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ABSTRACT

Artificial neural networks (ANNs) have been widely applied in data mining as a supervised classification technique. The
accuracy of this model is mainly provided by its high tolerance to noisy data as well as its ability to classify patterns
on which they have not been trained. Moreover, the performance of ANN based models mainly depends both on the
ANN parameters and on the quality of input variables. Whereas, an exhaustive search on either appropriate parameters
or predictive inputs is very computationally expensive. In this paper, we propose a new hybrid model based on genetic
algorithms and artificial neural networks. Our evolutionary classifier is capable of: selecting the best set of predictive
variables, then, searching for the best neural network classifier and improving classification and generalization accuracies.
The designed model was applied to the problem of bankruptcy forecasting, experiments have shown a very promising

results for the bankruptcy prediction in terms of predictive accuracy and adaptability.
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INTRODUCTION

Artificial neural networks (ANNs) have been widely
applied in data mining as a supervised classification
technique [1]. Nevertheless, the performance of neural
networks (NNs) greatly depends on both the problem
at hand and on the parameters chosen for it. Neu-
roevolution searches through the space of behaviors
for a network that performs at well for a given task.
In fact, NNs can be combined with genetic algorithms
in order to improve classification accuracy. This hy-
brid approach, aims to solve complex control problems
and represents an exiting alternative as well to conven-
tional learning classifiers as to statistical techniques
[2]. Our model consists of a hybrid system which can
respond to the following requirements: retrieving the
best set of attributes (financial ratios) from a given
data set; searching the best NN classifier; improv-
ing and refining the retained NIN classification and
generalization accuracies. In addition, the problem of
efficient bankruptcy prognosis is of great interest both
to scientists and practitioners [3, 4]. In fact, owners,
managers, investors, creditors and business partners,
as well as governmental institutions, have an inter-
est in assessing the financial position of a firm and
its propensity for bankruptcy. Besides, the proposed
models for bankruptcy prediction unanimously con-
firm the growing interest to ANN approaches [5, 6, 7].
The reminder of this paper is organized as follows:
section 1 presents ANNSs as a learning and a classifi-
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cation techniques. Next, we detail the genetic evolu-
tionary optimization process. In section 3, we survey
models developed to forecast firm failure. Section 4
details our model and its two components. Section 5
is dedicated to the assessment of the proposed model
and presents the results of the conducted experiments.
Finally, we present a summary and we sketch avenues
of future research.

1 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are stochastic models that
simulate the brain’s ability in learning, control and
pattern recognition. The decisions taken are always
based on previosly learned experiences. In fact, ANNs
attempt to model brain’s biological structures both in
architecture and operations. Most types of NNs can
be covered by the following definitions:

Definition 1:

A NN is a system composed of many simple processing
elements operating in parallel whose function is deter-
mined by a network structure, connection strengths
and the processing performed at computing elements
or nodes’.

Definition 2 [8]:

According to Haykin, a NN is a massively parallel
distributed processor that has a natural propensity for
storing experiential knowledge and making it available
for use. It mimics the human brain in two aspects:

!DARPA Neural Network Study (1988, AFCEA Interna-
tional Press, p. 60)
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e Knowledge is acquired by the network through a
learning process.

e Interneuron connection strengths known as
synaptic weights are used to store the knowledge.

The neuron or unit, also called processing element
performs a relatively a simple job: it receives inputs
from neighbors and external sources and use them
to compute an output signal which is propagated to
units in the next layer. The computation procedure
is performed in two steps. First, inputs are weighted
and summed. Then, the result is used as a parameter
for a singular valued function: the activation function.
The activation function is as follows:

yi = f(hi) = £ wijmi + 65) 1)
j=1

The parameter §; is called a bias and can be inter-
preted as a weight applied to a pseudo input which is
generally clamped to a constant value.

The most widely used activation function is the
logistic sigmoidal function:

F(hi) = (1/(1+e7™)) (2)

that maps a large input domain into the range of [0, 1].
The logistic function is non linear and differentiable,
allowing the learning algorithms to model classifica-
tion problems that are linearly inseparable.

Inputs are propagated through the network, layer by
layer, using equations (1) and (2), until reaching the
output layer. The decision corresponding to the input
vector is provided by the values of the output nodes
of the trained ANN.

The next paragraph illustrates how the ANN can learn
from examples, by presenting one of the common su-
pervised learning procedure: the Backpropagation.

