
HAL Id: hal-01263496
https://hal.inria.fr/hal-01263496

Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Outil de partitionnement hw/sw basé sur l’algorithme
Kernighan/Lin amélioré

R. Boudour, M.T. Laskri

To cite this version:
R. Boudour, M.T. Laskri. Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin
amélioré. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA,
2007, 7, pp.20-40. �hal-01263496�

https://hal.inria.fr/hal-01263496
https://hal.archives-ouvertes.fr

Outil de partitionnement hw/sw basé sur l’algorithme
Kernighan/Lin amélioré

R. Boudour - M.T. Laskri
Département d’informatique
Université Badji-Mokhtar
BP 12 Annaba
ALGERIE
Email : racboudour@yahoo.fr

RÉSUMÉ. Le partitionnement fonctionnel d’un système, en composants matériels et logiciels,
acquiert de plus en plus de l’importance en conception conjointe. Plusieurs heuristiques et
algorithmes sont utilisés en partitionnement. Dans ce papier, nous présentons l'outil, appelé
AutoDec, implémenté en Visual C++ 6.0. Nous vérifions que l’algorithme hierarchical clustering,
basé sur des métriques de rapprochement, peut être utilisé pour fusionner des parties
fonctionnelles avant l’application de l’algorithme Kernihgan/Lin, entraînant ainsi une réduction
notable du temps d’exécution avec souvent une amélioration accrue en qualité. En somme, nous
montrons que notre approche, utilisée en partitionnement, permet de réduire le fossé entre les
algorithmes rapides et hautement optimaux

ABSTRACT. Partitioning of system functionality for implementation among multiple system
components, such as among hardware and software components in codesign, is becoming an
increasingly important topic. Various heuristics are used in automatic partitioning. In this paper, we
present our tool, called AutoDec, implemented in Visual C++ 6.0. We verified that hierarchical
clustering algorithm, based on closeness metrics, can be used to merge pieces of functionality
before applying Kernighan/Lin algorithm, resulting in reduced execution time with often
improvements in quality. In addition, we show that our approach, when used in partitioning, fills the
gap between fast algorithms and highly-optimizing ones.

MOTS-CLÉS : Conception conjointe, partitionnement automatique, métriques de rapprochement,
algorithme hierarchical clustering, algorithme Kernighan/Lin.

KEYWORDS : Codesign, automatic partitioning, closeness metrics, hierarchical clustering
algorithm, Kernighan/Lin algorithm.

Volume 7 - 2007, pages 20 à 40 - ARIMA

1. Introduction

Pour pallier aux problèmes inhérents à l’approche classique, il a fallu penser à une
nouvelle méthodologie qui réexamine les frontières entre le logiciel et le matériel donc
qui tient compte dès la phase de spécification des interactions entre les deux parties et
qui essaie de réduire le coût et par conséquent le time-to-market du produit final, cette
méthodologie est connue sous le vocable d’origine anglosaxonne codesign pour
conception conjointe [20] [27]. Nos propos se situent à sa deuxième étape, appelée
partitionnement matériel/logiciel. Ce partitionnement est qualifié d’automatique lorsque
l’algorithme remplace le concepteur dans la prise des décisions [26].

Le partitionnement est bien connu comme étant un problème NP-complet, et
pendant les années passées, plusieurs algorithmes basés sur des techniques heuristiques
ont été proposés. Kernighan/Lin est l’une de ces techniques prometteuses. Il a fait
l’objet de plusieurs extensions particulièrement celle de Fiduccia/Mattheyses pour
s’exécuter dans un temps linéaire et pour donner de meilleurs résultats [24]. Mais dans
toutes ces améliorations successives, la partition initiale est restée toujours aléatoire :
souvent tout en logiciel ou tout en matériel. Dans ce contexte, nous essayons de
focaliser nos efforts sur cette partition initiale en la rendant plus réfléchie. Pour
l’obtenir, nous allons faire appel à des closeness métrics, condition sine qua none à
notre sens pour réduire davantage le temps de calcul d’une part et pour ouvrir la voie au
partitionnement de gros problèmes d’autre part. Pour concourir au même objectif, nous
considérons plus de métriques globales comme indicateurs de qualité et la spécification
est choisie à dessein à grain moyen le bloc de base pour renforcer la précision voire la
qualité des résultats. Le reste du papier est organisé comme suit : la section 2 aborde
des éléments nécessaires à la compréhension du problème de partitionnement
logiciel/matériel. La section 3 présente d’une manière assez détaillée, les différentes
métriques et contraintes utilisées. La section 4 décrit l’outil Autodec. La section 5
résume les résultats expérimentaux et la section 6 termine le papier par une conclusion
et de futures directions du travail.

