
86 Reviewed Article — ARIMA/SACJ, No. 36., 2006

A Word Game Support Tool Case Study

T Botha, D G Kourie, B W Watson

Fastar / Espresso Research Group, Department of Computer Science, University of Pretoria, Pretoria,
South Africa 0001

ABSTRACT

This article reports on the approach taken, experience gathered, and results found in building a tool to support the

derivation of solutions to a particular kind of word game. This required that techniques had to be derived for simple yet

acceptably quick access to a dictionary of natural language words (in the present case, Afrikaans). The main challenge

was to access a large corpus of natural language words via a partial match retrieval technique. Other challenges included

discovering how to represent such a dictionary in a “semi-compressed” format, thus arriving at a balance that favours

search speed but nevertheless derives a savings on storage requirements. In addition, a query language had to be developed

that would effectively exploit this access method. The system is designed to support a more intelligent query capability in

the future. Acceptable response times were achieved even though an interpretive scripting language, ObjectREXX, was

used.

KEYWORDS: support tool, case study, natural language dictionary access, word puzzle language, inverted file
approach, query language, search techniques, dictionary corpus, Afrikaans language

1 INTRODUCTION

”... you shall seek all day ere you find them;

and, when you have found them, they are not

worth the search.” [Merchant of Venice]

One is often surprised at how complex and challenging
certain word puzzles / games are that are regularly—
daily or weekly—being solved by thousands of readers
of magazines and newspapers. The compilers of these
puzzles make a host of assumptions that are presumed
to be “common knowledge” based on their own thor-
ough background knowledge of the relevant natural
language. These assumptions relate to matters such
as language knowledge, word construction, word us-
age, synonyms, general current affairs knowledge, etc.

Along with these assumptions, the typical word
puzzle involves a large body of possible candidate so-
lutions that can fit the particular sub-entry of the puz-
zle. The overall solution is thus to solve a pattern
matching problem of natural language words that fit
the puzzle in a particular combination. It is there-
fore not surprising that a variety of support tools are
available for puzzle solver enthusiasts. Most of these
support tools are available in book format such as typ-
ical dictionaries or ordered word lists based on criteria
that are unique to the relevant game or word problem.
Examples include:

• Alphabetic ordering according to word length

• Word types used for clustering and ordering—
such as clusters of geographic or person names,

Email: T Botha acbotha@iafrica.com, D G Kourie
dkourie@cs.up.ac.za, B W Watson watson@cs.up.ac.za

Greek alphabet naming, etc.

• Limited synonyms and word explanations added
to the relevant word

• Various forms of thesauri adapted to the pecu-
liarities of the type of word puzzle or challenge
(See for example [1])

The support tools are generally employed by the
users to augment their own knowledge. Here the clas-
sical combination in information retrieval comes to
mind: the user’s involvement along with the support
tool’s capabilities form a powerful team in solving a
complex search problem. (Note that this is a classi-
cal example of user relevance feedback in information
retrieval [2, 3].)

This research is inspired by the fact that one of
the authors, being a willing and regular victim of one
such challenge, decided to seek more powerful support
in solving a particular word puzzle challenge. This has
resulted in an elegant solution that has been embed-
ded into a software support tool.

The remainder of this article is laid out as fol-
lows. In section 2, the background to this problem
is discussed in terms of the problem statement and
a brief consideration of the range of potentially ap-
plicable search types. Section 3 explains the word
list database, as well as the use and storage of letter
groups. It also introduces a novel second-level index-
ing technique that was used. Sections 4 is devoted to
an overview explanation of query language matters:
the language’s syntactical design; techniques used in
building the query language engine; the steps followed
in deriving a list of candidate answers; and the need
for filtering these answers. In section 5, the focus is on
the so-called word puzzle language, which is derived

Joint Special Issue — Advances in end-user data-mining techniques 87

from the natural language used in order to facilitate
queries. The conclusion of the article, in section 6,
includes an assessment of future work that is needed
on the support tool.

2 BACKGROUND

2.1 Problem Statement

The following is a short description of
“letterspeletjie”—a word game that appears in
Saturday editions of the Johannesburg-based
Afrikaans newspaper, Beeld, and that is the target
of the support tool that has been built. The player
is presented with a number of cells. Each cell in the
puzzle contains a number (between 1 and 26) that
represents a letter. The only clue given, is that a
number of cells (usually 2) are pre-filled with letters.
The challenge is to establish which letter is repre-
sented by which number. Fortunately, the answer
is always a one-to-one mapping. Some imbedded
“clues” are present such as the particular word length
allowed for an accompanying word. Short words—2
or 3 characters long— are the best candidates with
which to start and to use for an initial trial-and-error
approach.