The Backpropagation Algorithm

Considered as the most popular NN algorithm, the
Backpropagation (BP) algorithm was proposed in
1986 by Rumelhart et al. [9]. The BP performs learn-
ing on a multi-layer feed-forward NIN, through an iter-
ative process of a set of training samples. Each input
vector passes through the network until it reaches the
output layer where it yields an output vector. The
input propagation is called the "forward” step. The
network prediction derived from the output vector, is
then compared the desired output. For each training
sample, the weights are adjusted so as to minimize
the mean squared error between the desired and the
obtained outputs. The corrections, to fit the desired
output, are performed in the "backward” direction, i.e,
from the output layer down to the first hidden layer.
The process is iteratively applied on the training sam-
ples until the satisfaction of the stopping criterion.

The accuracy of ANN model is mainly provided,
by its high tolerance to noisy data as well as its abil-
ity to classify patterns on which they have not been
trained [10].
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Figure 1: A common genetic evolution process

2 GENETIC ALGORITHMS

Genetic algorithms (GAs) are artificial intelligence
global search techniques. GAs attempt to apply
evolutionary techniques to the field of the problem
solving notably in function optimization [11]. They
been have proven to be valuable in searching large
and complex problem spaces [1], especially NP-hard
problems. A GA process is based on natural selection,
crossover and mutation that are repeatedly applied
to a population of potential solutions, simulating the
Darwinian evolution [11]. Each solution is encoded
into a binary string called chromosome. Over gen-
erations, a number of a new solutions is generated,
with crossover and mutation operations, and the
best solutions are selected. This process iteratively
continues until the obtention of a good solution. A
common genetic evolution process is sketched by
Figure 1.

GAs will be used and referenced, at different lev-
els, in our paper. Each of them tries to tackle a com-
binatorial optimization problem.

3 BANKRUPTCY FORECASTING MODELS

Numerous models have been developed to predict
firms insolvencies [12]. In the reminder, we only put
the focus on those related to both NN and hybrid mod-
els.

3.1 Neutral networks models

The application of ANN in the study of the
bankruptcy problem started since 1990 and became
a dominant classification research methodology [3]. A
variety of studies have been done on the topic of NN
and bankruptcy prediction. In the following, we sur-
vey the NN bankruptcy prediction models according
to the NN type.

311 MLP-BP

The MLP-BP is a multilayer perceptron (MLP) neu-
ral network with a feed-forward architecture and back-
propagation as a training algorithm. The MLP-BP is
very popular and was successfully applied to a wide
range of classification problems [13, 14]. The majority
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of bankruptcy studies, that consider ANN as a predic-
tive model, use both multi-layer feed-forward NN as
an architecture and BP or one of its derivative as a
learning algorithm. B. Back et al. [5] use networks
with one output node. Each firm presented to the
network will be classified into a bankrupt or solvent
class, according to the activation value of the output
node. A varying number of hidden nodes was used
in networks trained with 10000 epochs. Four models
were tested, using different sets of input ratios as NN
input. With 38 training firms samples and the same
number of firms on the test set, experiments showed
that the near optimal architecture was with five hid-
den nodes. The first NN model achieved a prediction
accuracy with 94.47%. Finally, all the four models
were tested with one, two and three years old data be-
fore bankruptcy. All the four models gave their best
results as well with one year before bankruptcy as with
the first model based on ratios.

Li et al. [6] compared the predictive capabilities of five
models: Two statistical techniques based on logistic
regression (Logit and Probit), and three feed-forward
NN architectures. The BP learning algorithm is re-
placed by a global search procedure to avoid rapid
convergence in local minima. The GA was used to
catch out the near optimal set of NIN weight val-
ues. GA was introduced by the authors to search
for the global optimum and avoid problems of local
minimas caused by the BP algorithm. Two models
were of use: one with four input variables, and the
other, with six input variables. As a result, the NIN
consistently outperform the other models with an av-
erage prediction accuracy around 90% in the fourth
variable model, and with 91.96% of accuracy for the
six variables model in the training sample. In the test
set, the NN generates less out-of-sample errors than
probit does with 86.66% and 75.5% of accuracy respec-
tively for the first and the second model. Logit, probit
and maximum score outperform NNs with four hid-
den layers. However, when the NN was trained with
six hidden nodes, it performs the same accuracy than
the other models.