2. Graphes et algorithmes

2.1. Graphes et blocs de base

Les spécifications de systèmes mixtes sont décrites en utilisant les langages
C/VHDL ou le systemC et le code est traduit ensuite en un graphe de flux de contrôle
et de données (cdfg). Le cdfg, une abstraction de la spécification, est utilisé comme

20 - ARIMA - Volume 7 - 2007

entrée des algorithmes de partitionnement pour mapper les blocs/nœuds du cdfg soit en
logiciel, soit en matériel. Nous présentons brièvement ces deux concepts :

Un bloc de base est une séquence d'instructions consécutives dans laquelle le flot de
contrôle est activé au début de celle-ci et inhibé à la fin, sans possibilité d'arrêt ou de
branchement autre qu'à la fin de la séquence. Ainsi, un bloc de base peut être constitué
d'une séquence d'instructions d'affectation, d’une opération non déterministe, ou d’un
appel de procédure. Pour plus de détails sur les règles de construction des blocs de
base, le lecteur intéressé peut consulter [7] [9].

Un cdfg, G = (V, E), décrit le comportement d’un système, il contient un ensemble
de blocs de base, représentés par des nœuds V = {vi / i = 1,2, … m}, et un ensemble de
dépendances représentées par des arcs E = {eij / eij = (vi,vj), vi,vj ∈V}, en général la
partie contrôle (cfg) est distincte de la partie donnée (dfg) [12], comme est illustré en
figure 1.

bb1

bb2 bb3

bb4

bb1

*

+

ba c

y

 a) Cfg (control flow graph) b) dfg (data flow graph)

Figure 1. cdfg (cfg + dfg) : a) cfg avec blocs de base b) dfg avec opérations et données

2.2. Algorithmes de partitionnement

On rencontre deux grandes classes d’algorithmes de partitionnement [13] [2]
[26] explorant un graphe : Les algorithmes constructifs et les algorithmes itératifs. On
s’intéresse à Hierarchical clustering et à Kernighan/Lin .

2.2.1. Algorithme hierarchical clustering

Le groupement hiérarchique ou hierarchical clustering est un algorithme constructif
qui utilise, pour trouver la bonne partition, des closeness metrics. La partition
résultante va être utilisée dans notre cas par l’algorithme de Kernighan/Lin comme
partition initiale. Pour aboutir à une partition complète, l’algorithme opère de la
manière suivante : Il parcourt le graphe cdfg issu de l’étape de spécification du
codesign, dans le but d’identifier les objets les plus proches, puis il détermine les

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 21

valeurs de rapprochement initiales à l’aide d’une fonction de rapprochement, ensuite il
groupe les objets trouvés, en recalcule le rapprochement après le groupement. Il répète
le processus jusqu’à rencontrer une condition d’arrêt qui peut être par exemple un
nombre de groupes à ne pas dépasser ou/et une valeur seuil.

L’algorithme est le suivant :
 P =P ∪ p(i)

/* F

2.2

min
par
d’e
alé
a é
ide
le c
com
d’a
cha

dis
com

22 - ARIMA - Volume 7 - 2007
 Fin
/* Calculer le rapprochement entre les objets*/
Pour (chaque p(i)) faire
 Pour (chaque p(j)) faire
 C(i,j) =ComputeCloseneses(p(i),p(j))
 C= C∪c(I,j)
 Fin

Entrée
 P : partition
Début

/* Initialiser chaque objet comme étant un groupe */
Pour (chaque objet o(i)) faire
Fin
usionner les objets les plus proches et recalculer le rapprochement */

