error functions,
the observation vectors for class Cy need to be syn-
thesized, e.g. generated according to a specific distri-
bution assumed for class Cy [12]. As a result, these
functions are rarely used in practice for one-class clas-
sification.

2.2.3  Generalisability

The generalisability of a classifier is its ability to gen-
eralise beyond the training dataset. The problem of
generalisability can be better understood by consid-
ering the decomposition of the misclassification error
into bias and variance terms. Rather than estimat-
ing the error for a particular training dataset DS,
this decomposition is defined for the expectation of
the error over all possible training datasets. For the
sum-of-square error function, and for regression rather
than classification problem, this expectation can be
rewritten as [6]:

Eps,[(u(xi,©) — )] =

= {Eps,[u(xi;0)] —yi}* +

+ Eps, [{u(xi,0)] — Eps,[u(xi, ©)}7]
= (bias)? + variance.

(7)

where y(x) is the regression function being approxi-
mated.

The bias component of the above equation reflects
the error due to low model flexibility that is insuf-
ficient to accurately approximate the function being
learnt. For example, a significant bias is expected
if a linear model is used to approximate a quadratic
function. In turn, the variance component reflects the
variability of the learnt model across different train-
ing sets. Thus, it reflects how sensitive the classifier’s
model is to the choice of training set. A high vari-
ance value indicates that the model is too flexible, and
that it learns, in addition to the true function y(x),
the characteristics of the training set DSp. In this
case, the model is said to overfit the data, indicating
that the model complexity is higher than the complex-
ity of the function being approximated. For example,
the approximation of a linear function by a quadratic
model is likely to result in overfitting.

In order to generalise well beyond the training
data-set, the classifier’s model should have a low value
of the variance. This can be accomplished e.g. by
incorporating an additional regularisation term, pun-
ishing the models with high complexity, in the defi-
nition of an error function being minimised. Alterna-
tively, several classifiers can be learnt, and by combin-
ing their individual classifications the variance compo-
nent of the error may be reduced.

Many one-class classification methods are based
on the estimation of a boundary around the training
data. In order to avoid overfitting, boundaries with
a lesser degree of flexibility are to be applied. For
example, as shown in [13], the ellipsoid K-means is
preferred to the convex polytope, which, though more
flexible and hence able to produce a boundary with a
tighter fit to the training data, yet does not provide
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a good generality. Conversely, the ellipsoid K-means
is able to achieve a tradeoff between the tightness of
the fit and the generality, and consequently provides
better classification accuracy on a test dataset.

It was also found that methods requiring many
parameters to be tuned are more susceptible to over-
fitting; therefore, the methods with a small number of
parameters or parameter-free methods should be used
in order to alleviate the generalisability problem [14].

2.3 Taxonomy of one-class classifiers

For the purposes of the paper, a taxonomy of one-class
classification methods is proposed in this subsection.
The methods are divided into categories according to
the following criteria:

1. The internal model used by a classifier.
Following the work of [9], three types of one-class clas-
sifiers can be distinguished, including density meth-
ods, boundary methods, and reconstruction methods:

e Density methods, as the name implies, are based
on the estimation of the probability density func-
tion (PDF) of the feature values p(x|Cy) in the
complete feature space. In the absence of knowl-
edge about the second class, the PDF for that
class may be assumed uniform, ie. p(x|Cy) =
const. A specific form of the distribution of fea-
ture values is often unknown; it is approximated,
e.g., by a mixture of Gaussians. The data in
training set are assumed to be representative of
the true data distribution. In classification, the
PDF value corresponding to the current observa-
tion vector is compared against a threshold ¢.

e In reconstruction methods, contrary to the den-
sity methods, assumptions about underlying data
structure are made. Namely, a model of data-
generation process is assumed, and the parame-
ters of this model are estimated during the learn-
ing phase. For classification, the reconstruction
error Ereconstr reflecting the fit of current observa-
tion vector to the model is evaluated. The closer
is the fit, the more likely the data were gener-
ated by this model. The discriminant function
can then be implemented as 1/&cconstr-

e Boundary methods do not estimate the density
of the data, but rather estimate the boundary
thereof. These methods calculate the distance
between the observation vector being classified
and the boundary built around the observation
vectors in the training data-set. The distance
calculation takes into account both i) the dis-
tance between the observation vectors being anal-
ysed and the observation vectors in the training
data-set, and ii) the distances between the ob-
servation vectors in the training data-set. Nei-
ther the density of the data nor the data gener-
ation process is specifically modelled. Contrary
to density and reconstruction methods tradition-
ally used for multi-class classification, boundary
methods are specifically targeted at the one-class
classification.
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2. The type of data. According to the type of
features, the classifiers can be dichotomised into those
based on symbolic or numeric features [15]:

e The classifiers dealing with symbolic data (also
known as qualitative, discrete, or categorical) can
be exemplified by the classifier based on Markov
models and the classifier based on association
rules. These classifiers can be applied to anal-
yse the numeric data after these data have been
transformed into a number of categories (e.g. us-
ing histograms or clustering).

e An example of the classification method dealing
with numeric (also called as real-valued, continu-
ous, or quantitative) data is K-nearest neighbour
classifier. This classifier employs the measure of
distance between observation vectors, and it may
be difficult to define the distance measure for
symbolic data. Often, however, symbolic features
can be transformed into numerical by introducing
boolean indicator variables, and consequently can
be analysed by the classification method designed
for numeric data.

3. The ability of classifiers to take into ac-
count temporal relations among features. Based
on the importance of the temporal relations between
features of the observation vectors, the classifiers can
be divided into the ones ignoring temporal regularities
and the ones whose internal model takes such regular-
ities into account:

e An example of the method ignoring temporal re-
lations is K -nearest neighbour classifier, for which
the temporal order of the features is not impor-
tant. The classifiers dealing with non-temporal
data can sometimes be adapted to take into
account temporal regularities. For example, a
multi-layer perceptron (MLP) neural network can
be used to model sequential patters by adding a
feedback link between an output(s) and input(s)
of the network.

e The methods based on temporal relations model
how the values of features change along the time
axis. An example of the methods capable of mod-
elling temporal relations is the classifier based
on Markov models. This classifier estimates the
probabilities of the new states of the system on
the basis of several previous states; thus, the tem-
poral order of the system states is important for
this classifier.

The produced taxonomy and selected one-class
classifiers located in it are presented in Figure 1.

The division of methods according to the inter-
nal model of classifiers is aimed at making the anal-
ysis process more systematic. The methods based on
different models produce classifications using different
approaches: the density methods estimate the den-
sity of a new observation vector; the boundary meth-
ods calculate the distance from the vector to a learnt
boundary; in turn, a reconstruction error is calculated
in reconstruction methods. That is why it was decided
to group the methods being considered in Section 3,
according to their internal model.
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One-class classifiers

Density

Based on
numeric data

Based on
symbolic data

Ignoring temporal Based on temporal Ignoring temporal
relations relations relations

- Histograms - Markov models - Gaussian and
- Hidden Markov mixture of Gaussians
models - Parzen density estimation

- K-nearest-neighbours

Reconstruction Boundary

|
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numeric data
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Ananlysis

\

Based on temporal Ignoring temporal Ignoring temporal

relations relations relations
- Time-series - Association - Support Vector Data
analysis rules Description
- K-centres

- Autoencoders

Figure 1: Taxonomy of one-class classifiers

From a practical perspective, the internal models
of classifiers may be not the most important charac-
teristic of a classification method. For example, in de-
ciding upon the classifier to be employed in masquer-
ader detection, the need to address temporal aspects
in the data may be more important than the internal
classifier’s model. The type of features (numeric vs.
symbolic) also may appear more important than the
internal structure. Therefore, these characteristics are
included into the taxonomy.