The challenge to be met is to build a tool that
supports the quest for a solution to such a problem—
a problem which may be described roughly as a kind
of constraint satisfaction problem. More specifically,
a solution to this problem involves, at a minimum,
a partial match search and retrieval. Because of its
complexity, a number of prerequisites need to be met
by a tool that handles this type of problem. The main
ones are listed below.

The first practical challenge to overcome relates
to dealing with the large volume of words that are
potential candidates for the “knowledge base” of the
tool. In the example case that was used to implement
the support tool, an Afrikaans language dictionary of
more than 132000 words was constructed and used.
This is in line with various sources that suggest that
more than 130.000 and even as much as 180.000 words
can be involved in Afrikaans word game puzzles1. In
order to set up the dictionary, the following questions
needed to be answered:

• How can the dictionary be represented to support
acceptably fast searching?

• How can the storage volume of the dictionary be
limited to acceptable levels?

• What search techniques that encompass strict
partial match search / retrieval should be used?

In addition, a relative simple but powerful query lan-
guage was needed to deliver solutions for the search
/ retrieval goals. The language had to allow for di-
rect interactive personal usage, as well as for program-
matic access. Also needed was a set of support and

1The corresponding author was privileged to be a team mem-
ber while working on the Afrikaans Dictionary for the IBM Dis-
playWrite family of word processing products in the mid-1980s.
This electronic dictionary was published consisting of 186.000
words (and fits on a 1.45MB stiffy!).

build routines to maintain the words and knowledge
base. Finally, a rule recogniser was needed to augment
the dictionary’s word knowledge with relevant domain
knowledge. In this study this was limited to (embry-
onic) rules defined for the “letterspeletjie” word puz-
zle.

As a practical demonstration of the techniques
used and proposed, a support tool was built that sig-
nificantly supports the user in overcoming many of the
challenges in a game that is as complex as the named
“letterspeletjie” word puzzle. It does so by exploiting
the user’s “common knowledge” so that the mutual
effort of user and system lead to suggested solutions.

2.2 Types of Search

One can use various ways to approach the retrieval of
information from a set of information elements. Es-
sentially these approaches are differentiated by their
generality. The following categorisation of these so-
called “intersection searches” [4] are widely quoted in
the literature. (See for example [5, 6, 7, 8, 9, 10].) In
summary these types of searches are as follows:

1. Exact matching queries: This type of search as-
sumes that a single answer exists for the query.
The answer may be a record, a document, or gen-
eral knowledge-rich answer. This type of query
simply asks whether the answer is present in the
relevant database or document base or knowledge
base.

2. Single key queries: Here it is expected that all
answers match a particular value of a single at-
tribute in the query. For example, a search will
yield all records that match a particular field such
as, say a given date.

3. Partial match queries: Partial match queries re-
trieve answers where only some of the attributes
are known and the rest are accepted as generally
true. This type of query is relevant for this study.
For example, a word puzzle challenge may be to
search for words matching the query: “B?T??R”
where the “?” character represents a single char-
acter “wild card”. Answers may include words
such as “BATTER”, “BETTER”, “BITTER”,
“BUTLER”, and “BUTTER”.

4. Range searching: These search types are similar
to partial match retrieval except that the request
allows the answer to have a range of values for
the specified attributes.

5. Best match with restricted distance: In this case,
one of the many different distance functions that
have been researched, is used to measure whether
the answer qualifies or not.

6. Boolean queries: In this type of search, Boolean
functions are defined and applied to the at-
tributes.

While studying the particular challenge in ques-
tion, it became obvious that the problem is best ad-
dressed by generally regarding it as a partial match
retrieval problem, but by also taking into account
that some of its characteristics correspond to the other

88 Reviewed Article — ARIMA/SACJ, No. 36., 2006

types of searches mentioned above. Therefore, in some
cases a hybrid approach (combining types of search)
is taken by the proposed solution.

3 PROPOSED WORD REPRESENTATION

In deriving the proposed solution, the first consider-
ation was how to represent the thousands of natural
language (Afrikaans) words to allow for quick access
and partial match retrieval. The challenge at hand is
primarily character string based. Various studies have
been conducted to tackle the partial match retrieval
problem. Complicated techniques—mostly involving
trees, tries, and hash indexing—have been proposed.
(See for example: [11, 5, 4, 12].) Most of these tech-
niques expose strengths in some areas and weaknesses
in others. This study was aimed at a simple yet pow-
erful approach to resolve the problem at hand. The
proposed solution is based on a simple yet powerful in-
verted file technique. As mentioned, when combined
with other retrieval types this approach offers an ele-
gant and acceptably quick solution.