3.1.2

Self-Organizing-Maps (SOM) also known as Kohonen
networks [14, 15], are usually composed of two layers:
an input layer of N nodes and an output layer. output
neurons are usually organized into a two-dimensional
grid. The SOM tries to separate outputs into cat-
egories, called clusters. During the training process,
input patterns are presented to the network in turn,
and all the nodes calculate their activation values.

The winning node, also known as best matching unit,
and some of the nodes in the neighborhood are then
allowed to adjust their weights vector to match the
current input vector more closely. Consequently, the
winner is the output unit that is the closest to the
input vector. The size of the winner’s neighborhood
is varied throughout the training process. The net-
work has no prior knowledge about the target outputs
and the training is characterized by a competition be-

Kohonen Self-Organizing-Maps
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tween the output units: the Kohonen learning is un-
supervised and competitive [15]. As application of the
SOM, Back et al. [5] use it as a model to predict the
future fail of companies. The data sets and the input
variable models are the same as those described in the
first example of the previous section. The achieved re-
sults vary from 76.31% to 92.1% of accuracy. The best
results were achieved with a grid of (3 x 3) grid using a
model based on input ratio variables. Using the opti-
mal network architecture, data from one to three years
before the possible bankruptcy were tested. The au-
thors concluded that the used network was unable to
predict firm’s bankruptcy two and three years ahead.

3.1.3 Support Vector Machines

Support Vector machines (SVMs) were introduced
by Vapnik in 1995 and numerous studies have ap-
plied them in pattern recognition [16]. SVM classi-
fication finds hyper-planes in the possible space for
maximizing the distance from the hyperplane to the
data points, which is equivalent to solving a quadratic
optimization problem. A SVM captures the geo-
metric characteristics of feature space without deriv-
ing weights of networks from a training data. SVM
was applied by Shik in 2005 to predict Korean firms’
bankruptcy [17]. The data set contains firm ratios
from 1996 to 1999. A statistical scoring method, Mul-
tivariate Discriminant Analysis (MDA) was applied
in a preprocessing stage to select a set of 10 input
variables from 52 ratios. The obtained results showed
that the generalization performance of SVM is better
than that of ANN trained with the backpropagation
algorithm. The learning accuracy on the training set
reaches 100% and the generalization performance was
around 88%. However, the performance of the model
closely depends on the best choice of the model pa-
rameters.

3.2 Hybrid models based on feature selection

By targeting more accurate results and less predic-
tion errors, several methodologies have attempted to
take advantage of more than one model’s possibilities.
Lee et al. [18] proposed two hybrid models: MDA-
assisted NN and ID3-assisted Neural Network. These
models are based on a NN operating with the input
variables selected, respectively, by the MDA and ID3
[19]. The intention underlying these hybrid models is
that MDA or ID3 was used as preprocessing mecha-
nism for selecting most predictive input variables. The
data sample was based on the Korean firms failing
in the period 1979-1992. Initially, fifty seven finan-
cial variables were selected as significant in predicting
bankruptcy. The preprocessing stage yields with 10,
18, 17 and 7, 7, 9 financial ratios respectively with
MDA and ID3 respectively. The results of the MDA
was 68%, 68.57%, and 70% of accuracy. However,
the MDA-assisted NN showed more accurate results
with 70%, 80%, and 80%. Thus, hybrid model per-
fiormances outperform those obtained by each model
apart. Compared to MDA, hybrid model the ID3-
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assisted NN is more powerful. Besides, it realizes such
performance with a fewer number of input variables.

Back et al. proposed in [7] a comparison between
GAs, logistic regression (Logit) and discriminant anal-
ysis. The three models were applied to search the
best bankruptcy predictors. The study showed that
the three techniques lead to different failure predic-
tion models. The best results were found with GAs
evolving a NN as a wrapper.

4 THE PROPOSED MODEL

Numerous studies have showed that ANNs can be an
alternative methodology for classification problems to
those statistical methods have been of extensive use.
[3, 5, 6]. Nevertheless, numerous theoretical and ex-
perimental studies carried out on supervised learning
reported several drawbacks in building and using the
backpropagation [10, 20, 21]. Adding to this, the fact
that there is no automatic way to design the NN ar-
chitecture for a given classification problem. Aiming
to give the best of the neural network classification
capabilities, we introduce a new model that is able to:
design near optimal NIN architecture, look for a best
set weight values yielding high learning and classifica-
tion accuracies, and provide a compact set of relevant
features as a NN input.