In the bottom part of the figure, the one-class clas-
sification methods are exemplified. These methods
will be considered in Section 3 according to the frame-
work of analysis presented in next subsection. The
selection of the methods for this review was aimed at
covering the well-known one-class classification meth-
ods, but the selection also took into account the avail-
ability of published examples of their use in the secu-
rity domain. Meanwhile, in addition to the methods
included in the review, a number of other one-class
classification methods exist [16, 17].

The proposed taxonomy divides the space of clas-
sification methods into 3 x 2 x 2 = 12 categories. How-
ever, as could be seen from the figure, several brunches
in the taxonomy are missing, since no classification
methods belonging to these categories are included
in the review. Some of the missing branches would
be non-empty if the modifications of the classifica-
tion methods present in other branches would have
been considered. For example, a modification of the
hidden Markov model is able to analyse the numeric
observation vectors [18] and should be located in the
“density”—“numeric data”—“based on temporal rela-
tions” branch. For several categories, no classification
methods that belong to these categories have been
identified. For example, no boundary methods dealing
with symbolic data or taking into account temporal re-
lations among features have been found in literature.

2.4 Framework for analysis

In the following section, several one-class classifica-
tion methods will be reviewed. For each method, the
internal model of the classifier, along with the em-
ployed learning and classification processes, will be

summarised. After that, the characteristics of these
methods will be analysed according to the following
criteria (some of them can be found in [9] and [15]):

e Robustness. In learning the classifiers, the
assumption is usually made that the training
dataset is a representative of the data distribu-
tion for the class C;. However, it may further
be assumed that the data in the training dataset
are contaminated by a noise error component (for
numeric data) or contain mislabelling errors (for
symbolic data). The class labels in the training
dataset are symbolic; therefore, the noise corre-
sponds to the feature values only. The misla-
belling errors may occur in the values of features
as well as in the values of class labels. (The lat-
ter case corresponds to the situations when the
training dataset is contaminated with the data
originated from class Cy; we will refer to such
observation vectors with invalid class label as to
outliers.) The ability of a classifier to learn the
true characteristics of the data in the presence of
noise/errors, i.e. the method’s robustness, is im-
portant for one-class classifiers, especially when
the behavioural and environmental characteris-
tics of users are being classified. Due to a great
variability exhibited in user behaviour and envi-
ronment, the values of the corresponding features
are not likely to be error-free.

e Computational and storage requirements. While
both the computational abilities and available
storage capacity of computing facilities is increas-
ing constantly, they are still the limiting factors
prohibiting the use of some of the methods in cer-
tain applications. This is especially relevant for
the mobile devices that are usually inferior to the
desktop computers in computational power, bat-
tery power, and the size of available memory.

e Number of parameters to be estimated or set.
The number of free parameters that should be ei-
ther learnt using training set or directly set (e.g.
by a user) varies among classification methods.
In the context of personal mobile devices, where
no security administrator is usually present, the
number of parameters set by a human being
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should be minimised.

Applications in the domain of security. Re-
ported applications of various one-class classifi-
cation methods in the domains close to mobile-
masquerader detection (intrusion detection [19]
or fraud detection [20]) may serve as empirical
evidences of applicability of these methods to the
masquerader detection problem. Such evidences,
however, should be considered with care, since
these methods were applied mainly on desktop
computers or servers rather than on mobile de-
vices, and because the context, in which the clas-
sifiers were applied (e.g. the analysis of network
packets or the analysis of system calls) may be
different from the context of analysing the be-
haviour or environment of a mobile-device user.

3 METHODS OF ONE-CLASS CLASSIFICA-
TION

In the following subsections, the density, the recon-
struction, and the boundary methods of one-class clas-
sification will be considered separately.

3.1 Density methods

The density methods are based on the estimation of
the probability density function. Several representa-
tive density methods including histograms, Markov
models, Gaussian and mixture of Gaussians models,
Parzen density estimation, and K-nearest-neighbours
estimation used in various application areas are con-
sidered below.

3.1.1 Histograms

The histogram analysis is one of the most intuitive
and widely used methods of density estimation [17].
It can be employed for the analysis of both symbolic
and numeric data. In the latter case, the histogram
is produced by dividing the feature space into a num-
ber of bins (“buckets”), and calculating the number of
observation vectors that fall in each bin. In fact, the
data in different groups are treated as having distinct
symbolic values. The probability density is then esti-
mated for each bin as the fraction of the observation
vectors in this bin [6].

The histograms are relatively robust to the noise
in training data as well as to mislabelling errors. How-
ever, the accuracy of estimation depends on the way
the feature space is divided into bins. Too large bins
result in over-smoothed density, while too small bins
produce very spiky density estimation [6]. Further-
more, due to the curse of dimensionality [7], a large
size of training dataset may be needed in order to es-
timate the density accurately.

Different techniques of partitioning data into
buckets have been proposed in order to improve the
estimation accuracy. Examples of these techniques
are equi-width, equi-depth, and V-optimal partition-
ing [21]. In V-optimal partitioning, for example, a
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weighted variance of the values in each bucket is min-
imised. [22] proposed so-called self-tuning histogram
whose bins can be adjusted incrementally as new ob-
servations become available.

The parameters that need to be provided or learnt
depend on the type of the histogram. Usually, at least
one parameter (e.g. the number of bins Nyins) needs
to be supplied, and the number of parameters to be
estimated is usually equal or greater than the number
of bins. The learning of histogram is computation-
ally inexpensive. The histograms can be constructed
incrementally, discarding the observation vectors that
have been considered. In this case, memory space is
not needed for storing all the elements of the training
set. Similarly, little computational efforts are needed
for estimating density using a constructed histogram,
and the histogram itself requires little storage space.

In anomaly intrusion detection, the histograms
were extensively used in the design of the statistical
component of IDES and NIDES [23, 24, 25, 26, 27].
Yamanishi et al. [28] also employed histograms to rep-
resent probability density for categorical variables.

3.1.2 Markov models

A Markov chain is a model of discrete-time stochastic
process, i.e. the changes of an observation variable
are assumed to occur at discrete points in time. The
observation variable can take a finite number of values;
these values designate the state of the modelled system
at time 7: @, € {s1,...,sn,}.1 Thus, this model may
be suitable for modelling temporal regularities present
in symbolic features.

A stationary Markov chain [29] assumes that the
probability distribution at time 7 depends on the state
at time 7 — 1, and does not depend on the previous
states 7—2,..., 1. It is further assumed that the prob-
ability distribution does not change with time.

Assuming a set S = {s1,...,sn.} of possible
states, the Markov chain model can be represented
by a transition probability matrix A = {a;;}, i,j =
1,...,sn,, where a;; = P(S;+1|SJT-), and by a vec-
tor of initial probability distributions IT = {m;}, i =
1,...,8N,, where m; = P(s}) is the probability that
initial state of the observation variable is s;. The
initial and transition probabilities can be estimated
empirically as a fraction of corresponding states or
transitions between states.

Given the model, the probability of a sequence
of the observation variable states si,...,s, at times
1,...,7 is estimated as

i
puc(s1,. .., 87) = Tgy Hakq,k- (8)
k=2

When the states of the system cannot be observed
directly, a hidden Markov model (HMM) [18] is used

IFor simplicity, a single observation variable x is used in
this subsection instead of observation vector x. The vector x
composed of ny features, where each feature has N possible
values, can be transformed to a single variable having ny x Ns
possible values.
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instead of the above Markov chain. In HMM, the sys-
tem being in state s; at time 7, is assumed to emit
some observation x, whose possible values belong to
the set of visible symbols v = {vy,...,vn,}. These
symbols are assumed to be emitted according to prob-
ability distribution P(vf|s7) = bjr € B. The transi-
tion matrix for HMM is defined as A = {a;;}, i,j =
1,...,sn,, where a;; = P(s;+1|s;).

The parameters II, A, and B can be found
using e.g. the Baum-Welch algorithm, implement-
ing EM procedure [18]. Given the parameters of
the model, the probability of a sequence of observa-
tions P(vl,...,v7) is determined using forward algo-
rithm [7, 18].

