
HAL Id: hal-01263496
https://hal.inria.fr/hal-01263496

Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Outil de partitionnement hw/sw basé sur l’algorithme
Kernighan/Lin amélioré

R. Boudour, M.T. Laskri

To cite this version:
R. Boudour, M.T. Laskri. Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin
amélioré. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA,
2007, 7, pp.20-40. �hal-01263496�

https://hal.inria.fr/hal-01263496
https://hal.archives-ouvertes.fr


 

 

 

Outil de partitionnement hw/sw basé sur l’algorithme 
Kernighan/Lin amélioré 

R. Boudour - M.T. Laskri 
Département d’informatique 
Université Badji-Mokhtar 
BP 12 Annaba 
ALGERIE 
Email : racboudour@yahoo.fr 

 

RÉSUMÉ. Le partitionnement fonctionnel d’un système, en composants matériels et logiciels, 
acquiert de plus en plus de l’importance en conception conjointe. Plusieurs heuristiques et 
algorithmes sont utilisés en partitionnement. Dans ce papier, nous présentons l'outil, appelé 
AutoDec, implémenté en Visual C++ 6.0. Nous vérifions que l’algorithme hierarchical clustering, 
basé sur des métriques de rapprochement, peut être utilisé pour fusionner des parties 
fonctionnelles avant l’application de l’algorithme Kernihgan/Lin, entraînant ainsi une réduction 
notable du temps d’exécution avec souvent une amélioration accrue en qualité. En somme, nous 
montrons que notre approche, utilisée en partitionnement, permet de réduire le fossé entre les 
algorithmes rapides et hautement optimaux 

ABSTRACT. Partitioning of system functionality for implementation among multiple system 
components, such as among hardware and software components in codesign, is becoming an 
increasingly important topic. Various heuristics are used in automatic partitioning. In this paper, we 
present our tool, called AutoDec, implemented in Visual C++ 6.0. We verified that hierarchical 
clustering algorithm, based on closeness metrics,  can be used to merge pieces of functionality 
before applying Kernighan/Lin algorithm, resulting in reduced execution time with often 
improvements in quality. In addition, we show that our approach, when used in partitioning, fills the 
gap between fast algorithms and highly-optimizing ones. 

MOTS-CLÉS : Conception conjointe, partitionnement automatique, métriques de rapprochement, 
algorithme hierarchical clustering,  algorithme Kernighan/Lin. 

KEYWORDS : Codesign, automatic partitioning, closeness metrics, hierarchical clustering 
algorithm,  Kernighan/Lin algorithm. 
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1. Introduction  

Pour pallier aux problèmes inhérents à l’approche classique,  il a fallu penser à une 
nouvelle méthodologie qui réexamine les frontières entre le logiciel et le matériel donc 
qui  tient compte dès la phase de spécification des interactions entre les deux parties et 
qui essaie de réduire le coût et par conséquent le time-to-market du produit final, cette 
méthodologie est connue sous le vocable d’origine anglosaxonne codesign  pour 
conception conjointe [20] [27]. Nos propos se situent à sa deuxième étape, appelée 
partitionnement matériel/logiciel. Ce partitionnement est qualifié d’automatique lorsque 
l’algorithme remplace le concepteur dans la prise des décisions [26]. 

Le partitionnement est bien connu comme étant un problème NP-complet, et 
pendant les années passées, plusieurs algorithmes basés sur des techniques heuristiques 
ont été proposés. Kernighan/Lin est l’une de ces techniques prometteuses. Il a fait 
l’objet de plusieurs extensions particulièrement celle de Fiduccia/Mattheyses pour 
s’exécuter dans un temps linéaire et pour donner de meilleurs résultats [24]. Mais  dans 
toutes ces améliorations successives, la partition initiale est restée toujours aléatoire : 
souvent tout en logiciel ou tout en matériel. Dans ce contexte, nous essayons  de 
focaliser nos efforts sur cette partition initiale en la rendant  plus réfléchie. Pour 
l’obtenir, nous allons faire appel à des closeness métrics, condition sine qua none à 
notre sens pour réduire davantage le temps de calcul d’une part et pour ouvrir la voie au 
partitionnement  de gros problèmes d’autre part. Pour concourir au même objectif, nous 
considérons plus de métriques  globales comme indicateurs de qualité et la spécification 
est choisie à dessein à grain moyen le bloc de base pour renforcer la précision voire la 
qualité des résultats. Le reste du papier est organisé comme suit : la section 2 aborde 
des éléments nécessaires à la compréhension du problème de partitionnement 
logiciel/matériel. La section 3 présente d’une manière assez détaillée, les différentes 
métriques et contraintes utilisées. La section 4 décrit  l’outil Autodec. La section 5 
résume les résultats expérimentaux et la section 6 termine le papier par une conclusion 
et de futures directions du travail.  

2. Graphes et algorithmes  

2.1. Graphes et blocs de base 

Les spécifications de systèmes mixtes sont décrites en utilisant les langages 
C/VHDL  ou le systemC et le code est traduit ensuite en un graphe de flux de contrôle 
et de données  (cdfg). Le cdfg, une abstraction de la spécification, est utilisé comme 
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entrée des algorithmes de partitionnement pour mapper les blocs/nœuds du cdfg soit en 
logiciel, soit en matériel. Nous présentons brièvement ces deux concepts : 

Un bloc de base est une séquence d'instructions consécutives dans laquelle le flot de 
contrôle est activé au début de celle-ci et inhibé à la fin, sans possibilité d'arrêt ou de 
branchement autre qu'à la fin de la séquence. Ainsi, un bloc de base peut être constitué  
d'une séquence d'instructions d'affectation, d’une opération non déterministe, ou d’un 
appel de procédure. Pour plus de détails sur les règles de  construction des blocs de 
base, le lecteur intéressé peut consulter [7] [9]. 