Believing that combining classifiers and boosting
methods can lead to improvements in performance,
we propose, in this article, a new hybrid model based
on mainly two stochastic techniques, which are com-
bined at different levels of the proposed model. The
following paragraphs illustrate how ANNs and GAs
are combined and applied to improve classifiers per-
formance accuracies.

The model to present in this study consists in two-
stage evolutionary optimization processes. The first
step selects the best set of inputs having a predictive
relationship to the target. It will be done using the
first sub-model: Input Selection Model (ISM). The
purpose of the ISM is to provide, from the whole set
of available features, a relevant set of features discard-
ing noisy ones. The second step consists of the design
and the optimization of the classifier based on NNs.
The Neural Network Optimizer (NNO) chooses the
best architecture of the neural networks using the in-
puts selected by the first sub-model ISM.

4.1 The Input Selection Model

At this level, ISM plays the role of a feature selection
method. In fact, ISM aims to select a reduced feature
subset to feed the NN inputs in the second stage. The
selection of a relevant subset of features is a combina-
torial problem involving a search within 2™ possible
subsets. ISM uses a GA as a global search procedure
and a NN as a wrapper for the evaluation of retained
subsets. The GA designed by ISM is based on the
standard algorithm of Goldberg [11]. We apply it to
select a compact set of input variables for the predic-
tion of firm bankruptcy. A set of candidate solutions
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are evolved through a fixed number of generations.

Hence, possible solutions to the problem are en-
coded as binary strings, where each bit corresponds
to a feature. When a bit is set to ’1’, it means that
the variable corresponding to this position is selected
to build a NN, otherwise, the variable is not retained.
The pseudo-code of the ISM is illustrated by Algo-
rithm 1. In our case, dataset variables are represented
by financial ratios.

4.1.1 |Initialization

An initial set of solutions is randomly generated. For
each individual, a number of ratios is randomly se-
lected by setting their corresponding bits to 1. Once
the initial population is created, the evaluation pro-
cess starts to evaluate the classification accuracy of the
retained subsets (c.f Algorithm 2). A fitness value is
assigned to each chromosome. The first generation of
solutions is derived by applying a tournament selec-
tion to the evaluated set.

4.1.2 Evaluation

At this level newly generated chromosomes are evalu-
ated to acquire a fitness value and the wrapper plays,
here, a key role to evaluate features corresponding to
each chromosome. There are two steps that must be
performed to evaluate each chromosome. First, a NN,
with the selected variables in the chromosome as in-
put, is built and trained. Next, the trained network is
evaluated using a test set which is constituted of un-
seen data at the training stage. The predictive power
of a ANN is assessed on the basis of both the num-
ber of Correctly Classified Instances (CCI) and the
MSE obtained on the test set. The chromosome eval-
uation assesses the predictive generalization ability of
the NN and consequently of the set of involved ratios.
The idea of the use of the test set in the evaluation was
retrieved from the work of Back et al. [7]. Besides,
Aleixandre et al. [22] used the number of incorrect
classified instances in the evaluation of the training
set. In fact, and as illustrated by equation (3), our fit-
ness involves two evaluation criteria: the proportion
of incorrectly classified instances and the mean square
error in the test set.

fitness = (ICI+TMSE)/2 (3)

equation (3), ICI and TMSE denote, respectively,
the percentage of incorrectly classified instances and
the mean square error found on the test set.
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Input:

S: Set of features

N;: initial population size

N: population size

t: tournament size

Pmut: Mutation probability

Peross: Crossover probability

Maxgen: number of generations

h: number of hidden nodes

it: number of training iteration

7n: learning rate

m: moment value

Output: S1: Best subset of features

Begin

Population Pg, P,Ptp

P():P:Ptmp: @;

Po=GeneratelnitialPopulation(N;)

Evaluate (P, h, it, 7, m)

P=Select (P, N,t)

i=0

While ¢ < Mazgen do
Pimp=Select (P, N,t)
Crossover(Pmp, Deross)
MUtate(Ptmpa pmut)
Evaluate(Pypmp, b, it, n, m)
Replace(Pmp, P)
i=i+1

S1=P.bestChromosome().decode()

Return(S1)
End

Algorithm 1:

(ISM)