Tant que (P≠Ø) Faire
 p(i,j) = FindClosestObjects(P,C)
 P = P – p(i) – p(j) ∪ p(ij)
 Pour (chaque p(k)) faire

 c(ij, k)= ComputeCloseness(p(ij),p(k))
 Fin

 Fin
Fin

.2. Algorithme Kernighan/Lin

L’algorithme de Kernighan/Lin, connu aussi sous le nom de migration de groupe ou
 cut est itératif. Malgré son ancienneté (années 70), beaucoup de systèmes de
titionnement continuent à l’utiliser encore. Il fournit de bons résultats en un temps
xécution relativement court : Etant donnée une partition de départ générée
atoirement, pour chaque objet (nœud), il calcule la fonction coût en supposant qu’il
té déplacé vers une autre partition (implémentée avec une autre technologie). Puis, il
ntifie le nœud qui produit la plus grande baisse ou la plus petite augmentation dans
oût. Ensuite, il fait l’échange et répète le processus en utilisant la nouvelle partition
me partition initiale jusqu’à ne plus trouver de partition de coût inférieur (condition

rrêt). Pour éviter une boucle infinie (pas de cycles dans le graphe), notons que
que objet ne peut être déplacé qu’une seule fois [6] [14] [24].
L’algorithme décrit ci-dessous, comporte deux parties relativement proches mais

tinctes constituant le corps de l’algorithme. Premièrement, la stratégie de contrôle,
portant deux actions : Select Next Move est une procédure qui choisit le prochain

déplacement à faire et Terminate qui retourne le résultat s’il n’y a plus d’amélioration
possible. Deuxièmement, les données concernant le coût : DS est une structure de
données utilisée pour modéliser les nœuds et à partir de laquelle le coût va être calculé,
UpdateData initialise DS et la met à jour après chaque mouvement et CostFct , la
valeur de cette fonction est calculée à partir d’une combinaison des valeurs issues de
différentes métriques. Cette valeur est appelée cost représentant la qualité de la
partition, dans notre cas un coût minimal. Certes, le lien avec le coût pour certaines
métriques comme le temps d’exécution n’est pas direct, des conversions préalables
devant être effectuées.

 Entrée : P : partition
 Begin
 //IterationLoop
 Loop //généralement < 5 itérations
 currP = bestP = P
 /* UnlockedLoop */
 While (Unlocked Nodes Exist (currP)) Loop
 swap = SelectNextMove(currP)
 currP = MoveAndLockNodes (currP,swap)
 bestP = GetBetterPartition (bestP;cuurrP)
 End loop
 If not (CostFct (bestP)) < CostFct (P)) Then
 Return P //Terminate ; pas d’amélioration
 Else //Faire une autre itération
 P = bestP , UnlockAllNodes (P)
 End if
 End loop

 End

 //Trouver le meilleur échange en essayant toutes les possibilités.
 Procedure SelectNextMove (P)
 //Swap Loop
 For each (unlocked ni є p1 , nj є p2) Loop
 Append (costlog , CostFct (Swap(P, ni , nj)
 End loop

 Return (ni , nj)

Où : N = {n1,…nn} est l’ensemble des nœuds, P = {p1, p2, DS} avec p1 ∩ p2 = Ø,
MoveAndLockNodes : fonction qui fait l’échange des deux nœuds et les verrouille,
Append : fonction qui sauvegarde le coût après l’échange ‘supposé’ des deux nœuds.

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 23

Remarque 1. Cet algorithme est à double sens (2 way exchange), s’utilise beaucoup
pour le partitionnement fonctionnel.
Remarque 2. Le nombre d’itérations dépend de la complexité de l’application. D’après
les expériences ; pour les petites applications, le nombre d’itérations varie généralement
entre 5 et 10 mais pour les applications complexes, il peut facilement atteindre 30
itérations.

Parmi les extensions de Kernighan / Lin, on peut citer : Fiduccia /Mattheyses, une
extension se différenciant de l’algorithme de base par l’utilisation des hypergraphes
plutôt que des graphes. Elle effectue des mouvements sur un seul objet plutôt que de
faire un échange entre deux objets. Elle redéfinit aussi la primitive SelectNextMove
pour trouver une bonne solution en un temps constant. Lookahead and Multiway,
cette autre extension tente de décroître le coût de la partition finale en remplaçant le
choix arbitraire des mouvements par un choix plus réfléchi [25].

3. Métriques et contraintes

Les décisions de partitionnement matériel/logiciel d’un système sont prises par
l’algorithme suite à l’évaluation d’une fonction objective de coût, à partir de métriques
avec des contraintes. Ces métriques doivent satisfaire les trois propriétés suivantes :
précision, fidélité et simplicité. Il existe deux classes de métriques : closeness metrics et
métriques globales.