Un cdfg, G = (V, E), décrit le comportement d’un système, il contient un ensemble 
de blocs de base, représentés par des nœuds V = {vi / i = 1,2, … m}, et un ensemble de 
dépendances représentées par des arcs E = {eij / eij = (vi,vj), vi,vj ∈V}, en général la 
partie contrôle (cfg) est distincte de la partie donnée (dfg) [12], comme est illustré en    
figure 1. 
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           a) Cfg (control flow graph)           b) dfg (data flow graph) 
 

Figure 1. cdfg (cfg + dfg) : a) cfg avec blocs de base b) dfg avec opérations et données 

2.2. Algorithmes de partitionnement 

On rencontre deux grandes classes d’algorithmes de partitionnement [13] [2] 
[26] explorant un graphe : Les algorithmes constructifs et les algorithmes itératifs. On 
s’intéresse à  Hierarchical clustering et  à Kernighan/Lin . 

2.2.1. Algorithme hierarchical clustering 

Le groupement hiérarchique ou hierarchical clustering est un algorithme constructif 
qui utilise, pour trouver la bonne partition, des closeness metrics. La  partition 
résultante va être utilisée dans notre cas par l’algorithme de Kernighan/Lin comme 
partition initiale. Pour aboutir à une partition complète, l’algorithme opère de la 
manière suivante : Il parcourt le graphe cdfg issu de l’étape de spécification du 
codesign, dans le but d’identifier les objets les plus proches, puis il détermine les 
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valeurs de rapprochement initiales à l’aide d’une fonction  de rapprochement, ensuite il  
groupe les objets trouvés, en  recalcule le rapprochement après le groupement. Il  répète 
le processus jusqu’à rencontrer une condition d’arrêt qui peut être par exemple un 
nombre de groupes à ne pas dépasser ou/et une valeur seuil. 

L’algorithme est le suivant : 
 P  =P ∪ p(i) 

/* F

     

2.2
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d’e
alé
a é
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 Fin 
/* Calculer le rapprochement entre les objets*/ 
Pour (chaque p(i)) faire 
 Pour (chaque p(j)) faire 
  C(i,j) =ComputeCloseneses(p(i),p(j)) 
  C= C∪c(I,j) 
 Fin  

Entrée  
                 P : partition 
Début  

/* Initialiser chaque objet comme étant un groupe */ 
Pour (chaque objet o(i) )  faire 
Fin 
usionner les objets les plus proches et recalculer le   rapprochement */ 

Tant que   ( P≠Ø )  Faire 
          p(i,j) = FindClosestObjects(P,C)  
          P = P – p(i) –  p(j) ∪ p(ij) 
            Pour (chaque p(k))   faire 

          c(ij, k)= ComputeCloseness(p(ij),p(k) ) 
           Fin 

              Fin  
Fin  

.2. Algorithme Kernighan/Lin 

L’algorithme de Kernighan/Lin, connu aussi sous le nom de migration de groupe ou 
 cut est itératif. Malgré son ancienneté (années 70), beaucoup de systèmes de 
titionnement continuent à l’utiliser encore. Il fournit de  bons résultats en un temps 
xécution relativement court : Etant donnée une partition de départ générée 
atoirement, pour chaque objet (nœud), il calcule la fonction coût en supposant qu’il 
té déplacé vers une autre partition  (implémentée avec une autre technologie). Puis, il 
ntifie le nœud qui produit la plus grande baisse ou la plus petite augmentation dans 
oût. Ensuite, il fait l’échange et répète le processus en utilisant la nouvelle partition 
me partition initiale jusqu’à ne plus trouver de partition de coût inférieur (condition 

rrêt). Pour éviter une boucle infinie (pas de cycles dans le graphe), notons que 
que objet ne peut être déplacé qu’une seule fois [6] [14] [24].  
L’algorithme décrit ci-dessous, comporte deux parties relativement proches mais 

tinctes constituant le corps de l’algorithme. Premièrement, la stratégie de contrôle,  
portant deux actions : Select Next Move est une procédure qui choisit le prochain 



             
 

 

 

déplacement à faire et Terminate  qui retourne le résultat s’il n’y a plus d’amélioration 
possible. Deuxièmement, les données concernant le coût : DS est une  structure de 
données utilisée pour modéliser les nœuds et à partir de  laquelle le coût va être calculé, 
UpdateData initialise DS et la met à jour après chaque mouvement et CostFct , la 
valeur de cette fonction est calculée à partir d’une combinaison des valeurs issues de 
différentes métriques. Cette valeur est appelée cost représentant la qualité de la 
partition, dans notre cas un coût minimal. Certes, le lien avec le coût pour certaines 
métriques comme le temps d’exécution n’est pas direct, des conversions préalables 
devant être effectuées. 