Input Selection Model Algorithm

Input:
P: population
h: number of hidden nodes
it: number of training iteration
n: learning rate
m: moment value
Output: P: Population evaluated
Begin
Foreach Chromosome ch € P do
I=ExtractRatiosIndexes(ch)
TestSet=GenerateTestSet (1)
TrainSet=GenerateTrainSet(I)
N=new Network(I, h, 1)
N.train(TrainSet, it, 1, m)
Eval(N,TestSet, TMSE , ICI)
| ch.fitness=(TMSE+ICI)/2
Return(P)
End

Algorithm 2: Evaluate procedure

4.2  Neural Network Optimizer (NNO)

As a second part of the model, we propose to develop
a sub-model capable of delivering a classifier with
near optimal train and generalization accuracies. To
achieve this goal, we have decided to combine NN
learning skills with those of GA search capabilities.

It is well known that the ANN architecture has a
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significant impact on the information processing
ability of the model. Moreover, there is no systematic
way to design an optimal architecture for a particular
task [23]. Besides, the BP learning algorithm suffers
from the problem of local minima, which depend
on both initial weight values and the learning rate
parameter (7).

The NNO sub-model proposes a new hybrid al-
gorithm which can evolve weights and architectures,
and refines the learning capabilities. Our approach
consists in two stages: global and local search proce-
dures. The first stage designs the main aspects of the
NN classifier, and the second concentrates on refining
learning capabilities.

Input:

% set of Flnanmal ratios
i+ Initial population size

N: population size

t: tournament size
Pmut : Mutation probability

Deross © crossover probability
Maxgen : number of generations

D%ca normalized dataset ratios
An array of mutation operator

probabilities

N,,: number of bits to change with mutation
Nj;: iteration number of the train operator
n: learning rate of the train operator

m: moment value of the train operator

Output: Net,,:: Near optimal trained NN
Begin
Population Pg, P, Py
Po= P= Pypp=0
TrainSet=GenerateTrainSet(Data, S)
TestSet=GenerateTestSet(Data, S,
TrainSet)
Po=GeneratelnitialPopulation(N;)
Evaluate (P, TrainSet, TestSet)
P=Select (Py, N, t)
Wheel=InitWheel(MP)
i=0
While i< Mazgen do
Pimp=Select (P, N, t)
Crossover(Pp, Deross)
Mutate(Pimp,pmut, Wheel, Ny, , it, 1, m)
Evaluate(Pyy,p, TrainSet, TestSet)
Replace(Pimp, P)
i=i+1
Net=P.bestChromosome()
Net,pr=EvolveWeights(Net)
Return(Net,p)
End
Algorithm 3: Neural Network Optimizer algo-
rithm (NNO)

421 The first stage: The global optimization proce-
dure

The GA evolves through generations a set of NNs,
where each one represented by a chromosome. In each
generation, new individuals (NN genotypes) are cre-
ated and added to the population using the repro-
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Input:

P: population of chromosomes P, :
Mutation probability

N,,: number of bits to change with mutation
it: iterations to achieve with the train operator
n: learning rate of the train operator

m: moment value of the train operator

Wheel: the wheel represents the mutations
operators probabilities

Output: P: Population with new chromosomes
Begin

Random r

Chromosome C

Foreach C € P do

If r.getValue()< Py then
choice=Wheel.getOperator()

switch choice do

case |

| mutateWheights(C,N,,)

case 2

| train(it,n,m,C)

case 3§

| addConnection(C)
case 4

| deleteConnection(C)
case 5

| addNode(C)

case 6
| deleteNode(C)

Return(P)
End
Algorithm 4: Mutation Procedure
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duction operators (crossover, mutation and selection).
Networks are evaluated according to their training and
test error levels.

Chromosome representation

In deciding on an appropriate representation, we tried
to choose the one that can be suitable to the evolu-
tion of both weights and architectures. Applying a
binary encoding allows the NN to operate almost like
the standard GA [24]. A direct encoding scheme is ap-
plied in this evolution process. The chromosome can
be seen as the concatenation of binary representation
of weight values. The node oriented representation
groups the input weights for each neuron together.
The network is encoded by a set of all possible con-
nections like a fully connected network. However, only
the existing connections are activated. Each connec-
tion encodes the weight value and its own state (en-
abled, disabled).