The Markov models are relatively insensitive to
a small number of mislabelling errors in the training
dataset, since these errors may have little influence on
the estimation of the parameters of the models. Such
insensitivity enabled the successful use of the HMM
for addressing the problem of speech recognition [18,
30], where a training data may be contaminated with
noise.

The number of parameters being estimated is de-
termined by the number of states N and by the num-
ber of visible symbols (for HMM), and is equal to
Nparammc = N2 for first-order Markov chain, and is
equal t0 Nparamanv = N2+ Ng(N,—1) for the HMM.
The user should specify the number of hidden states.

For the conventional Markov chain model, the im-
posed computational overhead is negligible for both
learning and execution. The needed storage space is
determined by the number of states and hence is rel-
atively small.

Contrary, the classification with the HMM and
especially the estimation of the HMM’s parameters
is computationally expensive as indicated e.g. by
the results of [31] and [32]. This is due to the fact
that one iteration of the training procedure requires
O(|DS7|N?) steps, and a number of iterations are
needed before the Baum-Welch algorithm converges.
The space requirements during training are also high
since the intermediate values need to be stored, and
they require |DS7|(2N;+ 1) floating point values [31].

In the security domain, Ye [33] investigated the
application of conventional Markov chain model to the
problem of detecting anomalies in the audit logs pro-
duced by Basic Security Module (BSM) of Solaris op-
eration system. A number of studies in the intrusion
detection employed the HMMSs as one-class classifiers,
e.g. [34, 31, 35, 32].

3.1.3 Gaussian and mixture of Gaussians

These methods assume that the data is distributed
according to the normal (Gaussian) distribution, or
according to a mixture of several Gaussian distribu-
tions [6]. The Gaussian distribution is defined as:

1
pa(x, p,X) = ChEDRE X (9)

x exp{ — %(x— ) S (x— )},
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where p is the mean vector and 3 is the covariance
matrix. In turn, the mixture of Gaussians model ex-
tends the above Gaussian models and represents a lin-
ear combination of ny;¢ Gaussian distributions as:

1 nma
X) = X, W, 2;) P(1), 10
puc(x) e ; pc(x, 1 )P (i) (10)

where the mixing parameter P(i) reflects the prior
probability that an observation vector is generated
from i-th component of the mixture.

The number of parameters for Gaussian model is
equal Nparama = Ny + %nf(nf — 1) and for mixture of
Gaussians is nparammc = My (NMparame +1). The pa-
rameters of the Gaussian model can be found by max-
imising the likelihood £(u, X) over the training data-
set. This likelihood is maximised when the parame-
ter values are evaluated according to Equations (11)
and (12):

N _

x;€DST

3=

Be] X Ca-mb—i  (12)

x;€EDST

The learning process in this case is computation-
ally inexpensive. For the mixture of Gaussians, the
analytical expression for the parameter values max-
imising the likelihood is not known. However, these
parameters can be found efficiently by employing the
EM algorithm. The learning process using EM algo-
rithm is more computationally demanding, as a num-
ber of interactions should be done before the algorithm
converges. The classification process is relatively sim-
ple; the only computationally expensive operation is
the inversion of the covariance matrix.

The methods based on Gaussian models are sen-
sitive to the noise present in the training data, as this
noise may introduce a significant bias to the estimated
covariance matrix [9]. The accuracy, with which the
density is estimated, and, hence, the accuracy of clas-
sification depends on whether the data follows the as-
sumed distribution [17]. Besides, these methods are
relatively sensitive to the outliers [17]. Lauer [36] de-
veloped a method that tolerates a small number of
errors in the training set; however, this method re-
quires the proportion of the outliers in the training
set to be known in advance.

The storage space required for classification is neg-
ligible as only the parameters of the models need to
be stored. The storage requirements for learning the
models, however, are much higher since all the data
from the training dataset are used. In order to min-
imise the space requirements, the Gaussian model pa-
rameters can be evaluated incrementally. In the case
of incremental learning, only few observation vectors
are needed at each learning step in order to update the
parameter values. Modifications of the EM algorithm
supporting incremental learning [37] can be used to
reduce the storage requirements of the learning of the
Gaussian model.
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The bias and the variance of the Gaussian and
mixture of Gaussians models depend on whether the
data follows the assumed distributions. In general,
the mixture of Gaussians model is more flexible, and
therefore, is expected to have a lower bias error but a
higher variance error value.

In the security domain, the Gaussian model
was used to detect anomalies in Solaris OS audit
events [38]. As a distance function (inverse to the
discriminant function), the Hotelling T statistics was
employed representing a statistical distance from ob-
servation vector x to the mean of the multivari-
ate Gaussian distribution. The use of a mixture of
Gaussians model was reported successful in detect-
ing anomalies in the parameters of user requests to
a CORBA-server [39]. Mixture of Gaussians was also
employed by [28] in order to model the distribution of
continuous variables for anomaly detection.

3.1.4 Parzen density estimation

Parzen density estimation does not make any specific
assumptions about the shape of the data distribution.
The density is estimated directly from the training
data and is a function of the number of observation
vectors situated in a region of a specified volume [7]:

X —X;

11
p(X):NZVw( W ), (13)

where N = |DS7| is the size of the training data-set,
and V = h"/ is the volume of the region in a form of
the ng-dimensional hypercube with the length of an
edge h. The value of h plays the role of a smoothing
parameter and it should be provided in advance. The
kernel function ¢(v) is a window function that should
satisfy ¢(v) > 0 and [ ¢(v)dv = 1. The Parzen win-
dow is defined as:

]‘,
p(v) = { 0,

Another commonly used kernel (window) function is
a multivariate Gaussian, for which:

if jujl <1/2, 7=1,...,ny,
. Ty
otherwise.

1 1 x — ;|2
p(x) = N Z We){p(—%)_ (15)

Advantage of the method is its ability to approx-
imate arbitrary distribution, whose parametric form
is unknown. The learning phase is trivial: since no
parameters need to be estimated, the learning phase
consists in storing the values of the observation vec-
tors.

The method however requires the smoothing h pa-
rameter to be specified carefully. Too large values of
the parameter result in an over-smoothed estimated
density. On the other hand, when too small A value is
provided, the estimated density contains noise, i.e. it
reflects the peculiarities of the training dataset rather
than the characteristics of the distribution being esti-
mated [6].
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Another drawback of the method is the need to
store all the observation vectors. This makes the es-
timation of probability slower. Besides, if the number
of observation vectors to be stored is large, the storage
space consumed may become prohibitive. This prob-
lem can be partly solved by reducing the number of
kernel functions and adapting their widths according
to the data [6].

The Parzen density estimation is relatively robust
to the outliers in training data since they influence
only density estimation in the regions of close prox-
imity [9]. The sensitivity to the noise in data depends
on how well the smoothing parameter h is selected
— as mentioned above, too low values of h make the
estimation noise-sensitive.

In the domain of anomaly intrusion detection, this
method of density estimation was employed by [40]
in order to estimate the PDF of features extracted
from TCP/IP packets. As reported by the authors,
the detection accuracy obtained in the experiments
using KDD Cup 1999 dataset was comparable to the
accuracy of best competitors.

3.1.5 K-nearest-neighbours

K-nearest-neighbours method is similar to the kernel-
based estimation discussed above. The probability
density is also calculated based on the number of ob-
servation vectors in a region of a certain volume. How-
ever, in K-nearest-neighbours, the number of obser-
vations K is fixed in advance, and the volume of the
area is allowed to grow so that K nearest observation
vectors would be included in it [7]. (Contrary, the
kernel-based estimation assumes the constant volume
of the regions and lets the number of observation vec-
tors vary.) Taking the number K as an input smooth-
ing parameter, the method estimates the density as:

K

=— 1
T (16)

p(x)

where Vi is the volume of the smallest area (hyper-
sphere) with the centre in x surrounding K observa-
tion vectors nearest to x.