3.1 Building the Word List Database

The decision was made to use the ObjectREXX2

scripting language for developing the example imple-
mentation. ObjectREXX (like C++) offers both tra-
ditional and object-oriented features. ObjectREXX is
particularly strong in its string handling features, has
powerful tracing abilities, and offers elegant streamed
file handling which was very beneficial for develop-
ment of the example implementation3. Despite its
interpretive nature, ObjectREXX proved surprisingly
adequate for present purposes. However, in future ex-
tensions of the tool, a compilable base language may
be considered to retain acceptable performance levels.

As a starting point, the words were represented
as character strings in a streamed file. This can
be considered as a word list. However, some words
were slightly modified, as discussed in section 5 be-
low, yielding a list of words in what may be called the
“word puzzle language”. It was decided to employ dif-
ferent types of word databases: a set of fixed-length
databases for shorter, frequently-used words; and a
set of mixed-length databases. The former set thus
contained a separate database for words of length 2;
another, for words of length 3; · · · and finally, another
for words of length 10. These allow for focussed re-
trieval techniques that capitalise on the known word
length. The latter set consists of a single database
whose word list contains a mixture of words ranging
in length from 1 through 35. Having the two types
of databases offers a number of benefits for the de-
sign and implementation of the query language, as is
discussed later.

Each database consists not merely of the word list
file. There are two additional files: an inverted list

2ObjectREXX—Object-Oriented REstructured eXtended
eXecutor programming language

3The corresponding author also had access to an installed
version of ObjectREXX for Windows

arm bedaar daar darem warm

1 aa . 1 1 . .

2 ar 1 1 1 1 1

3 be . 1 . . .

4 da . 1 1 1 .

5 ed . 1 . . .

6 em . . . 1 .

7 re . . . 1 .

8 rm 1 . . . 1

9 wa 1

Table 1: Matrix-based solution to a query

file; and a secondary index file that references the in-
verted list file. The inverted list file is discussed next.
In subsection 3.3, the secondary index file is briefly
discussed.

3.2 Letter Group Approach

A letter group (or n-gram) is simply a sequence of al-
phabetic characters. The following example illustrates
how such letter groups can be used to facilitate the
partial match queries. While the example is based on
letter groups of length 2 only, it was clear at the out-
set of the study that the proposed application would
benefit from the use of letter groups of length 3 and 4
as well.

3.2.1 Example: Matrix Representation

Consider the following list of Afrikaans words: (arm,
bedaar, daar, darem, warm). Collectively, they in-
corporate the following 9 letter groups of length 2
(i.e. 2-grams): (aa, ar, be, da, ed, em, re, rm,

wa). Suppose that each entry in the word list that
stored these words, also incorporated information of
the word’s 2-grams. Additionally, suppose that there
was another file storing 2-gram information: for each
2-gram, it indicated the words in which the 2-gram oc-
curred. These two files, the word list file and the let-
ter group file, collectively constitute a database whose
collective contents can be summarized in the matrix
shown in table 1.

Suppose that, as part of a partial match query, a
search for words containing the substring arm is to be
made. The first step (not considered in detail here) is
to determine that the query is comprised of the letter
groups ar and rm. Thereafter, the matrix represen-
tation may be used. The search steps are as follows:
extract the contents of the ar and rm records in the
letter group file; do a logical-AND operation on these
records; determine which word list entries are set as
a result; extract and return these word list entries as
the answer to the partial match query. These steps
may be summarised as follows:

V = AND {ar and rm}

= {(1, 1, 1, 1, 1) AND (1, 0, 0, 0, 1)}

= {(1, 0, 0, 0, 1)}

= {arm,warm}

Joint Special Issue — Advances in end-user data-mining techniques 89

Word 2 3 4 #letter #characters
length groups

2 1 1 2
3 2 1 3 7
4 3 2 1 6 16
5 4 3 2 9 25
6 5 4 3 12 34
7 6 5 4 15 43
8 7 6 5 18 53

Table 2: Number of letter groups for words of given length

3.2.2 Infeasibility of Direct Matrix Representation

However, while the logic of the above approach is sim-
ple enough, it is not feasible to implement the ap-
proach directly. Even from the small set of words in
the example, it is evident that one cannot efficiently
store the matrix rows and columns as records in the
letter group and word list files respectively. The ma-
trix is largely empty—a sparse matrix—and even a bit
representation of each possible letter group, for exam-
ple, requires excessively large storage. The extent of
the problem is explained next. Recall that the full
application was to rely on letter groups of length 2, 3
and 4.