Genetic operators

Since the solutions that encode NN topologies and
weights use binary representation, then, we can ap-
ply to them classical operators. Nevertheless, and
because crossover of networks with different topolo-
gies can frequently lead to a loss of functionality [24];
we decided to reduce the crossover probability and to
impose a granularity parameter. Individuals are spit-
ted at the end of a node or connection according to
the representation scheme adopted. The new chromo-
somes generated by crossover, passes through a vali-
dation stage. If the chromosome can be mapped into
a valid NN (inputs connected, layers connected, nodes
connected,...), then it can be added to the new gen-
eration. Otherwise, the generation process restarts.
The mutation operators introduce innovation to the
genetic material and allow the evolution process to
explore new regions in the search space. Trying to
diversify the exploration of new regions in the search
space, we proposed a new mutation procedure based
on the wheel selection mechanism. Each individual
elected for mutation starts by the selection of the op-
erator that will be applied on. In the aim to diversify
the mutation procedure importance of each chromo-
some, we propose to use the wheel technique in the
selection of mutation operators. The respective im-
portance of each operator is randomly distributed on
the wheel. In a such a way we can use the diversity of
the mutation operators with the strength of the wheel
technique. The applied mutation procedure is detailed
by Algorithm 4.

Chromosome evaluation
The fitness function measures the quality of each chro-
mosome. This value is particularly used during the
selection of the individuals for the new generation.
Three steps are necessary to compute the fitness value.
First, the binary string is mapped into a network.
Next, the mean error of the mean square errors and the
incorrect classified instances are computed for both
training and test sets. Finally, the mean value ob-
tained by the two error measures is assigned to the
chromosome as a fitness value.
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4.2.2 The second stage: Refining the learning

Once the main aspects of the near optimal NN are
defined by the global search procedure, the learning
capabilities of the resulting classifier can be refined
by a local search procedure. Consequently, the refine
learning procedure will adjust the values of weights
with one of the known learning approaches: the BP is
generally used for this purpose [25, 26]. We propose,
here, another GA that searches for the best set of
weights using the network topology and architecture
provided by the NNO used in the first stage.

Thus, the best individual of the first optimization
stage is first mapped into a valid network. Then, the
network is remapped into a new chromosome in the
initial population of the second stage. Hence, the best
solution provided by the first stage defines the param-
eters of the second stage. The network weights are
evolved using a binary representation and standard
genetic operators. The evaluation procedure is the
same as the first stage optimization. This evolution
process is presented in Algorithm 3 by the NNO by
the EvolveW eights(.) function (line 19).

5 EXPERIMENTS AND EVALUATION

5.1 Available data
5.1.1 data description

For our experiments, we use data sets that have
been used to forecast firm bankruptcy. The data
set represents Tunisian firms results one year before
bankruptcy. Results were derived from financial
balance sheets of the year 2002 exercise. The data
consists of 88 firms, which filed for bankruptcy 38
cases, and non-bankruptcy 50 cases. Each firm in
the data set is represented by 31 values: 30 ratios
and a binary variable representing the firms state (0:
non-bankrupt, 1: bankrupt). The available ratios are
described in Table 1.

5.1.2 training and test datasets

To evaluate the model training accuracy and general-
ization performance in unseen cases; we should divide
the available sample instances into two sets: train and
test set. Given the small size of our sample (88 in-
stances), we have decided to dynamically change the
instances in both data sets at each new learning task.
Each time when we have to train or evaluate a NN,
both datasets are built with a random distribution
from the original data set generated. Although data
sets instances are randomly selected, the bankrupt
and non-bankrupt firms are proportionally distributed
in each data set.

5.1.3 Data preprocessing

Modelling tools based on ANN can not be trained or
assessed by a raw data set [27]. The available data
must be normalized. In our case, all the available vari-
ables values have a numerical representation (ratios).

| Ratio Formula

R1 Current assets/Short-term debts

R2 (realizable values + liquid
assets)/Short-term debts

R3 Quick ratio Liquid assets/Short-
term debts

R4 long term capital/fixed assets

R5 long and medium term liabili-
ties/long term capital

R6 long and medium term liabili-
ties/Share holders’ equity

R7 Share holder’s equity/Total
debts

R8 Share holder’s equity/Short-
term debts

R9 financial costs/ EBE

R10 Cash-flows/financial costs

R11 Working capital/total assets

R12 Working capital/current assets

R13 Working capital/working capital
requirements

R14 Turnover/total assets

R15 Turnover /Net fixed assets

R16 Turnover/Stocks

R17 Depreciation provision/fixed as-
sets

R18 Staff costs/added values

R19 financial costs/added value

R20 Net fixed assets/total fixed as-
sets

R21 realizable values/total assets

R22 liquid assets/total assets

R23 Share holder’s equity/ Total lia-
bilities

R24 long and medium term liabili-
ties/Total liabilities

R25 long term liabilities/ Total liabil-
ities

R26 Log(balancesheet)