The advantage of K-nearest-neighbours, similarly
to the kernel-based estimation, is its ability to esti-
mate arbitrary distributions. Furthermore, by using
varying volume size, K-nearest-neighbours overcomes
the shortcoming of the kernel-based estimation, which
tends to over-smooth the estimate in the areas of high
density, and tends to produce too noisy estimate in
the areas of low density [6].

The drawback of this method is the need to keep
the observation vectors, in the same way as in the
kernel-based density estimation. Furthermore, the
produced estimate is not true probability density as
its integral over the x space diverges [6]. This limita-
tion is however compensated by the ability to adjust
the area volume to the density of the data.

No parameters need to be learnt by this method.
The number of neighbours K, however, needs to be
provided, and too great or too low K values result
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in over-smoothed or noisy estimated density, respec-
tively. One approach to the problem of selecting the
optimal value of K is to assign K the value that min-
imises error on a separate dataset [7].

Contrary to the kernel density estimator, K-
nearest-neighbours method is sensitive to the outliers
in the training data. The method’s robustness to noise
depends on the selection of the smoothing parameter.

In the domain of intrusion detection or fraud de-
tection, no reported research employing K-nearest-
neighbours for density estimation has been found.

3.2 Reconstruction methods

This section is devoted to the reconstruction meth-
ods wherein assumptions about underlying data struc-
ture are made. The well-known methods belonging to
this category include K-means, Self-Organizing Maps,
Principal Component Analysis, autoencoders, and the
classification based on time series analysis, among
other methods. In the security domain, also the clas-
sification based on association rules has been success-
fully employed; this classification method also belongs
to the category of reconstruction methods. In the fol-
lowing subsections, the description of these methods
is provided.

3.2.1 K-means, Self-Organizing Maps

The K-means clustering and self-organizing maps
(SOM) are examples of clustering methods assuming
that the data is clustered and can be described by a set
of prototype (codebook) vectors py, k=1,...,K [9].
The number K of prototype vectors should be selected
beforehand. During classification, the reconstruction
error is calculated as

Sreconstr = mkin ||X - Hk||2 (17)

and compared against a threshold.

The placement of prototype vectors is derived
from the training dataset. In K-means clustering, the
prototype vectors are selected to minimise [41]

N
=3 (il —ml?) . (8)

i=1

where N = |DS7|. Both batch and on-line algorithms
can be employed for finding the solution minimising
5[(]\/1 [6]

In batch algorithm, at each step, the observation
vectors are grouped into k disjoint sets Sy according
to the nearest prototype vectors. Then, the prototype
vectors are recalculated as:

1
My = N—k Z X (19)
1ESK
where N = |Sg|. The procedure is repeated until

convergence.
In on-line algorithm, the simple competitive learn-
ing [42] is employed, i.e. each subsequent observation

37

vector x; is used to update the position of its nearest
prototype p:

pi (T 1) = (1) + (1) (% = ), (20)

where 7(7) is the learning rate 0 < n(7) < 1.

The SOM [42] as well employs competitive learn-
ing to define the positions of prototype vectors. Mean-
while, rather than updating only the nearest proto-
type, the prototypes in neighbourhood of the nearest
neighbour are also updated; furthermore, more distant
prototypes get smaller update. This neighbourhood is
determined by a predefined topology, e.g. by a two-
dimensional grid. The prototypes in neighbourhood
of x; are updated according to:

Bi(T+1) = py(7) +
+ n(7) fwina(|xi — pp]) (%3 — pg,). (21)

The function fyind(|X; — p5]) is @ window function; it
is equal to 1 when x; = p;, and declines as the value
of |x; — py| grows [7].

The above clustering methods are sensitive to re-
mote outliers, since they may bias heavily the place-
ment of the prototype vectors. Meanwhile, the noise
present in training data may be compensated by a high
number of observation vectors within each cluster; in
this case, the noise has little effect on the prototype
vector estimation.

Both methods require the number K of clusters to
be provided. The K-means clustering is sensitive to
the correctness of K: if K differs from the real number
of clusters in the data, then wrong clusters may be
produced by the method [41]. In turn, the SOM is
sensitive to the topological assumptions determining
the neighbourhoods [6].

Both clustering methods are computationally light
[42]. A small memory space is needed in order to store
the prototype vectors. When on-line algorithms are
used in clustering, the memory requirements are also
very conservative.

In anomaly intrusion detection, the K-means clus-
tering was employed by [43] for clustering networked
computers into “activity groups”, and by [44] for re-
ducing (compressing) the raw data to a manageable
size. The SOM were used e.g. for clustering calling
data in detecting telecommunications frauds by [45].

3.2.2  Principal Component Analysis

The principal component analysis (PCA) is aimed at
explaining the internal variance and covariance struc-
ture of n-dimensional data in terms of the set of vari-
ables (principal components), which are linear combi-
nations of the original variables. The principal com-
ponents ) represent the projection of the original
variables to the eigenvectors e; = (€i1,...,€in,), @ =
1,...,nys of the covariance matrix 3 ordered accord-
ing to the decreasing eigenvalues \; of the covariance
matrix [7]:
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The greater the eigenvalue of the component, the
higher is its variance. By employing only ¢ eigenvec-
tors with highest eigenvalues, the set of variables can
be transformed to the set with lower dimensionality
n’f = q < ny preserving most of the variance of the
data.

In order to implement one-class classification, the
reconstruction error may be calculated as the Maha-
lanobis distance from the observation vector to its
mean in the transformed space [9, 46]:

/

ny
x.
greconstr = Z )\_Z (23)
i=1 "

Empirical distribution of this error can be used to se-
lect the threshold for classification.

Alternatively, only ¢ first principal components
can be used for error calculation thus reducing the
dimensionality of the data [46]:

q
greconstr = g
i=1

Shyu et al. [46] applied this approach to analyse TCP
packets for anomaly intrusion detection. In their ex-
periments, they managed to reduce the dimensionality
of the data from 34 original features to 5 major com-
ponents.

The use of the PCA as one-class classifier is justi-
fied when the dimensionality of the data analysed by
the classifier is high. Using the PCA, the computa-
tional complexity of classification may be decreased
[47]. The only parameter that may need to be spec-
ified in advance is the number ¢ of principal compo-
nents. The PCA is, however, sensitive to the noise and
outliers in training data, since they may distort the es-
timation of variances and covariances. The use of the
PCA may be also difficult due to the course of dimen-
sionality as the number of parameters to be estimated
is relatively high (nparamPca = Nparama + 1f).

8

/
i

(24)

>

%

3.2.3 Autoencoders

Neural networks are networks of interconnected pro-
cessing units arranged in one or several layers that can
be used to implement a complex functional mapping
between input and output variables. Linear or non-
linear transformations can be performed by processing
units at different network layers. The parameters of
these units (e.g. weights) are adjusted using training
data so that an error function would be minimised
over the training set.

The autoencoders, also referred to as autoassoci-
ators, are special type of neural networks, which are
trained to reproduce their input features at their out-
put [48]. Tt is assumed that the autoencoder learns the
internal structure of the data. In classification, only
the observation vectors whose structure is similar to
the structure learnt by the network, are reproduced
by the autoencoder accurately.

The reconstruction error is calculated as the dis-
tance between the network output f,uso and network
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input x:

Ereconstr = ||fauto(x) - X| |2- (25)

The advantage of the autoencoders is their flexibil-
ity allowing a variety of functional mappings to be rep-
resented. This flexibility is used to automatically learn
and verify the structure of the data. The autoencoder
with single hidden layer and ¢ linear transformation
units implements projection onto ¢g-dimensional space
spanned by first ¢ principal components, and therefore
can be used, similarly to PCA, for data dimensionality
reduction.