   Entrée : P : partition 
                 Begin  
   //IterationLoop 
   Loop //généralement < 5 itérations 
    currP = bestP = P 
    /* UnlockedLoop */ 
    While    (Unlocked Nodes Exist (currP) )   Loop 
     swap = SelectNextMove(currP) 
     currP = MoveAndLockNodes (currP,swap) 
     bestP = GetBetterPartition (bestP;cuurrP) 
                                                                 End loop 
    If not (CostFct (bestP)) < CostFct (P))   Then 
           Return P   //Terminate ; pas d’amélioration 
    Else //Faire une autre itération 
     P = bestP , UnlockAllNodes (P) 
    End if  
   End loop 
 
   End 

 //Trouver le meilleur échange en essayant toutes les possibilités. 
  Procedure SelectNextMove (P) 
   //Swap Loop 
   For  each (unlocked ni є p1 , nj є p2)    Loop 
    Append (costlog , CostFct (Swap(P, ni , nj) 
   End loop 

   Return (ni , nj ) 
 
Où : N = {n1,…nn} est l’ensemble des nœuds, P = {p1, p2, DS} avec p1 ∩ p2 = Ø, 
MoveAndLockNodes : fonction qui fait l’échange des deux nœuds et les verrouille, 
Append : fonction qui sauvegarde le coût après l’échange ‘supposé’ des deux nœuds. 
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Remarque 1. Cet algorithme est à double sens (2 way exchange), s’utilise beaucoup 
pour le partitionnement fonctionnel. 
Remarque 2. Le nombre d’itérations dépend de la complexité de l’application. D’après 
les expériences ; pour les petites applications, le nombre d’itérations varie généralement 
entre 5 et 10 mais pour les applications complexes, il peut facilement atteindre 30 
itérations. 

Parmi les extensions de Kernighan / Lin, on peut citer : Fiduccia /Mattheyses, une   
extension se différenciant de  l’algorithme de base par l’utilisation des hypergraphes 
plutôt que des graphes. Elle effectue des mouvements sur un seul objet plutôt que de 
faire un échange entre deux objets. Elle redéfinit aussi la primitive SelectNextMove 
pour trouver une bonne solution en un temps constant. Lookahead and Multiway, 
cette autre extension tente de décroître le coût de la partition finale en remplaçant le 
choix arbitraire des mouvements par un choix plus réfléchi [25]. 

3. Métriques et contraintes 

Les décisions de partitionnement matériel/logiciel d’un système sont prises par 
l’algorithme suite à l’évaluation d’une fonction objective de coût, à partir de métriques 
avec  des contraintes. Ces métriques doivent satisfaire les trois propriétés suivantes : 
précision, fidélité et simplicité. Il existe deux classes de métriques : closeness metrics et 
métriques globales. 

3.1. Closeness metrics  

Le but des closeness matrics est de grouper les objets fonctionnels qui seront 
implémentés sur un même composant matériel ou logiciel. Les métriques de 
rapprochement calculent le gain pour que deux objets puissent être implémentés dans la 
même technologie (matérielle ou logicielle), par exemple si deux fonctions utilisent les 
mêmes données, s’exécutent séquentiellement et ont les mêmes exigences matérielles, 
les grouper dans un seul composant améliorera sûrement la conception (en termes de 
coût et de temps) [23]. Elles peuvent être utilisées de deux façons : Le Pre-assignment 
clustering permet d’améliorer le processus de conception, les objets les plus proches 
dans la spécification vont être groupés ensemble. Après cette opération, un 
partitionnement va être opéré en prenant en considération moins d’objets conduisant  à 
une baisse considérable du temps d’exécution et donnant à priori de meilleurs résultats. 
Contrairement à la première méthode, le N-way clustering procédera à un groupement 
des objets proches jusqu’à arriver à ‘n’ groupes dont chacun sera affecté soit à une 
implémentation en matériel ou en logiciel [21]. Avant de présenter les métriques de 
rapprochement, on suggère de normaliser leurs valeurs sur l’intervalle [0,1] pour deux 
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raisons principales : d’abord, pour donner une idée exacte de l’importance des valeurs  
puis pour donner un sens à la combinaison de valeurs utilisant des unités différentes. Il 
existe deux techniques de normalisation : dans la  normalisation globale, la valeur de 
la métrique calculée sera divisée par un nombre représentant cette même métrique 
calculée pour tout le système et dans la normalisation locale, la valeur de la métrique 
calculée sera divisée par un nombre représentant la même métrique calculée seulement 
pour les deux objets concernés. Il existe deux situations de groupement d’objets 
fonctionnels pouvant affecter la taille, la classe ciblée de métriques : Premièrement, les 
objets groupés sur le même composant personnalisé peuvent partager souvent le même 
matériel par exemple un seul multiplieur, réduisant ainsi la taille totale du matériel. 
Deuxièmement, partitionner des objets parmi un nombre de composants identiques, 
nécessite  un équilibre de la taille nécessaire de chaque groupe d’objets. Parmi les 
métriques de rapprochement existantes en relation avec la taille, on cite Hardware 
sharing et Balanced size : 
Hardware sharing,  cette métrique mesure la totalité du matériel partagé entre deux 
ensembles d’objets. Par exemple si deux objets utilisent un multiplieur alors dans ce cas 
ils seront appelés à partager le même multiplieur. On présume qu’il existe une fonction  
Size(Oi) qui rend la taille matérielle de l’objet Oi. La métrique sera donc calculée par 
l’équation (1) comme suit : 

normSharedSizeOOcsaringMetriHardwareSh kjkj /,_),( =                   (1) 
 kjkjkj SizeSizeSizeSharedSize ,,_ −+=                                                         (2) 

),(, kjkj OOSizeSize =                                                                                             (3) 

)( jj OSizeSize =                                                                                                       (4) 

)( kk OSizeSize =                                                                                                       (5) 

min__ bothSizenorm =  ;  pour la norme locale                                                  (6) 