R27 EBE /Total assets

R28 Net return+financial costs/long
term capital

R29 Net return/Share holder’s equity

R30 Cash flow/total assets

Table 1: List of available ratios
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Normalization accepts values that span one range and
represents them in another range. ANN requires data
to be close to the range of 0 to 1. The selected method
for normalization is the linear transform scaling [27]:

v; — min(vy..vp)
max(vy..vn) — min(vy..vy,)

Vn = (4)
where v,, and v; respectively represent the normalized
and instance values. The main advantage of the lin-
ear scaling is that it introduces no distortion to the
variable distributions.

5.2 Artificial neural networks in the forecast
of bankruptcy

As a first step, experiments were performed with dif-
ferent NN wrappers configurations (architecture, and
learning parameters) using the inputs selected by the
MDA in a previous study. The ratios used as a NN
input are summarised in Table 2:

| Ratio | Formula |
R5 long and medium term liabili-
ties/long term capital
R26 Log(balance sheet)
R27 EBE /Total assets
R30 Cash flow/total assets

Table 2: List of ratios selected by MDA

We trained four models. Each model used the
same set of ratios as described above. However, each
model differs form the others by the number of hid-
den nodes. Also, we have applied the standard BP
algorithm with momentum [9, 28]. Built networks are
feed foreword and fully connected. We have tested
the ANN using different data sets and the best re-
sults were obtained with the following parameters: the
learning rate and momentum was respectively fixed to
0.25 and 0.5. The initial values of weights were ran-
domly selected in the range of [-0.1,0.1]. Using these
ANN parameters, the models was trained with 5000
epochs. The train and the test errors were computed
using the following formulas:

Train_error = w (5)
Test_error = w (6)

Where ICT and M SE correspond respectively to the
proportion of correct classified instances in the data
set and the value of the mean square error.

Globally, the four ANN models achieve around
80% of accuracy in tests and 85% in train. We can
also remark that the train error is less than the test
error. Although, the best train error was obtained by
the first model, the worst test error was also deliv-
ered by the same model. We can conclude, for this
case, that the network with five hidden nodes was en-
able to learn all the the data set enfolded behaviors.
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The test error decreases as long as the number of hid-
den nodes increases. Moreover, the evolution of the
error levels can be seen as two stage evolution. The
four models decrease their respective train errors until
reaching their convergence levels. In fact, as far as the
train errors stagnate, the test errors start to increase
after reaching their lowest levels.

5.3 Input Selection Model: evaluation

Trying to give to the ANN the best predictors, a GA
is launched by the ISM model to select the set of ra-
tios with the high predictability potential. The GA
parameters are summarized in Table 3, where py ¢
and p¢ross represent respectively the operators proba-
bilities. The GA searches for the best solution during
100 generations. Size and Size,y represent respec-
tively the population size and the number of individ-
uals elected to the new generation. The ANN param-
eters are used during the computation of the fitness
value.

The best set of predictors selected with ISM are
summarized in Table 4.

By scrutinizing the variables (ratios) included in
each model, we pay attention to the number of vari-
ables selected by ISM. The number varies from 6 to
12. Also, the number of selected ratios is independent
of the number of hidden nodes. Six and eight vari-
ables are selected respectively with 5 and 20 hidden
nodes, while 10 and 15 nodes, eleven and twelve ra-
tios were selected. Variables included in Table 4 show
that there is only one variable R5 (long and medium
term liabilities/long term capital) that is selected in
the four models.

by comparing performance of each model (Figure
3), we can see that the worst results were given with
the model with the fewest number of variables. Nev-
ertheless, the best results were not obtained with a
model with the largest number of variables. Com-
pared to the variables selected with MDA, the first dif-
ference was in the number of retained variables. The
four models derived with ISM have a greater num-
ber of ratios. Two of the four models (10-15 hidden
nodes) contain all the selected variables in the MDA
(R5, R26, R27, R30) and all the four sets include at
least two MDA ratios.