Being neural networks, autoencoders are sensitive
to outliers [6] as they may largely contribute to the er-
ror function being minimised. In order to mitigate the
negative influence of these errors, the Minkowski-R er-
ror with R < 2 may be employed. In order to avoid
oferfitting to noisy training data, additional regulari-
sation component is included in the error function, or
the training is stopped when the error on a separate
validation dataset starts to grow [6].

The shortcoming of autoencoders is the need to
select a number of parameters that should be specified
by the user [9]. These include the number of hidden
layers Ny and the number of hidden units Ny, at
each layer, the type of transformation function, the
learning rate, and the stopping rule. Furthermore, a
number of weights (usually equal to the number of
hidden and input units) need to be estimated using
training set. Consequently a large amount of data
should be available for this estimation to be accurate.

During training phase, the complete training
dataset is used for estimating the weights of the au-
toencoder. Therefore, the memory space required for
training may be not negligible. The computational
complexity of training is also high, since the learn-
ing process iterates over the training dataset several
times until the stopping rule is satisfied; Hinton [49]
estimates the learning complexity for neural networks
to be approximately O(N2), where Ny is the num-
ber of weights in the network. The computational
complexity and storage requirements of classification,
however, are conservative.

In the domain of intrusion detection, autoencoders
have been successfully employed to detect anomalies
in TCP/IP traffic [50].

3.2.4 Classification based on association rules

Association rules [51] are aimed at modelling the
correlation between different symbolic features. Al-
though the methods of mining association rules exist
that deal with numeric features, these methods are
not considered in this paper.

An association rule is an implication in a form
r:rd — rY where r4 and r¢ are boolean predicates,
referred to as antecedent and consequence of the rule,
respectively. An observation vector x satisfies the rule
r, if r(x) = true and r(x) = true.

The rules are characterised by their support and
confidence values. The support sup(r4) of antecedent
A is the fraction of vectors in the set DS, satisfying
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the antecedent condition. In turn, the support of the
rule r is the fraction of the vectors satisfying the rule:

1
sup(rt — 1) = D57 X (26)

x|{x € DSt : r(x) = true, ¢ (x) = true}|.

The confidence of the rule is defined as
o) _ st =€)

sup(r7) @

conf(r® — r

For example, the rule r, : z; = 0 — z; =
0, [conf=0.35, sup=0.05] indicates that if feature ¢ has
the value x; = 0, then the feature j has the value
zj = 0 in 35% of cases. In 5% of the observation
vectors, the features ¢ and j are x; = z; = 0.

In order to mine association rules, the Apriori al-
gorithm [52] can be employed. This algorithm con-
sists of two parts. First, all the frequent itemsets,
i.e. observation vectors with support above prede-
fined minimum support values, are found. After that,
the found frequent itemsets are used for generating
association rules with confidence above or equal to
predefined minimum confidence value. In order to de-
termine the relevant (or “most interesting”) rules, the
rules known to be redundant or irrelevant are filtered,
and the remaining rules are prioritised according to a
suitable interestingness measure [53, 54, 55].

In classification, the confidence and the support
of the rule are used. The support of the rule can be
employed to implement the discriminant function in a
form

uAR(X, RS) = max_sup(ry,) :

meRS
A (x) = true, 7€ (x) = true, (28)
where RS is the set of rules. Thus, the term
1/uar(x,RS) can be seen as the value of the recon-
struction error Ereconstr-
Similarly, the confidence of the rule may be used
to produce the reconstruction error as e.g.

Ereconstr (X, RS) = "IL%E;%(S COIlf(Tm) :

2 (x) = true, 75 (x) = false. (29)
The confidence value in the expression above is an ap-
proximation of probability P(rC (x) = false|rd (x) =
true).  Thus, this function reflects the degree of
anomaly due to the fact that a rule is not satisfied.

The robustness of the association rules to the mis-
labelling errors is regulated by the values of minimum
confidence and minimum support that are used during
rule mining; when higher values of these parameters
are used, the sensitivity to the errors is reduced.

The minimum confidence and minimum support
values are to be specified by the user. Besides, the
type of interestingness measure should be defined.
The number of parameters to be estimated during rule
mining depends on the number of rules: nparamar =
2|RS|.
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The rule mining process is both computationally
expensive and extremely memory consuming since the
general problem of mining these rules is NP-comple-
te [56].

Association rules were employed in several ap-
proaches to intrusion detection, where they were used
to model the regularities of normal network traffic
[57, 58], and to address the issue of alarm correla-
tion [59].

3.2.5 Time series analysis

A time series can be defined as an ordered finite set
of numerical values of a variable of interest along the
time axis [60]. In this subsection, for simplicity, we
shall consider the one-dimensional variable z. An ob-
servation vector is formed by the consecutive values of
zi, k=0,1,...,ny — 1 that produce univariate time
series. It is assumed that consequent xj are measured
at equal time intervals.

Time series analysis models the correlations be-
tween elements in time series. A number of models
representing the value of x at time k£ have been pro-
posed [61], e.g. autoregressive models, moving aver-
age model, and autoregressive-moving-average model.
Here, we consider the autoregressive (AR) model rep-
resenting the value of = at time k as a function of
immediate past values of z along with random error.
The order of the AR model reflects how many lagged
past values are included. The p-order AR model, for
example, is defined as:

p
T = Zﬁi:pk,i + ek, (30)

i=1

where 0; are the parameters of the model referred to
as autoregressive coefficients, and e; denotes the er-
ror (residual), which is assumed independent and nor-
mally distributed. The values of autoregressive coeffi-
cients are estimated by minimizing the sum of residu-
als ) pg,, ek over the training set.

Having learnt the parameters of the model, the
reconstruction error for a new observation x4 is cal-
culated as

p

5reconstr = Th+1 — Z oikarlfi (31>

=1

The calculated values of reconstruction error can be
used to estimate empirically the threshold ¢ for clas-
sification. In some models, however, the distribution
of xp41 can be assumed; in these cases, the statisti-
cal upper and lower control limits can be determined
directly and used as thresholds.

By incorporating the residual error component,
the models used in time series analysis are able to tol-
erate some noise in the training data. The mislabelled
data, however, may distort heavily the estimated pa-
rameters of the models. The accuracy of the model
(in terms of the reconstruction error) greatly depends
on whether the selected model structure reflects the
real temporal structure of time series.
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Besides fixing the number of lagged values, no
other parameters should be specified for the models.
The number of parameters being estimated depends
on the specific model; e.g., for the p-order AR model,
NparamARM = P-

For some models (e.g. for the AR model) the pa-
rameters can be estimated on-line; the storage require-
ments and the computational complexity of learning
for such models are negligible. If the parameters are
estimated using batch algorithms, the storage require-
ments may become prohibitive, since all the training
data needs to be stored. The classification phase in-
volves simple computations, and, hence, is inexpen-
sive both from the point of view of processor load and
memory consumption.

The time series analysis has been employed in
anomaly intrusion detection by [62, 63] to reveal tem-
poral regularities in audit trails collected by the BSM
of Solaris OS.

3.3 Boundary methods

This section considers the boundary methods, in
which a boundary is built around the training data,
and the classification is based on the calculated dis-
tance between an observation vector and the bound-
ary. The methods considered in this subsection in-
clude a simple representative boundary method (K-
centres), and the methods derived from the well-
known Support Vector Classifier (Support Vector
Data Description and v Support Vector Classifica-
tion).

3.3.1 K-centres

K-centres is a simple boundary method, covering the
training dataset with K smallest hyperspheres of equal
radii [64]. The centres of hyperspheres are placed
on some of the observation vectors from the train-
ing dataset so that the following function would be
minimised [9]:

N K 2
Exc = max | min{jx; — " ). (32)

The solution minimising this error function can be
found using the batch algorithm described above for
K-means clustering.

During classification, the distance between new
observation vector and found centres is calculated:

K
drce = minx; — pu, | (33)

The method is highly sensitive to noise and out-
liers, because the radius of the hyperspheres is deter-
mined by the maximum distance to the covered vec-
tors. As a result, the centres of hyperspheres may be
distorted by the noisy or mislabelled data [9].