There are 262 = 676 letter pairs

263 = 17576 letter groups of length 3

264 = 456976 letter groups of length 4

Total = 475228 possible letter groups

Representing each occurrence by one bit implies
475228/8 = 59459 bytes. Thus, about 59K bytes per
word is required to cater for each possible substring
of length 2, 3, and 4—i.e. the column information in
the above matrix would require about 59K bytes for
each word.

In contrast to this, the table 2 shows the number
of possible letter groups of length 2, 3 and 4 that could
be derived from words of lengths 2 to 8. It also shows
the total number of letter groups as well as the total
number of characters that would be needed to repre-
sent each possible letter group separately. From this
table it is evident that to store letter-group informa-
tion for, say an 8-letter word, a maximum of 18 letter
groups could be present, i.e. a maximum of only 18
bits in the 59K byte column would have to be set.

Even from early on in the study, it was clear that
special attention would have to be given to techniques
for storing this sparse matrix—even though it remains
desirable that the searching and querying is based on
a technique that is essentially the above-described ma-
trix matching type of approach. This “matrix ap-
proach” allows elegant and recursive matching of the
query’s search strings to the existing search strings of
the “matrix”. Therefore the proposed access method
acts in theory as a matrix matching engine but in prac-
tice, one seeks for compromises on various fronts.

3.2.3 Using an Inverted List

Each record in the word list constitutes, logically, a so-
called word list group (wlg), that can be represented
as:

wlg = (index, word, letter groups)

Thus, a wlg-entry for a given word in a word list,
logically embeds a list of the letter groups that occur
in the word. Note, however, that in the final word list
file, only the words themselves are stored. The index
and lett-groups are implied.

Related to each word list, is an inverted list4. Each
entry in this inverted list (file) is a pair, called a letter
group index (lgi). The first element of an lgi pair is a
letter group of length 2, 3 or 4 characters. The second
element of the pair is a list of indices into the word list,
indicating words in which these letter groups occur.
This latter component is referred to as an occurrence
list. The inverted list file’s entries are thus represented
as:

lgi = (letter group, occurrence list)

Recall that there are several databases, each with
its own word list. The inverted list file is derived for
each word list, by identifying the letter groups in each
word of the word list. Each database therefore in-
cludes of a word list and associated inverted file list.
(A secondary index file—discussed later—is also used,
primarily for efficiency reasons.) The inverted list of-
fers a unique short path to the word occurrences that
contain relevant letter groups. Answering a query is
done by matching the letter groups that are derived
from the query to these word substrings.

3.2.4 Inverted List Example

Consider the previous example. The word list (indi-
cated by {wlg}) and the inverted list (indicated by
{lgi}) are now as indicated below. (Note, however,
{wlg} reflects the logical contents, whereas the physi-
cal contents is limited to the word itself.)

{wlg} = { (1, arm, (ar, rm)),

(2, bedaar, (be, ed, da, aa, ar)),

(3, daar, (da, aa, ar)),

(4, darem, (da, ar, re, em)),

(5, warm, (wa, ar, rm)) }

{lgi} = { (aa, (2,3)),

(ar, (1,2,3,4,5)),

(be, (2)),

(da, (2,3,4)),

(ed, (2)),

(em, (4)),

(re, (4)),

(rm, (1,5)),

(wa, (5)) }

The search for words that contain the letter groups ar
and rm now proceeds as follows. Extract the records
matching ar and rm from the inverted list file. (The

4Technique inspired by an approach of [13].

90 Reviewed Article — ARIMA/SACJ, No. 36., 2006

secondary index file will be used for this purpose, as
explained below.) These records represent sets of in-
dices to records in the word list file. Find the intersec-
tion of these sets. Look up and return from the word
list file, the words corresponding to all indices in this
intersection. The general steps in the process to be
followed may be represented as:

V = AND {ar and rm}

= words(1,2,3,4,5) AND words(1,5)

= words(1,5)

= {arm,warm}

3.2.5 Inverted List in Practice

Approaching the matter in this way, each (existing)
letter group contains only the relevant occurrence list.
Each of the occurrence list items consists of a string
of digits (with no leading zeros) in a comma-delimited
format. In fact, in the latest version of the sup-
port tool, we have implemented a special 2-byte for-
mat storage technique for representing the occurrence
list items. Each occurrence item now requires only
2 bytes, with occasional special delimiters imbedded,
instead of the earlier versions that stored occurrence
items directly as strings of digits.