    ;  pour      la norme globale                                                   (7) allSizenorm _=
),(min__ kj SizeSizeMinbothSize =                                                                 (8) 

)(_ ∑=
i

Où : Sizej et Sizek : représentent la taille matérielle nécessaire à l’implémentation des 
objets O

jOSizeallSize                                                                                          (9) 

j et Ok respectivement, Size
j,k 

: indique la taille matérielle requise pour une 
seule implémentation des deux objets Oj et Ok, Size_Shared

j,k : correspond à la taille du 
matériel partagée entre les objets Oj et Ok,  Size_both_min : c’est le minimum entre 
Size

j et Size
k
 qui représente la taille maximale partagée entre ces deux objets, Size_all : 

indique la taille pour une seule implémentation de tous les objets appartenant à la 
spécification. 
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Balanced size,  le rôle de cette métrique est de grouper les objets de petite taille plutôt 
que ceux de grande taille afin d’équilibrer la taille des groupes dans la spécification sur 
des composants similaires. Elle se calcule d’après l’équation (10) comme suit : 
 

normSizeallSizeOOzeMetricBalancedSi kjji /_),( ,−=                          (10) 

)(, kjkj OOSizeSize ∪=                                                                                   (11) 
 
Où : Size_all, Sizej,k,et norm représentent respectivement la taille pour une seule 
implémentation de tous les objets appartenant à la spécification, la taille matérielle 
requise pour une seule implémentation des deux objets Oj et Ok et la norme globale[23].. 
Ces métriques ont un sens puisque nous partitionnons parmi des composants hw et sw. 
Elles permettent d’équilibrer des groupes d’objets de la spécification, ainsi la charge de 
travail se trouve répartie sur les composants particulièrement similaires de 
l’architecture. 

3.2. Métriques globales  

Le conflit existant entre qualité de la performance du partitionnement  et la précision 
du calcul est un facteur critique pour la grande partie des systèmes de conception 
conjointe existants. Une approche d’estimation qui donne des résultats proches des 
valeurs réelles permet une meilleure sélection de la réalisation. Par contre, cette 
précision dégrade le temps de  calcul du partitionnement, ce qui restreint beaucoup 
l’exploration de l’espace des solutions.  Ce conflit, oblige les méthodologies à fixer une 
stratégie ou une heuristique afin de réduire l’espace des solutions exploré [11] [16]. 

Le but de l’opération d'estimation est de permettre au concepteur de prendre la plus 
grande partie des décisions dès les premières étapes de la conception. Elle permet aussi 
la réduction du coût de réalisation, puisqu’il n’est plus nécessaire de dimensionner 
excessivement l’architecture afin d’être sûr de satisfaire les contraintes.  

Notre objectif consiste à trouver un optimum entre coût et temps d’exécution, c’est 
la raison pour laquelle nous avons proposé deux sortes de métriques globales : 
métriques de performance comme le temps d’exécution, temps d’accès, latence de 
circuit, etc. et métriques de coût comme surface du silicium nécessaire, mise en boîtier, 
etc.  Nous avons défini des métriques globales associées à la technologie 
d’implémentation. Pour le logiciel : temps d’exécution, temps d’accès et espace 
mémoire occupé et pour le matériel la surface de silicium (ou nombre de portes), la 
latence du circuit et sa mise en boîtier. 
- Métrique temps d’exécution,  on peut utiliser l’une des équations pour la calculer :  

TempsCycleeNombreCycltionTempsExécu *=                                                  (12) 
       (13) eorFréquenceHCPIructionNombreInsttionTempsExécu log/*=
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n

TempsCycleCPIructionNombreInsttionTempsExécu i
i

i **∑=               (14) 

- Métrique espace  mémoire, cette métrique détermine le nombre d’octets requis pour 
stocker les instructions et les données manipulées par chacun des blocs.  
- Métrique  temps d’accès mémoire, pour calculer cette métrique, on procède en 
quatre étapes : 1) Déterminer  les probabilités de branchement en utilisant l’une des 
méthodes décrites ci-dessus, 2) Un nœud de début S, précédant le premier nœud du 
graphe, est ajouté. Sa fréquence d’exécution, F(S) est égale à 1 puisque ce nœud est 
exécuté exactement une seule fois durant l’exécution du graphe, 3) La fréquence 
d’exécution F(Nj) pour un nœud Nj dépend des fréquences d’exécution de tous ces 
nœuds prédécesseurs. La fréquence d’exécution pour chaque nœud prédécesseur Ni est 
multipliée par la probabilité de branchement P( eij ) de l’arc entre Ni et Nj. Pour chaque 
nœud du graphe, l’équation de fréquence de branchement (15) est : 
 
  ;    pour tout nœud  N)(*)( ij

i
ij ePNNF ∑= i prédécesseur de Ni                    (15) 