The method requires the number K of the centres
to be provided. The number of parameters to be de-
termined using training set is equal to K. Similarly to
K-means clustering, the classification with K-centres
is computationally simple. It may however require a
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significant memory space for training due to the need
to store all the observation vectors from the training
dataset.

Lane and Brodley [65] employed K-centres as a
base classifier and compared it with greedy cluster-
ing technique for data reduction in anomaly intrusion
detection.

3.3.2 Support Vector Data Description and v Support
Vector Classification

Support vector data description (SVDD) is aimed at
defining the hypersphere with a minimum volume (i.e.
minimum radius) encompassing/covering the entire
training dataset [66, 9, 10]. The SVDD is a special
case of support vector classifier [67].

During the training of the SVDD classifier, the
parameters «; are estimated by minimising

L = SSVDD = ZO&Z'(XZ' 'Xi) — Z OéiOéj(Xi 'X]‘), (34)
i 1,7

subject to the constraints ZZ a;=1land 0 < oy <C,
where C' determines the number of vectors that will
not be covered by the description.

The minimisation of the above equation is solved
as a quadratic programming problem. In order to
provide more flexible descriptions, the inner products
(x; - xj) can be substituted with a kernel function
K(x; - x;) [67]. The kernel function, e.g. polynomial
or Gaussian, transforms the vectors to a higher dimen-
sional feature space where a more accurate description
can be produced.

In classification, the distance from new observa-
tion vector x to the centre of the hypersphere is cal-
culated and compared against its radius:

Ci, if|jx—al|? < R?,
1(x) = Cy, otherwise. (35)
Here, a designates the centre of the hypersphere, and
it is estimated as ;, ;%;. The radius R is calculated
as

R = (xpxp) =2 ) oni(xiXp)+ Y ooy (xix;), (36)
i ]
where x;, are the vectors, which have oy, < C.
Scholkopf et al. [68] propose a similar solution to
the data description problem called as v support vec-
tor classification (v-SVC). Instead of hypersphere, a
hyperplane is used to separate the data in training
dataset from the origin with a maximum margin. The
parameters «; are found as a solution to the minimi-
sation problem:

o1
I;li{?§;aiajK(xi,xj)
. 1
subject to 0 < a; < N Zai =1, (37)
3

where v plays the role of regularization term, similar
to C' above. The classification is performed using the
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distance between a new observation x and the origin:
Cl ’

X)) =
v(x) Cs,

p is calculated as 3 a; K (x;,%;), where x; is an ob-
servation vector, for which «; is not at the lower or
the upper bound.

These methods are relatively resistant to the noise
and mislabelling errors. By adjusting the regulariza-
tion parameters (C' or p), the noisy and mislabelled
vectors can be excluded from the produced descrip-
tion [9].

The regularization parameter is the only one that
needs to be provided by the user. Additional parame-
ters may, however, be needed for the kernel functions
employed. The number of parameters that are to be
estimated by the quadratic optimization procedure is
equal to the size of the training set N. This may pre-
clude the applicability of the method when the size of
the training set is large [10].

The classification using these methods is computa-
tionally simple and does not require significant mem-
ory. Meanwhile, the training procedure is computa-
tionally expensive, since standard algorithms for solv-
ing quadratic programming problem have the time
complexity of order O(N?3) [69]. This complexity,
however, may be reduced, if the simplicity of the em-
ployed constraints is taken into account in the design
of the optimisation routine [69]. A large storage space
may be needed at the training phase, since all the ob-
servation vectors from the training dataset are used in
the optimisation.

In the domain of anomaly intrusion detection, the
v-SVC was employed by [70] for analysis of the user
commands, by [71] for analysis of the access to Win-
dows Registry, and by [72] and [73] for network traffic
analysis.

if Zi OéiK(Xi,X) — P Z 0,

otherwise.

(38)

3.4 Summary

The characteristics of the reviewed classification meth-
ods including sensitivity to the errors in training data,
the computational and memory requirements, and the
number of parameters, are summarised in Table 1.

The method’s sensitivity to errors as well as com-
putational and memory requirements are expressed in
the table using an ordinal scale with four fuzzy val-
ues including (from better to worse): very low (VL),
rather low (RL), rather high (RH), and very high
(VH). Whenever both an incremental and batch algo-
rithm for training a classifier are available, the compu-
tational and storage requirements for this classifier are
described assuming that the incremental algorithm is
employed for training.

In enumerating the parameters set by the user,
only numerical parameters were taken into account,
while other problem-related parameters specifying the
structure of the employed model (e.g. the number
of hidden layers in an autoencoder or the number of
observable symbols in the HMM) were ignored.
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4 SELECTING CLASSIFIERS FOR MOBILE-
MASQUERADER DETECTION

In the process of selecting appropriate one-class classi-
fier(s) for a particular application domain, two aspects
should be taken into account, among other things:

e The type of the features which the classifier takes
as input;

e The internal characteristics of the classification
method used.

The peculiarities of the application domain often re-
strict the type and the characters of available features;
furthermore, the application domain may impose spe-
cific requirements to the computational demands, ro-
bustness, and other properties of the classification
methods to be employed. Therefore, the systematic
analysis and juxtaposition of the properties of one-
class classifiers, described in Section 3 and summarised
in the Table 1 above, may be used to facilitate iden-
tifying the subset of candidate classifiers, which are
suitable for the domain in question. Below, the selec-
tion of appropriate one-class classifiers for the domain
of mobile-masquerader detection is considered.

The selection of classifiers to be employed in
mobile-masquerader detection should take into ac-
count the constraints imposed by the limited resources
of mobile terminals including limited computational
power and storage space as well as limited battery
power. These constraints reduce the number of clas-
sifiers that may be employed.

In particular, the HMM classifier, SVDD, v-SVC,
autoencoders, and the classifier based on the associ-
ation rules are computationally expensive and there-
fore, may be prohibitive for resource-constrained ter-
minals. The Parzen density estimation and K-nearest
neighbour estimation requires all the training data to
be present at the time of classification; this may be
problematic if an extensive training dataset needs to
be stored.

Besides the peculiarities of the terminals, the suit-
ability of a classification method is determined by the
characteristics and features being analysed. Some of
the classification methods involve a bias in a form
of specific assumptions about the distribution of the
data or about the data-generation process. The use
of these methods may therefore be sub-optimal in sit-
uations, where these assumptions do not necessarily
hold. Specifically, the Gaussian and the mixture of
Gaussians methods assume that the data follow nor-
mal distribution; similarly, the SOM assumes the un-
derlying topology in data.

4.1 Applicability of classification methods to
mobile-masquerader detection

Thus, in order to define suitable classification meth-
ods, it is necessary to consider the characteristics and
features (measures) to be analysed. Table 2 provides
the list of characteristics and features that are hy-
pothesised to be useful in mobile-masquerader detec-
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Table 1: Characteristics of one-class classification methods (ordinal scale is used with four fuzzy values: VL — very low,
RL — rather low, RH — rather high, and VH — very high)

more, the keystroke duration and latency times
produce the feature vector of relatively high di-
mensionality; therefore, they can be processed us-