In practice, this resulted—in the real case of build-
ing the total word database—in a collective database
of size 1,5MB for the word lists and 8MB for the index
lists. This is consistent with reports in the literature
that the size of the inverted list usually exceeds the
size of the word list. In this particular application,
size is no longer a major concern, since the above stor-
age strategies have rendered storage needs well within
reach of modern storage costs.

From this example it is clear that the access
method produces a list of word candidates. This is
merely an interim step in dealing with the query. This
list of candidates then needs to be filtered, possibly
referencing more detail from the original query, in or-
der to produce the answer set of words. The filter-
ing is dependent on requirements set by the query
language—such as the order of the substrings and
limit(s) on word length. For example, it was pointed
out in the small example discussed above, that the first
step was to split the actual string required, arm, into
two substrings ar and rm. It is merely co-incidental
in this example that the answer set of words happen
to comply with the earlier requirement so that no ad-
ditional filtering was needed.

Over and above the 2-byte storage format of oc-
currence items in the inverted list to lower storage re-
quirements, the current implementation also employs
another technique to enhance the execution speed.
This is next described.

3.3 Building the second-level index and

reverse index

Because of longer than expected worst-case perfor-
mance was experienced when accessing the inverted
list file, special attention was given to the construction

of the indices for the inverted lists. A novel 2-level in-
dexing approach was implemented that involved fast
string scanning and limited reading of the inverted list
files. This, in combination with the 2-byte storage for-
mat, introduced dramatically faster results when re-
trieving frequently occurring letter groups, compared
to the previous implementation technique used. (The
latter were, however, more elegant in ObjectREXX
code.)

The 2-level hierarchical index was built as follows.
The first level contained, for each first character of
the letter groups, a pointer to the second level index.
Each entry in the second level index contains a second
character, as well as a tuple for each letter group that
has these two first letters as a prefix. The first element
in the tuple is a pointer to the relevant inverted letter
group in the inverted list file; the second tuple element
is the number of elements in the occurrence list of
that inverted letter group entry. By sorting this count
information according to the number of elements, it
was possible to use this 2-level index to dramatically
reduce access time when searching for word patterns5

Note that access to the database takes place in
read-only mode, as the focus is on fast retrieval of the
results. This is acceptable because of the short time
needed to rebuild a particular database. A complete
rebuild of a database is done in batch mode when re-
quired.

4 THE QUERY LANGUAGE AND ENGINE

4.1 The Query Language Design

There are several search strategies, as mentioned
above. The query language was required to specifi-
cally cater for ease of interactive use, and to be flexible
enough to address the specific requirements of the par-
ticular example implementation. In later versions a
rule-based engine will be considered. The current im-
plementation includes imbedded “rules” for the chal-
lenge at hand.

In essence, the requirement is to cater for the pos-
sible search patterns as listed in table 3.
Per definition, a query consists of a recursive combina-
tion of these search patterns—with some restrictions
to keep matters practical. In practice a user will com-
bine stems and wild cards to construct a query. For
example: beu?lb*will search for all words having sub-
strings beu and lb in positions 1 and 5 while the stem
is beu?lb 6.

4.2 The Query Engine Techniques

While constructing the example support tool a num-
ber of programming techniques were required. Listed

5It was also found that by analysing “hotspots”, certain
heuristics could be deployed to achieve yet better performance.
However, these hotspots strongly related to the frequency of
prefixes and suffixes commonly occurring in Afrikaans. To take
the reader into a detailed account of Afrikaans structure is be-
yond the scope of this article.

6The answer turns out to be the words: beuelblaser and
beuelblasers

Joint Special Issue — Advances in end-user data-mining techniques 91

Type of Pattern Search Pattern Comment

Exact match a1a2 · · ·an Unique string = word
Stem words, OR-ed a1a2 · · · am∗ Back end truncation
Words ending, OR-ed ∗a1a2 · · ·am Words ending with substring a1a2 · · · am

Word stem and ending known a1a2 · · ·am ∗ ap · · · an Words with stems and endings
Word substring ∗a1a2 · · ·an∗
Stem words+1, OR-ed a1a2 · · · am? Words with single letter ending
Words ending+1, OR-ed ?a1a2 · · · am Single letter word stem
Word stem and ending known
Restricted word length a1a2 · · · am?ap · · · an Single letter between stem and ending

Table 3: Types of search patterns

here is a summary of the most important of these tech-
niques and approaches taken.