 
4) Au cours de cette étape, on détermine le nombre d’accès mémoire d’un noeud. Il est  
calculé en multipliant le nombre de variables utilisées dans ce nœud par sa fréquence 
d’exécution calculée auparavant. Et enfin, en dernière étape, on évalue le temps d’accès 
mémoire d’un bloc d’instructions  Tab. Il est décrit par l’équation (16) : 
Tab  = Le nombre d’accès mémoire * le temps d’un seul accès e.                             (16) 
- Métrique surface du circuit, la surface des circuits combinatoires se décompose en 
surface active et surface des interconnexions. La surface active représente la surface des 
portes combinatoires effectuant une opération booléenne. La surface d’interconnexion 
ne représente qu’un petit pourcentage de la surface totale. On en déduit donc que la 
surface active est une bonne estimation de la surface des circuits combinatoires et que la 
surface des interconnexions correspondantes peut être négligée [14]. Cette surface 
résulte principalement de l’architecture choisie. 
- Métrique latence, la latence d’un circuit correspond au temps écoulé entre l’entrée 
des données et leur sortie. Pour un circuit purement combinatoire, il s’agit du chemin 
critique. Mais pour un circuit séquentiel, elle se calcule en nombre de cycles d’horloge. 
Souvent, elle s’exprime en secondes et non en cycles d’horloge. 
- Métrique coût de mise en boîtier, la mise en boîtier d’un circuit permet de 
déterminer le coût matériel nécessaire à la réalisation d’une application, ajouté bien sûr 
à la surface et à d’autres critères.  
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3.3. Contraintes 

Il est connu lors de la conception des systèmes mixtes que l’implémentation 
matérielle donne de meilleures performances tandis que l’implémentation logicielle 
baisse considérablement le coût de la réalisation. Donc, il serait intéressant que lors de 
la conception d’outils, de prendre en considération les désirs de l’utilisateur en 
soumettant l’application à des contraintes en tenant compte de l’aspect matériel et 
logiciel comme indiqué en figure 2. 

3.3.1. Contraintes de performance  

La méthode utilisée permet d’estimer les limites supérieures et inférieures upper 
bound et lower bound du temps d’exécution d’un programme source sur une 
architecture cible. En supposant que Ls et Li sont respectivement les limites supérieures 
et inférieures de la performance calculée pour un cdfg d’une application donnée, il 
faudrait que la performance résultat de l’utilisation de l’algorithme choisi soit incluse 
dans l’intervalle [Ls,Li]. Cette méthode permet non seulement d’avoir une bonne 
estimation de la performance mais aussi de vérifier si les exigences ou les besoins de 
l’utilisateur sont satisfaits par l’architecture cible. Si le résultat est supérieur ou égal à 
Ls cela signifie que la contrainte est satisfaite mais si le résultat est inférieur ou égal à 
Li on dit que l’architecture choisie ne satisfait pas les contraintes [5] [8] [17]. 

 

Spécification cdfg 

 

 

 

 

           non    

                                          

                                                             
      

                                          A

Figure 2. Influence des contra

La détermination de la limite sup
comporte  deux étapes : On détermine
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érieure de la performance pour un cdfg donné, 
 d’abord la limite supérieure pour chaque bloc de 



             
 

 

base du cdfg puis on déduit la limite supérieure pour tout le cdfg. La limite supérieure 
de la performance pour un bloc de base, correspond à son temps d’exécution qui est 
équivalent au temps nécessaire à l’exécution des opérations se trouvant dans le dfg 
correspondant. La limite supérieure de la performance pour le cdfg, tout d’abord on doit 
définir la longueur des chemins dans le cfg correspondant. Cette longueur se calcule en 
sommant les temps d’exécution des blocs de base qui forment ce chemin. Pour les 
boucles, cette longueur sera multipliée par le nombre d’itérations. La limite supérieure 
de la performance prendra seulement en considération le plus long chemin. 
L’algorithme ci-dessous résume la méthode : 
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- Remplacer cette boucle par un seul nœud dans le cfg. 
- Associer à ce nœud un poids égal à  ‘L * nombre d’itérations 

maximum’  
                        Endpour 
                    Jusqu’à ce qu’il n’y ait plus de boucles dans le cdfg. 

- Calculer la longueur du plus long chemin dans le graphe résultat 
- Rendre cette longueur comme étant la limite supérieure du cdfg 

                 Fin   

               Entrées  :   cdfg 
     La limite supérieure de la performance pour chaque bloc de base. 
     Nombre maximum d’itérations pour chaque boucle. 

            Sorties :      La limite supérieure de la performance pour tout le cdfg. 
Début  

     - Associer à chaque nœud du graphe un poids équivalent à sa 
limite supérieure. 

                 Répéter 
Pour chaque boucle interne faire 

- Déterminer la longueur ‘L’  du plus long chemin dans le corps de 
A R I M A  

T

toccurtclkslacktoccurclkslackave
)(*),( tdelayclkNtclkslack −=

L’estimation de la limite inférieure de performance se calcule de la même façon que 
’estimation de la limite supérieure de performance sauf que dans ce cas on prend en 
onsidération les chemins les plus courts et le nombre minimal d’itérations. 

.3.2. Contrainte du taux d’utilisation du processeur  

Pour que cette contrainte soit satisfaite, il faudrait que le taux d’utilisation calculé 
u processeur soit supérieur au taux estimé [7]. Le taux est calculé en utilisant la 
ormule (17) suivante : 

clkclkslackaveclkaux /)(_1)( −=                                                                (17) T

i
ii                   (18) 

ii                                                                    (19) 
es abréviations suivantes clk, N, delay(t

)(/),(*)([)(_ ∑∑=
i

i

i), slack(clk, ti), ave_slack et 
ccur(ti) désignent respectivement  :  le temps du cycle horloge, le nombre de cycles 
écessaires pour l’exécution ti , le temps effectif de l’opération ti , le temps perdu, le 
emps perdu moyen et le nombre d’occurrences de l’opération ti dans un nœud [9].  
’algorithme ci-dessous décrit le calcul de la contrainte : 

 

  Taux =0 ; 
Début  

Pour chaque nœud logiciel dans le graphe  faire 
     Pour chaque opération   Pi  constituant le nœud  faire

 Calculer le temps perdu slack pour chaque Pi
                             Finpour 



 

 

 

 

 

 

- Calculer le temps perdu moyen pour chaque nœud  
ave_slack (clk)  

     -    Calculer        Taux (clk)   
                      Finpour 
              Fin   

3.3.3.  Contraintes du coût global  

Cette contrainte sera satisfaite si le coût trouvé comme solution au problème est 
inférieur au coût souhaité par l’utilisateur. Les métriques globales sont appliquées pour 
le calcul de la fonction Objectif de cet algorithme dans le but d’atteindre le compromis 
entre une implantation en matériel coûteuse mais rapide et une autre en logiciel moins 
chère mais gourmande en temps d’exécution. 