Classification Sensitivity to Computational Storage Number of
method requirements of requirements parameters
errors in outliers learning classifi- learn- classifi- set by learnt
feature cation ing cation the
values users
Density methods
Histograms RL RL VL VL RL RL 1 Nbpins
Conventional RL RL VL VL RL RL 0 N2
Markov models
HMM RL RL VH RH VH RL 1 N2+ N, x
(NU - 1)
Gaussian, mixture RH RH RH RL RH VL 1 O(nyme X
of Gaussians nzf)
Parzen density RL RL VL RH RH RH 1 0
estimation
K-nearest RL RH VL RL RH RH 1 0
neighbours
Reconstruction methods
K-means, SOM RL RH VL VL VL VL 1 K
PCA RH RH RL VL RL VL 1 O(n%)
Autoencoders RL RH VH VL RH RL 1 Ny
Assoc. rules RL RL VH RL VH RL 2 2|RS]|
Time series RL RH VL VL VL VL i )
analysis
Boundary methods
K-centres VH [ VH [ RH VL [ RH [ VL [ 1 [ K
SVDD, v-SVM [ RL | RL | VH VL | RH | VL | 1 | N
tion [4]. Below, the classifiers’ suitability for process- ing the PCA or the SOM reducing the dimen-
ing the proposed features is considered. sionality of the feature vector. Meanwhile, due
For each characteristic and assigned features, the to high computational complexity, the use of au-
above table also indicates the type of feature values toencoders, as well as SVDD and v-SVC may con-
(numeric or symbolic) and whether the temporal or- sume too heavily the resources of a mobile termi-
der of measurements is important or not. Depending nal.
on the feature type and on the importance of temporal e Numeric features, temporal relations are
relations, the following four categories of characteris- important. The features describing changes in
tics can be distinguished: behaviour and environment, the features describ-
e Numeric features, temporal relations ig- ing statistical characteristics of voice, and the fea-
nored. These features include the interval be- tures reﬂecting the characteristics of strokes pro-
tween consecutive program or service evocations; duced with stylus belong to this category.
the temporal length and interval between actions; Among the classification methods shown in Fig-
the speed of move; the time spent at a workplace; ure 1, only time series analysis is capable of pro-
the time of reading a textual document; the fre- cessing this type of features. Besides, a modi-
quency of errors; the time spent for communica- fication of HMM where the output probabilities
tions; the time when the communication facilities in each state are modelled by an auto-regressive
are enabled; and keystroke duration and latency process [74] can be applied to these features.
times. e Symbolic features, temporal relations ig-
A number of classification methods can be applied nored. This category encompasses the follow-
to these features (cf. Figure 1), including Gaus- ing features: the type of programs/services being
sian and mixture of Gaussians, K-nearest neigh- evoked; the use of shortcut vs. the use of menu;
bours, Parzen estimator, K-means, SOM, PCA, the phone numbers and the email addresses of
autoencoders, K-centres, SVDD and v-SVC. people contacted with; the places where stops are
The K-nearest neighbours, Parzen estimator, K- made; and the frequency of different words used.
means, SVDD, and v-SVC can be assigned to the The histograms and the classifier based on as-
features for which the training set is of limited sociation rules can be employed for processing
size. The Gaussian and the mixture of Gaussians these features. However, since the mining of as-
can be employed as well; however, their suitabil- sociation rules is computationally- and memory-
ity depends on whether the distribution of feature demanding, the application of association rules in
values follows the assumed distribution. For the the context of mobile terminals may be problem-
features with more extensive training sets avail- atic. Therefore, histograms are the main candi-
able (e.g. keystroke duration and latency times) date for analysing this type of features.
the autoencoders may be a good choice. Further- e Symbolic features, temporal relations are

important. This category is comprised of two
features: the sequence of consecutive actions and
the sequence of traversed cells.
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Characteristic Feature Type Temporal
order

Device’s facilities usage Temporal interval between two consecutive evocations Real No
of a program or service of a same type.

Device’s facilities usage Type of program or service evoked Symbolic No

Sequences of actions followed Sequences of n actions Symbolic Yes

Temporal lengths of actions Temporal lengths of actions Real No

Temporal intervals between actions in a Temporal intervals between subsequent actions Real No

sequence

Use of shortcuts vs. use of menu For each menu command with shortcut, the chosen Symbolic No
option

People contacted with, conditioned on Phone number, e-mail address, or other address Symbolic No

type of communication, time, etc. information of the contacted people

Routes taken Sequence of cells traversed between two consecutive Symbolic Yes
prolonged stops

Speed of move conditioned on route and Speed of move conditioned on route and time Real No

time

Places visited, conditioned on time of Locations where prolonged stops were made Symbolic No

day, day of week, etc.

Length of work day Time that the terminal is in the place affiliated with Real No
the user’s workplace(s)

Changes in behaviour and environment Changes in behavioural and environmental Real Yes
characteristics

Time of reading a unit of textual Time during which a document is open for reading Real No

information

Time between an incoming event and Temporal interval between an incoming message (e.g. Real No

response e-mail) is read and the response is written

Words or phrases used more often Frequency of different words used in handwriting Symbolic No
(with stylus) or typing

Accuracy in typing, in menu item The ratio of errors to the overall number of actions, Real No

selection, etc. i.e. the frequency of mistyped keystrokes, errors in
menu item selection, etc.

Time devoted to communication Time during a day spent for communication (using Real No
terminal) including different types of communication
(calls, e-mails, etc.)

Time, when the user is online Time, during which the communication facilities of Real No
the terminal are not deliberately restricted

Statistical characteristics of voice Cepstrum coefficients of the signal power Real Yes

Temporal characteristics of keystrokes Key duration time, inter-key latency time Real No

Pressure, direction, acceleration, and Pressure, direction, acceleration, and length of strokes Real Yes

length of strokes when stylus is used

Set of installed software, current screen Changes of device configuration Symbolic No

resolution, volume level

According to Figure 1, these features may be
analysed with conventional or hidden Markov
models. Since for both features, the states (the
user actions and the traversed cells) are directly
observable, the use of conventional Markov model
is justified.

Above, various features to be used in masquer-
ader detection were mapped to the one-class classifi-
cation methods reviewed in this paper. For the first
category of features, several potentially suitable clas-
sifiers were identified while for other categories only
one classifier was found. Since the review of classifiers
provided in this paper, is not exhaustive, there may
be also other one-class classifiers suitable for process-
ing these features. In the next subsection, for three
of four categories above, the designs of classifiers to
process features in these categories are exemplified.

4.2 Building classifiers for
mobile-masquerader detection

Recently, a dataset describing the behaviour and
environment of several mobile users was collected at
the University of Helsinki. The dataset was gathered
in the course of two field studies aimed at testing
social awareness service named ContextContacts [75].
Two groups of respectively four and five users living

in the greater Helsinki area participated in the
studies for approximately three months, and their
behaviour and environment were monitored using the
ContextPhone software platform [76] running in the
background on Nokia Series 60 smart-phones. The
data collected with this software reflects changes of
GSM Cell IDs wherein the terminal is registered,
the use of applications, active profile, the use of
charger, idle and active time, Bluetooth environ-
ment, and communication events (SMS and calls).
An anonymized version of this dataset can be found at
http://www.cs.helsinki.fi/group/context/data/.

In the above dataset, some of the features pro-
posed in Table 2 are available; these include:

e Type of program or service evoked. Active appli-
cations evoked by the user are registered in the
dataset.

e Sequence of cells traversed. The dataset records
the identifiers of the cells (Cell IDs) wherein the
mobile terminal is registered.

e Speed of move. Though the speed of movements
is not available in the dataset, the timestamps of
the Cell ID records can be used to estimate the
time the terminal spends in a cell, which, in turn,
can be used to roughly estimate the terminal’s
speed in terms of “cell per second”.
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e Locations where prolonged stops were made. The
information about the Cell IDs and the time spent
in cells can be used to identify those locations (in
terms of Cell IDs) where the terminal stays for a
relatively long period of time.

e Temporal interval between two consecutive evoca-
tions of a program or service of a same type. In
the dataset, the evocations of two services (calls
and SMS) are recorded and time-stamped; using
this information, the intervals between evocations
of these services can be evaluated.

e Temporal lengths of actions. In the dataset, the
durations of calls are recorded.

e Address information of the contacted people.
Phone numbers contacted via calls or SMS are
available in the dataset. Besides, the identifiers
(MAC-addresses) of mneighbouring Bluetooth-
devices are logged.