— Fast string searching on short strings—pos() func-
tion of ObjectREXX

— Excellent parsing features on short string—parse
function of ObjectREXX

— Special substring technique for long string parsing

— Multi-level indexing employed on dictionary

— Comparing and AND-ing occurrences as strings

— Pre-reading candidate strings (named “kstringe”)
to obtain occurrence frequencies

— Ordered AND-ing of the candidate occurrence
strings to enhance performance

— Specifying a limit on the number of words to re-
trieve

— Filtering techniques to produce the answer set of
words starting from the candidate set of words.

— Combining different search techniques dependent
on the word length in a hybrid approach

4.3 The Query Steps

The macro steps for the query engine can be listed as
follows:

[query]

⇒ analyse query for type and pattern

⇒ recognise {query letter groups} aka {search parts}

⇒ get inverted letter group (ilg) frequencies

⇒ optimize search order: order {search parts} from
small to large; this forms a crude “effort function”

⇒ search {search parts} for candidate words list

⇒ AND-ing of candidate strings

⇒ read candidate word list (wl)

⇒ filter {candidate word list} according to query’s
pattern

⇒ obtain {set of answer words}

4.4 Filtering the Candidate Word List

The letter group technique, which is primarily used
for partial match retrieval, indexes only subparts of
words. Therefore the preliminary AND-ing of the
candidate occurrence strings delivers only candidate
words for the query not the final answer set. The fol-
lowing two examples illustrate this:

Example 1: A query against database db8 (hav-
ing words of length 8 only) for speld and
using three-letter groups starts by identifying
the letter groups spe and eld in the query.
(Note that we do not handle letter group pel

which we realize will be unnecessary while si-
multaneously reduce the number of occurrence
list comparisons drastically.) This results in
the following 9 words in the candidate word
list: aanspeld, dasspeld, kopspeld, losspeld,
speeldae, speeldag, toespeld, uitspeld, and
vasspeld.

The two words speeldae and speeldag are can-
didates but not answers, and will be filtered
out of the final answer set. They were re-
trieved as candidates because they each contain
the string speeld which is the concatenation of
the two three-letter letter groups identified from
the query.

Example 2: The query babel against database db6
(that contains only words of length 6) results in
the candidate word: babbel which is filtered out
to result in an empty answer set; because this
database does not contain babel which is only
of length 5 (the city name that appears in the
Afrikaans Bible).

5 THE WORD PUZZLE LANGUAGE

Although word puzzles are challenges (one may say
‘games’) of matching natural language words in a spe-
cific combination, it is convenient to regard the specific
language used in a word puzzle as a language with spe-
cific peculiarities. Such a ‘word puzzle language’ con-
sists of a subset of the natural language words, but also
includes some ‘non-words’. This is specifically true for
languages (such as Afrikaans) that employ various spe-
cial characters (such as hyphens and quotes) as well as
diacritic symbols (such as characters using circumflex
and diaeresis). The puzzle language may well require
that such special symbols are ignored or treated in a
particular way. Even in English word games, one may
find that the puzzle language combines the words in
a phrase into a single “puzzle word”. The puzzle lan-
guage then appears to be less general and more re-
stricted in terms of corpus size. In the present study,

92 Reviewed Article — ARIMA/SACJ, No. 36., 2006

*ˆ- hyphen (koppelteken)
removed from word

*ˆ’ accent removed from word;
ex. BUROS instead of buro’s.

*ˆb blank removed from phrase;
ex. ADHOC instead of ad hoc

*ë word contains ë
*ê word contains ê
*̈ı word contains ı̈

* = word stem;
ex. elektro= and hiper=

* - word stem with hyphen;
ex. antropo- and mikro-

Table 4: Additional information stored in puzzle language

dictionary

the puzzle language was built according to the rules
below.

5.1 Syntactical Rules

Words consist only of capital letters A,B,· · ·,Z. Spe-
cial characters and diacritics are translated to these
capital letters according to the following rules:

• Hyphenated words are written as single words.
For example, AANAAN is used instead of aan-aan

and ABCBOEK instead of ABC-boek.

• Diacritic symbols are normalised. For exam-
ple aasvoëls becomes AASVOELS; Australië be-
comes AUSTRALIE; argaı̈es becomes ARGAIES;
arbitrêr becomes ARBITRER

These special translations were done for the support
tool dictionary. However, references were included in
the dictionary to signal information about the trans-
lated word, as summarised in the table 4.
Care was taken to exclude duplicate words that result
from these translations, for example: voel and voël

both translate to VOEL.
Afrikaans employs a number of diacritic symbols

for correct pronunciation and semantics. Eleven dif-
ferent diacritic symbols were found in the original
word corpus. Table 5 shows the frequency distribu-
tion of the special symbols in the original word corpus
before the translations were done for the “puzzle lan-
guage”. (The corpus size was greater than 131000
words at the time of analysis.)