4. Le système Autodec  

Le choix des caractéristiques suivantes est important : le modèle en entrée, la 
granularité de la spécification, les métriques d’estimation et l’algorithme de découpage. 

                                                                   Interface utilisateur 
 
 

   Spécification                
    formelle                                                                                        Spécification  
                                                                                                          partitionnée 
                                                                     partitionnée          
                     
 
 
                                  

Algorithme Métriques

Fonction coût

 
Modèle (cdfg)

                              
Figure 3.  Modèle de conception d’AutoDec 

4.1. Principe 

Le but de notre outil, est de fournir à partir d’une spécification formelle une 
description partitionnée en utilisant des métriques de rapprochement et globales. Les 
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métriques de rapprochement confectionnent une partition initiale et les métriques 
globales l’améliorent par itérations successives. La figure 3 montre ce processus. 

4.2. Modèles en entrée et architecture 

Quand les modèles utilisés pour la spécification et pour l’architecture cible sont 
simples, le partitionnement automatique est alors possible [15]. Pour cette raison, on a 
choisi comme spécification d’entrée un cdfg puisque c’est un modèle simple à 
comprendre et en même temps puissant pour la modélisation des systèmes complexes 
car il permet la représentation des dépendances entre les données ainsi que les 
séquences d’exécution. Comme granularité pour cette spécification, on a considéré un 
bloc de base. L’architecture cible adoptée est monoprocesseur, composée d’un 
processeur central agissant comme maître, d’une mémoire et d’un ensemble de 
coprocesseurs arithmétiques se comportant comme esclaves (figure 4). 

 

Mémoire

 
Add Sub Mul Comp 

Microprocesseur Bus de communication

 

 

 

 

 

        Figure 4. Architecture cible  

Add  : Additionneur, Mul : Multiplicateur, Sub  : Soustracteur et Comp : Comparateur. 
Les caractéristiques de cette architecture sont  données dans le tableau 1 suivant : 

 
Métrique/copr. Additionneur Multiplieur Soustract Comparateur 

Surface  120 100 110 120 

Boîtier 10 20 30 40 

Temps d’exéc. 80 150 90 100 

           Tableau 1. Caractéristiques de l’architecture cible 

Lors des calculs, on a considéré les valeurs des types de base telles qu’un entier 
occupe  2 octets, un réel  4 octets et un caractère  1 octet en mémoire. De même, le 
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temps de cycle du microprocesseur est de 2 ns et que le temps d’un accès mémoire est 
de 120 ns [1] [4] [6] [19]. 

4.3. Métriques 

L’un des défis majeurs du partitionnement automatique est l’obtention d’un coût 
minimal de la solution finale. Les critères choisis pour l’estimer varient d’un outil à un 
autre. A chaque critère est associé une valeur métrique de même qu’un facteur qui sert à 
les pondérer et qui dépend de la technologie utilisée et du domaine d’application. 
Il est donc difficile de définir une fonction d’estimation qui soit réaliste même pour un 
domaine d’application spécifique. AutoDec, notre outil réalisé, fournit une estimation 
du coût de la partition résultat en utilisant comme métriques d’évaluation : La surface 
en silicium nécessaire pour l’implémentation, la mise en boîtier des circuits utilisés, le 
temps d’exécution requis, l’espace mémoire utilisé et le temps d’accès mémoire. Notre 
but étant de minimiser cette fonction coût tout en cherchant un compromis coût / 
performance. La fonction objective se formalise comme suit : 
 
Min(Fct) = k1 * surf + k2 * meb + k3 *  tpsexe + k4 * espace + k5 * acces  
 
Sous les contraintes :  CTotal ≤ coûtglobal,  PerfTotal ≥ performance  et  Taux ≥  taux 
 
Avec : Fct représentant un  coût global; Surf indiquant une surface en silicium du 
circuit (mm²), meb une mise en boîtier du circuit, tpsexe un temps d’exécution, 
espace un espace mémoire utilisé,  acces un  temps accès mémoire et Ki des facteurs 
choisis en fonction de l’importance de la métrique dans le calcul de la fonction Objectif.  