These features belong to three categories introduced
above: numeric features, temporal relations ignored
(temporal lengths of actions, temporal interval be-
tween two consecutive evocations of a program or ser-
vice of a same type, speed of move); symbolic fea-
tures, temporal relations ignored (type of program or
service evoked, locations where prolonged stops were
made, address information of the people contacted);
and symbolic features, temporal relations are impor-
tant (sequence of cells traversed). In the remainder of
this Section, for each of these three categories, a design
of a classifier to process the features belonging to this
category is described; further details of these classifier
can be found in [77]. For all classifiers, their observa-
tion vectors are initialised with feature values by using
a sliding window [r1, 73] of the length I, = 75 — 7y (de-
termining the time interval, within which the feature
values are collected) and the increment for the win-
dow 0.

Numeric features, temporal relations ignored.
For the features in the first category, several classi-
fiers were identified in the above analysis as potentially
suitable; among them, K-nearest neighbours, Parzen
estimator, K-means, and K-centres were preferred for
the terminals with restricted computational capabili-
ties. The K-means classifier requires a careful selec-
tion of the parameter K, which may be problematic
for a mobile-terminal user. The K-centres is sensi-
tive to the noise and outliers in the training dataset.
In turn, the Parzen estimator tends to produce over-
smoothed or too noisy density estimation. Therefore,
the K-nearest neighbours classifier is chosen as the
classifier for the features in this category. The design
of this classifier is described below for the example of
the “temporal lengths of actions” feature.

The classifier analyses the mean call duration time
7 Within the window [11,72]. The value of Fdur g
calculated as 7% = -L 570 70 where 7
is the last call duration registered within the window,
and nqy, is the average number of calls finished within
a window. Using the accumulated empirical distribu-
tion function (EDF) of the 74" values, the probabil-

dur
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ity density p(79'") of the current mean inter-arrival
time is evaluated using k-nearest-neighbours method.
Given the current inter-arrival time values, the classi-
fier outputs the classification u; = p(74).

Symbolic features, temporal relations ignored.
For the features in the second category, histograms
were deemed appropriate. Below, an application of
this classifier to one of the features in this category
(type of program or service evoked) is described.

The classifier assigned to this feature estimates the
probability of an application j being evoked out of m
applications as P(app;|U) = (aapp, +1)/(>_,, dapp,, +
1), where @app, is the number of times the user evokes
the application. Assuming the independence of conse-
quent application evocations, the probability of ap-
plication evocations within a time window [71,72]
is approximated as P(appifnappﬂ, .oapp|U) =

H;:Fnappﬂ P(app;|U) , where app; is the last ap-
plication evoked within the time window, and napp
is the average number of applications evoked within
the window. Given the current active applications to

be classified, the classifier outputs the classification
u; = P(app;_p,, +1;- - -» app;|U).

Symbolic features, temporal relations are im-
portant. The conventional Markov model was hy-
pothesized to be suitable for the features in this cate-
gory. Below, the design of the classifier based on this
model is specified for the “sequence of cells traversed”
feature.

The model of the assigned classifier includes a ma-
trix, where each element ace, cell; 1S a counter that
stores the number of times the terminal’s Cell ID
changed from cell i to cell j. The matrix values are
used in approximating the probability P (cell;|cell;, U)
of a handover:

Gcell; cell; +1

P(Cellj|celli,U)=Z P (39)
m Yeell; cell,, ct 1

where cell,,, are the cells to which traversals from
cell; were registered, and nc ; is the number of
such cells. Given the parameters [ and J, of slid-
ing window, the average number of handovers ny,
within a window is estimated. Assuming the inde-
pendence of consequent handovers, the probability
of a sequence of cell changes within a time window
[71,72] is approximated as P(cell;_y,.,...,cell]|U) =
H;;tho P(celljy|cell;, U), where cell; is the last
cell registered within the time window. In the clas-
sification phase, given the current route to be clas-
sified, the classifier outputs the classification u; =
P(celly_p,., ..., cell;|U).

Using the dataset described above, initial experi-
ments with these classifiers were conducted. The hold-
out cross-validation [78] was used in the experiments,
in order to evaluate the accuracies of classifiers. The
model of each classifier was learnt using the training
data-set DS7, and was subsequently used to classify
the instances of a test data-set DS¢. Since the data
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originated from masqueraders were not available in
the dataset, the other users’ data were employed as
the masquerader’s data. The results of these experi-
ments are reported in [77]; according to these results, a
relatively good accuracy can be achieved with some of
these classifiers, e.g. with the classifiers processing ad-
dress information of contacted people. Meanwhile, the
accuracy of some of the classifiers (in particular, the
classifiers processing temporal intervals between con-
secutive evocations of a program or service of a same
type) was very low, indicating that the corresponding
features are poor differentiators between users.
According to no-free-lunch theorem [79], no single
classification method would provide superior classifi-
cation accuracy independently of the context, in which
the method is applied. Therefore, further empirical
studies are needed in order to determine the accuracy,
and hence, suitability of different methods in a given
context [7]. For example, many of the above meth-
ods are sensitive to the noise and mislabelling errors
in the training data, and the empirical testing can be
employed to evaluate how significant is the influence
of such errors for the classification problem in hand.
Besides, in the context of mobile-masquerader
detection, these empirical studies should determine
whether a classification method fits to the constraints
of the mobile terminals. For instance, the above K-
nearest neighbours classifier requires the observation
vectors to be kept, thereby consuming the memory
of a mobile terminal. However, for the available fea-
tures analyzed by this classifier, the use of memory is
rather conservative. For example, the data required
for the classifier analyzing durations of calls consumes
in compressed format from 7 to 29 kilobytes; further-
more, a significant proportion of this data is redundant
and can be excluded in real-world applications. Thus,
the amount of data required for the K-nearest neigh-
bours classifier appears to be tolerable for contempo-
rary smart-phones, making the use of this classifier in
the context of mobile-masquerader detection feasible.

5 CONCLUSIONS

A noticeable research during last years has been de-
voted to the problem of one-class classification. The
peculiarity of this type of classification is the availabil-
ity of the observation vectors of only one class dur-
ing learning. These methods are particularly useful
in the application areas, where the observation vec-
tors belonging to other classes are difficult or impos-
sible to obtain. One such application area is mobile-
masquerader detection.

A number of one-class classification methods have
been proposed in literature, varying from modifica-
tions of conventional N-class classification methods to
the methods designed specially for one-class classifica-
tion problem. In this paper, some of these methods
have been reviewed, and their suitability to the prob-
lem of mobile-masquerader detection has been anal-
ysed.

Both the review of classifiers and the analysis
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of their suitability to a specific application domain
were based on the taxonomy of one-class classification
methods that was introduced in the paper. This tax-
onomy categorises the one-class classification methods
according to the internal model, the type of the fea-
tures, and the ability to take into account the tempo-
ral relations between the features.

According to the internal model, the classifica-
tion methods were divided into density, reconstruc-
tion, and boundary methods. This division was em-
ployed in the review, since the methods within a same
category have some similarities in the learning and
classification phases. Within each category, the meth-
ods were reviewed according to a developed analysis
framework. Namely, for each method, the review in-
cluded the summary of the learning and the classifi-
cation process implemented by the classifier, its sensi-
tivity to the noise and mislabelling errors in training
data, the number of parameters to be set by the user or
estimated using training data, and the resources con-
sumed during the learning and classification phases.

The categorisation of classification methods ac-
cording to the type of data and according to the abil-
ity to take into account the temporal regularities was
employed in order to evaluate the applicability of the
methods being reviewed to the problem of mobile-
masquerader detection. For this, the features that
are hypothesised to be useful in masquerader detec-
tion were divided into four categories, according to the
type of features (symbolic or numeric) and according
to the importance of temporal ordering of measure-
ments. Then, for each category of features, poten-
tially suitable classifiers were identified, and the de-
sign of some of the classifiers has been described in
detail. Further empirical research is, however, needed
in order to compare different methods quantitatively
in the context of mobile-masquerader detection.
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