5.2 Additional Dictionary Features

Word length restrictions posed another language con-
straint on the construction of the dictionary. In other
language processing contexts, morphological informa-
tion is often stored to allow the user to derive word ex-
tensions such as plurals, etc. However, in the present
case, it was decided to record word extensions as sep-
arate words.

In order to imbed more knowledge of the corpus
words in the approach the analysis of the words was
done by considering that words “contain” two addi-
tional characters—both being ‘ ’ (i.e. underscore)—
indicating the first word stem character and the last

Char Hex Dec Frequency
1 ë 89x 137 2437
2 - 2Dx 45 662
3 ’ 27x 39 209
4 ê 88x 136 644
5 ı̈ 8Bx 139 562
6 é 82x 130 74
7 ä 84x 132 12
8 ô 93x 147 58
9 è 8Ax 138 19
10 ö 94x 148 85
11 ü 81x 129 17

Table 5: Frequency counts

word ending character. For example: the word iets

is considered to be iets before the substring anal-
ysis starts. This allows the query language to easily
include stem word searches (handling prefixes) and
word ending searches (handling suffixes). Having this
format then allows queries such as a1a2 · · · am* to
be equivalent to the exact string query a1a2 · · · am

(and consequently, to find words with letter groups
a1a2 · · · am) and, vice versa, the query ∗a1a2 · · · am is

equivalent to the exact string query a1a2 · · ·am . This
obviously adds a host of additional letter groups to
the dictionary database but greatly enhances the dic-
tionary access method’s ability to accommodate more
sophisticated queries.

5.3 Properties of the Puzzle Language

The foregoing rules gave rise to some oddities in the
Afrikaans puzzle language. For example the puz-
zle language contains words such as teeeet (from
teë-eet), toeoe (from toe-oë), and seeeend (from
see-eend). However, these occurrences affect neither
the overall search strategies employed in the tool, nor
its storage requirements.

Having constructed the dictionary in this format
allows one to analyse the special cases for the specific
language at hand. One can, for example, analyse the
existence or not of certain letter group combinations;
the occurrence of vowels following or preceding dif-
ferent letter group combinations; occurrence of letters
as first letter of word stems or last letter of word end-
ings; common word stems; common word endings; etc.
These findings will lead to special “puzzle language”
heuristics which are expected to eventually assist sig-
nificantly with the envisaged “rule based” extensions.

The experience gained while constructing the dic-
tionary and the example query engine was most valu-
able in comprehending the complexity of the challenge
at hand. The skewness of the letter group frequencies
was expected, but it was nevertheless a surprise to ex-
perience the reality of the final corpus. The frequen-
cies are listed in the appendix of the different lengths
of words found in the corpus. The appendix also con-
tains a table that lists the 20 highest occurrences of
letter groups found in the corpus as well as a list of
letter frequencies for the Afrikaans corpus.

One should note that the construction of the letter

Joint Special Issue — Advances in end-user data-mining techniques 93

groups was fully automatic. No distinction is made
on the practical value of a letter group: a letter group
was recognised merely on the grounds that it appeared
somewhere in the corpus.

6 CONCLUSION

Possible extensions to the implemented example sup-
port tool are summarized in the following list.

1. Other development language—such as C for cer-
tain core routines to enhance worse case perfor-
mance; or Java for deployment in a browser envi-
ronment

2. Enhanced word puzzle specific user interface—
made much more interactive and “click” oriented
than current version

3. As part of an intended extension in a following
version of the support tool the building of a “re-
verse index” is being considered—which is essen-
tially an adapted B-tree approach.

4. Word list extended to include thesauri type en-
tries for display and linking to other parts of the
dictionary

5. Use the current constructs as a test bed for testing
other approaches such as employing “automata”
and fast string searching on the dictionary

6. Develop heuristics and rules and construct a Rule
Search Engine

7. Introducing online updating capabilities (low pri-
ority)

It was worth the effort to experience in prac-
tice what a number of articles articulate in theory.
The result of the study became a very handy sup-
port tool for resolving the challenge of the “letter-
speletjie”. Even relatively simple dictionary-based
knowledge collections—one may dare to even call
these databases “simple knowledge bases”—possess a
surprisingly large complexity. Even simple approaches
turned out to be very beneficial for resolving this type
of challenge. Again it is confirmed that simple solu-
tions are much more effective than they are usually
given credit for. This type of approach offers relative
ease of maintenance and expansion. Exciting exten-
sions and alternate approaches can result from this
study. A practical support tool for the specific exam-
ple “word puzzle” was constructed and is in regular

use by the primary author. It has reduced the time to
solve a puzzle from several hours to approximately 30
minutes.