4.4. Méthode de partitionnement  

Pour réaliser  AutoDec, on a opté lors du choix d’algorithmes pour Kernighan /Lin. 
Pour remédier à ses inconvénients, notre outil tâchera de fournir une solution initiale 
non aléatoire. Cette solution est calculée à partir de métriques de rapprochement.  
Rappelons  que lors de la spécification, le grain a été pris égal à un bloc de base, les 
métriques de rapprochement appropriées, décrites précédemment sont : Hardware 
Sharing et Balanced Size. Le seuil utilisé ou condition d’arrêt pour la partition initiale 
est de 0.4 c'est-à-dire qu’on arrête le processus de regroupement si on ne trouve plus 
deux noeuds avec une closeness metric supérieure à 0.4. Les autres métriques de 
rapprochement  sont beaucoup plus intéressantes à appliquer quand les grains choisis 
sont des procédures ou des fonctions. Au moyen de métriques globales, l’algorithme 
Kernighan/Lin modifie une fonction coût. Lorsque la condition d’arrêt est vérifiée c'est-
à-dire que les valeurs successives de la fonction coût ne diffèrent plus que d’une 
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précision de l’ordre de 5% sachant que cette dernière est une fonction monotone et 
décroissante, alors la solution optimale est atteinte. La partition finale est exprimée 
ensuite sous forme d’un cdfg bicoloré où chacune des deux couleurs indique une 
technologie d’implémentation logicielle/matérielle. Les principales étapes de 
conception de l’outil Autodec sont résumées à  la figure 5. 

4.5. Schéma général d’AutoDec  

Nous avons recensé les principales fonctionnalités de notre démarche ainsi que  les 
liens entre-elles ci-dessous :  
                                                                  Début 

                             
         

        
         
        
                                     Visualiser                                        Closeness metrics                               
                                                                                           
              Programme     CDFG     Diagramme                    Métriques globales 
                                                                                                                      
                                                                                   Kernighan /Lin Algorithm 
                                                                                                                                                                                             
        
         

         Vérifier contraintes  
          
                                            Test                             
                                 non                                                                                                   
                                                                                              Résultat final          
                                                            oui         cdfg bicoloré       
                                                                                             

                  
                                

Spécification

Découpage 

  Choix d’application  

                                
       Figure 5. Schém

5. Expérimenta

Pour valider cet o
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ns entre les fonctionnalités d’AutoDec 

t tests 

s applications sont considérées : 



 

 

 

 

- Une application réelle : un distributeur automatique, cas du sous-système de 
rendu de monnaie. 

- PGCD (Plus Grand Commun Diviseur) : Il s’agit d’un algorithme de calcul du 
plus grand diviseur commun de deux nombres. 

- Un algorithme standard, écrit en langage VHDL sans fonction sémantique 
déterminée mais dont le rôle principal est de servir dans la comparaison de 
résultats. 

5.1. Distributeur automatique  

Etant donné un distributeur qui peut être de friandises ou de boissons, n’acceptant 
que des pièces de 5, 10 ou 20 um (unités monétaires), on va prendre en considération le 
sous-système de rendu de monnaies. La machine rend de préférence des pièces de 10 
um, ensuite des pièces de 5 um. Par exemple, sur 20 um, la machine rend de préférence 
(si le stock de pièces le permet) 10 um + 5 um plutôt que trois fois 5 um. Pour 
implémenter ce système, on doit disposer : d’une information N concernant le type de 
pièce introduite ( N = 5  → Pièce de 5 um, N = 10 → Pièce de 10 um et N = 20 → 
Pièce de 20 um), d’une information Si donnant l’état de stock des pièces (S5  →  Stock 
de pièces de 5 um, S10  → Stock de pièces de 10 um et S20  → Stock de pièces de 20 
um) ainsi que des informations donnant l’état du stock du produit et  l’état du 
distributeur. 

5.2. PGCD 

Cet exemple calcule le plus grand diviseur commun pour deux entiers quelconques. 

5.3. Algorithme standard  

Cet exemple, tiré du guide utilisateur VHDL, est un algorithme standard dont les 
résultats optimaux sont connus, utilisé à des fins de comparaison de résultats. 

5.4. Quelques écrans du système Autodec 

Nous présentons dans cette sous-section quelques écrans pour donner une idée sur 
les possibilités de notre outil. La figure 6.a montre l’interface principale, la figure 6.b 
visualise les choix retenus par le concepteur des différentes métriques et contraintes et 
en figure 6.c, est affiché le résultat du partitionnement M/L du distributeur automatique 
représenté par un cdfg bicoloré. 
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(6.a) 

     

(6.b)                                                                   (6.c 

Figure 6. (6.a) interface utilisateur,  (6.b) choix de métriques et de contraintes par 
l’utilisateur et (6.c) CDFG distributeur automatique partitionné                                                                                            

 
Une double comparaison  a été imposée à AutoDec : d’abord par rapport à 

Kernighan/Lin seul puis par rapport  à deux approches, l’une  utilisant le recuit simulé 
et l’autre un algorithme génétique sur des exemples similaires et sous les mêmes 
conditions [18] [28]. 

Les graphiques ci-dessous montrent les résultats de simulation obtenus sur 
l’application du distributeur automatique en utilisant : seulement  l’algorithme de 
Kernighan/Lin,  Kernighan/Lin en combinaison avec hierarchical clustering  en 
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appliquant Hadware Sharing (HS) puis Balanced Size (BS) comme closeness metrics. 
On constate que la closeness metric HS a une influence plus importante que BS sur le 
coût, elle le réduit de 5% (figure 7.a) tandis que BS agit beaucoup plus sur le temps 
d’exécution et par conséquent sur la performance donnant respectivement une réduction 
de 20 % du temps d’exécution et une amélioration de performance de 25 
%.approximativement (figure 7.b). 
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(7.a)                                                                (7.b) 

.    Figure 7. (7.a) diagramme montrant la réduction de coût Kernighan/Lin combiné, 
(7.b) diagramme illustrant le gain en performance de K/L combiné 