Once the best set of predictors has been selected,
a new ANN is built for each model and trained for

5000 iterations. The model parameters and results
are detailed in Tables 5 and 3.

The results show a considerable improvement in
almost cases. The best results were given by the third
model which, that reached 100% of success for the
correct classified instances and lower value of global
training error equal to 3x 107*%. The test level is also
kept at his low level which is equal to 8%. The fourth
model achieves a slightly greater error level. However,
its global performance is better than those obtained
with ANNs trained without ISM feature selection.
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Figure 2: ANN results after 5000 epochs
Configuration GA parameters ANN parameters
Iterations | pmut | Peross | Size | Size,, | Hidden nodes | Iterations | Lr
H5 100 5% 85% 30 5 5 100 | 0.25
H10 100 5% 85% 30 5 10 100 | 0.25
H15 100 5% 85% 30 5 15 100 | 0.25
H20 100 5% 85% 30 5 20 100 | 0.25
Table 8: ISM parameters
| Configuration | Ratio number | List of ratios |
H5 6 | R1, R5, R6, R10, R16, R26
H10 11 | R3, R4, R5, R6, R7, R16, R18, R21,
R26, R27, R30
H15 12 | R5, R17, R21, R22, R23, R24, R25,
R26, R27, R28, R29, R30
H20 8 | R5, R9, R14, R17, R20, R22, R27, R28

Table 4: List of selected ratios

| Configuration | Hidden nodes || Train error | Test error

H5 ) 8391 % | 18.697 %
H10 10 6.007 % | 14.693 %
H15 15 0.039 % 8.154 %
H20 20 5.938 % | 17.977 %

Table 5: ISM: train and test results after 5000 epochs
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Figure 8: Train and test results of the ANN trained with 5000 epochs

5.4 Neural network optimizer (NNO)

Once the best input predictors are selected, the NNO
uses theses inputs to search the best ANN architecture
and weights suited to the problem at hand. In the fol-
lowing, we experiment different configurations of the
NNO parameters.

Figure 4 presents and compares the results ob-
tained in two experiments. The first one is done with
NNs using the ratios selected by ISM. These models
are trained for 55000 iterations. The results showed in
the figure are labelled ”ISM Convergence” and corre-
sponds to NN classifiers only applying the first model
stage. In the second experiment, the best set of pre-
dictors selected within ISM are presented to NNNO to
search their best ANN properties. NN O is applied for
each set of ratios selected by ISM and the results pre-
sented in this figure illustrate the error level achieved
by each model. All these classifiers used ISM as a fea-
ture selection model and are trained with for 50000
iterations. The evolutionary learning approach NNO
applies 1500 iterations in the global search stage and
1500 iterations with the local search stage using the
best chromosome retrieved from the first one.

By comparing the obtained results, it is clear that
the results obtained with ISM and NINO are better
than those by only applying ISM with fully connected
networks. The four models confirm the superiority
of our model. Also, this figure shows the effect of
the selection of the appropriate and adjusted network
weights and architecture. The training error is kept
at a low level (2%,0.1%,1074%,9%). The accuracy
in generalization is considerably improved: in the sec-
ond model this test error passes from 24% to 11%.
The lowest accurate model provided by NNO is the
fourth. The accuracy lost in training is recovered by
generalization. The best performance is given by the
third model with more than 99% of accuracy in both
training and tests.

5.5 Whole model evaluation

Figure 5 presents a recapitulation of the experiments
stages. In each stage, the error of both train and test
are represented for each model. We can point out
that the improvement of the classifiers’ performance
when the redundant and irrelevant features are dis-

carded by ISM. Besides, the combination of the two
sub-models improves the resulting classifiers accuracy
as well in training as in test. We can conclude that
our evolutionary classifier based on feature selection
and evolutionary learning techniques outperforms as
well the conventional ANNs trained with BP as ANNs
using ISM.

6 CONCLUSION

In this paper, we have shown how feature selection
based on both GA as a global search procedure and
NN as a wrapper can be effective to improve NN clas-
sifiers accuracy. Global search procedure based on
GA was also applied in the second stage model as
learning algorithm and NN architecture designer. Ex-
periments have shown globally very promising results
of our proposed tow stage model for the forecasting
of firms insolvency, in terms of predictive accuracy
and predictability. Nevertheless, more robust and re-
liable model can be obtained by equipping it by meta-
learning capabilities allowing our model to adjust its
parameters without any human interaction.
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