REFERENCES

[1] L. L. Pansegrouw. Superblokraaiselwoordeboek. J L
van Schaik, 1995. ISBN 0-627-02024-8.

[2] A. C. Botha. Dokumentherwinnig met behulp van

Herwinhulpmiddele. M.sc. dissertation, University of
Pretoria, 1980.

[3] G. Salton. Automatic Text Processing, The Trans-

formation, Analysis, and Retrieval of Information by

Computer. Addison-Wesley, 1989.

[4] R. L. Rivest. “Partial match retrieval algorithms”.
SIAM Journal of Computing, vol. 5, no. 1, pp. 11–49,
March 1976.

[5] D. E. Knuth. Searching and Sorting, The art of Com-

puter Programming. Addison-Wesley, 1976.

[6] W. B. Frakes and R. Baeza-Yates (editors). Informa-

tion Retrieval Data Structures and Algorithms. P T
R Prentice-Hall, Inc., 1992.

[7] R. S. Boyer and J. S. Moore. “A fast searching algo-
rithm”. CACM, vol. 20, no. 10, pp. 762–772, October
1977.

[8] D. E. Knuth, J. H. Morris and V. R. Pratt. “Fast
pattern matching in strings”. SIAM Journal of Com-

puting, vol. 6, no. 2, pp. 323–350, June 1977.

[9] F. Murtagh. “A very fast exact nearest-neighbor al-
gorithm for use in information retrieval”. Information

Technology: Research and Development, vol. 1, no. 4,
pp. 275–283, October 1982.

[10] A. Drozdek. Data Structures and Algorithms in C++.
Thomson Course Technology, third ed., 2005. ISBN
0-534-49182-0.

[11] W. A. Burkhart. “Hashing and trie algorithms
for partial match retrieval”. ACM Transactions on

Database Systems, vol. 1, no. 2, 1976.

[12] G. Navarro and M. Raffinot. Flexible Pattern Match-

ing in Strings; Practical on-line search algorithms for

texts and biological sequences. Cambridge University
Press, 2002. ISBN 0-521-81307-7.

[13] H.-J. Schek. “The reference string access method
and partial match retrieval”. IBM TR, vol. 5, no.
77.12.008, December 1977.

APPENDIX

Length Frequency Length Frequency
1 2 18 1171
2 93 19 772
3 608 20 530
4 1810 21 296
5 4176 22 226
6 7661 23 140
7 12487 24 97
8 15733 25 61
9 18592 26 45
10 18038 27 23
11 14587 28 15
12 11394 29 13
13 8487 30 6
14 5955 31 6
15 4369 32 2
16 2625 33 2
17 1748 34 1

The single 34 letter word is
“MEERVOUDIGEPROBLEEM-

SIEKTETOESTANDE”

Table 6: Frequency count of words in database Afr (131771

words at time of analysis)

94 Reviewed Article — ARIMA/SACJ, No. 36., 2006

1 13900 ING
2 7753 NG
3 6553 STE
4 6454 TER
5 6397 VER
6 5845 IES
7 5762 SIE
8 5131 TE
9 4107 NGS
10 3731 SE
11 3399 RS
12 2954 UIT
13 2553 WER
14 2362 TIG
15 2095 TEE
16 1867 TJI
17 1707 TIN
18 1634 ROO
19 1583 TRO
20 1538 TRA

Table 7: The 20 highest frequencies of three letter word

groups for database Afr

65 A 3 97 a 100518
66 B 0 98 b 27697
67 C 0 99 c 1133
68 D 3 100 d 53061
69 E 0 101 e 220267
70 F 0 102 f 16271
71 G 0 103 g 64771
72 H 0 104 h 16301
73 I 0 105 i 101815
74 J 5 106 j 5198
75 K 0 107 k 61156
76 L 0 108 l 67391
77 M 0 109 m 33302
78 N 0 110 n 82381
79 O 1 111 o 85710
80 P 0 112 p 33252
81 Q 0 113 q 49
82 R 1 114 r 106084
83 S 10 115 s 104145
84 T 0 116 t 72874
85 U 0 117 u 33915
86 V 13 118 v 18566
87 W 20 119 w 16480
88 X 3 120 x 76
89 Y 6 121 y 10315
90 Z 9 122 z 117

Table 8: Frequency count of characters for database Afr