Le tableau 2, résume des résultats obtenus par Kernighan/Lin combinée avec 
hierarchical clustering utilisant la métrique HS et les algorithmes de recuit simulé et 
génétique. Ces résultats sont des moyennes arithmétiques de 3 essais successifs. Le 
choix de paramètres se trouve dans [3], pour le recuit simulé la température initiale T 
est prise égale à 7000, loi de décroissance  T=T-10 et critère d’arrêt à T = 0 ou après 50 
déplacements sans changements de valeur de la fonction coût. Pour l’algorithme 
génétique, la taille de la population est égale à 20 individus, le nombre de générations 
est de 100, l’opérateur de mutation est appliqué avec une probabilité de 0.001 et le 
critère d’arrêt est soit le nombre de générations ou une convergence de la population 
vers une même solution. Pour ces deux algorithmes, la partition initiale est aléatoire. 
L’expérience consiste en 3x3  simulations faites sur le troisième exemple pour chacun 
des algorithmes avec des contraintes et des métriques différentes.  
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 Algorithmes de partitionnement RS AG KL_HS 

Contraintes 
Coût global  PS 740 707 

Taux  PS 59.35 59.35 
Taux CPU ≥ 50,33 %  
Coût matériel ≤ 750 

Métriques 
C S E T A 

Coût matériel  PS 240 240 

Contraintes Coût global 244 208 200 

Taux  60,82 60,68 60.7 Taux  CPU  ≥ 0% 
Coût matériel ≤  900 

Métriques 
C S E - A 

Coût matériel  130 86.66 80.5 

Contraintes 
Taux CPU ≥ 0 
Coût matériel ≤  300 

Coût global  372 284 270 

Métriques Taux    60,4 60.4 59 
- S - T A Coût matériel  60 76.66 70 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Tableau 2. Résultats comparatifs KL combiné à Hierarchical  clustering avec recuit 
simulé et algorithme génétique 

Avec C : coût global, S : surface du matériel, E : espace mémoire occupé par les 
données,.T : temps d’exécution et A : accès mémoire. Les abréviations utilisées dans le 
tableau concernant les algorithmes sont RS pour Recuit Simulé, AG pour algorithme 
génétique et KL_HS pour Kernighan/Lin combiné avec Pre-assignment clustering 
utilisant la closeness metric Hardware sharing.  

Le tableau 2 montre clairement que les résultats obtenus par  l’algorithme 
Kernighan/Lin sont satisfaisants comparés à ceux obtenus par les algorithmes de  recuit 
simulé et génétique. D’après ces résultats, le clustering pour l’algorithme de KL est 
d’un apport important car il le fait converger vers la solution optimale en une seule 
itération tout en améliorant la performance sans un surcoût supplémentaire. 

 
En conséquence, nous pouvons avancer que les closeness metrics utilisés par 

l’algorithme herarchical clustering réduisent le temps d’exécution sans perte de la 
qualité de la partition (pas d’augmentation du coût) pour l’algorithme Kernighan/Lin. 
Cette réduction du temps d’exécution est intéressante à plus d’un titre, d’une part elle 
encourage le concepteur à traiter de gros problèmes et d’autre part elle éveille un vif 
intérêt envers les  algorithmes de partitionnement  automatique. Les closeness metrics 
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utilisées par l’algorithme constructif  peuvent être considérées comme un complément 
des métriques globales, puisque l’ensemble de ces métriques concourt à l’amélioration 
des performances et à la réduction du coût. Autres caractéristiques de notre travail : la  
fonction objective avec plus de critères contraints et pondérés et également  
l’interactivité entre l’outil et le concepteur qui est importante à nos yeux : le concepteur 
est appelé à prendre diverses décisions sur le choix des métriques, des contraintes par 
exemple pour partitionner son système avec une assistance aisée de Autodec dans la  
sélection et la correction.  

6. Conclusion 

Notre travail peut être perçu sous plusieurs aspects : la combinaison de deux 
algorithmes constructif (Hierarchical Clustering) et itératif (Kernighan / Lin), basés sur 
l’utilisation des métriques, l’extension de la fonction Objectif à plus de critères et 
l’interactivité concepteur-outil. Les résultats obtenus sont  satisfaisants comparés à ceux 
obtenus par les algorithmes génétiques et de recuit simulé avec une partition initiale 
aléatoire. Nous estimons avoir amélioré l’algorithme kernighan/Lin en le dotant d’une 
partition initiale réfléchie et nous pouvons dire sans réserves que le clustering avec un 
choix judicieux de métriques, améliore les algorithmes de partitionnement itératifs, et 
par conséquent réduit le gap entre les algorithmes rapides et les algorithmes hautement 
optimaux.  

Ce travail peut être étendu à d’autres métriques de rapprochement comme celles de 
connectivité ou de performance voire les combiner éventuellement et en diversifiant 
autant que possible les domaines d’applications. Nous sommes actuellement en train de 
refaire la même expérience avec les algorithmes de recuit simulé et génétique pour les 
doter d’une solution initiale réfléchie afin de consolider nos propos sur le clustering, 
qu’il est un facteur améliorant de la qualité de solution et des performances des 
algorithmes de partitionnement itératifs. Une autre direction améliorante du travail 
porte sur la combinaison du partitionnement avec l’ordonnancement des blocs de base 
sur les composants de l’architecture.  

Enfin, mentionnons que le partitionnement automatique, avec la jeunesse de ses 
outils et méthodes actuelles, ne peut prétendre concurrencer le partitionnement 
interactif sur les petites applications, dans lequel l’intervention du concepteur expert 
demeure incontournable. Toutefois, pour les applications assez complexes, un 
partitionnement automatique est nécessaire.  
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