3.1. Closeness metrics

Le but des closeness matrics est de grouper les objets fonctionnels qui seront
implémentés sur un même composant matériel ou logiciel. Les métriques de
rapprochement calculent le gain pour que deux objets puissent être implémentés dans la
même technologie (matérielle ou logicielle), par exemple si deux fonctions utilisent les
mêmes données, s’exécutent séquentiellement et ont les mêmes exigences matérielles,
les grouper dans un seul composant améliorera sûrement la conception (en termes de
coût et de temps) [23]. Elles peuvent être utilisées de deux façons : Le Pre-assignment
clustering permet d’améliorer le processus de conception, les objets les plus proches
dans la spécification vont être groupés ensemble. Après cette opération, un
partitionnement va être opéré en prenant en considération moins d’objets conduisant à
une baisse considérable du temps d’exécution et donnant à priori de meilleurs résultats.
Contrairement à la première méthode, le N-way clustering procédera à un groupement
des objets proches jusqu’à arriver à ‘n’ groupes dont chacun sera affecté soit à une
implémentation en matériel ou en logiciel [21]. Avant de présenter les métriques de
rapprochement, on suggère de normaliser leurs valeurs sur l’intervalle [0,1] pour deux

24 - ARIMA - Volume 7 - 2007

raisons principales : d’abord, pour donner une idée exacte de l’importance des valeurs
puis pour donner un sens à la combinaison de valeurs utilisant des unités différentes. Il
existe deux techniques de normalisation : dans la normalisation globale, la valeur de
la métrique calculée sera divisée par un nombre représentant cette même métrique
calculée pour tout le système et dans la normalisation locale, la valeur de la métrique
calculée sera divisée par un nombre représentant la même métrique calculée seulement
pour les deux objets concernés. Il existe deux situations de groupement d’objets
fonctionnels pouvant affecter la taille, la classe ciblée de métriques : Premièrement, les
objets groupés sur le même composant personnalisé peuvent partager souvent le même
matériel par exemple un seul multiplieur, réduisant ainsi la taille totale du matériel.
Deuxièmement, partitionner des objets parmi un nombre de composants identiques,
nécessite un équilibre de la taille nécessaire de chaque groupe d’objets. Parmi les
métriques de rapprochement existantes en relation avec la taille, on cite Hardware
sharing et Balanced size :
Hardware sharing, cette métrique mesure la totalité du matériel partagé entre deux
ensembles d’objets. Par exemple si deux objets utilisent un multiplieur alors dans ce cas
ils seront appelés à partager le même multiplieur. On présume qu’il existe une fonction
Size(Oi) qui rend la taille matérielle de l’objet Oi. La métrique sera donc calculée par
l’équation (1) comme suit :

normSharedSizeOOcsaringMetriHardwareSh kjkj /,_),(= (1)
 kjkjkj SizeSizeSizeSharedSize ,,_ −+= (2)

),(, kjkj OOSizeSize = (3)

)(jj OSizeSize = (4)

)(kk OSizeSize = (5)

min__ bothSizenorm = ; pour la norme locale (6)

 ; pour la norme globale (7) allSizenorm _=
),(min__ kj SizeSizeMinbothSize = (8)

)(_ ∑=
i

Où : Sizej et Sizek : représentent la taille matérielle nécessaire à l’implémentation des
objets O

jOSizeallSize (9)

j et Ok respectivement, Size
j,k

: indique la taille matérielle requise pour une
seule implémentation des deux objets Oj et Ok, Size_Shared

j,k : correspond à la taille du
matériel partagée entre les objets Oj et Ok, Size_both_min : c’est le minimum entre
Size

j et Size
k
 qui représente la taille maximale partagée entre ces deux objets, Size_all :

indique la taille pour une seule implémentation de tous les objets appartenant à la
spécification.

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 25

Balanced size, le rôle de cette métrique est de grouper les objets de petite taille plutôt
que ceux de grande taille afin d’équilibrer la taille des groupes dans la spécification sur
des composants similaires. Elle se calcule d’après l’équation (10) comme suit :

normSizeallSizeOOzeMetricBalancedSi kjji /_),(,−= (10)

)(, kjkj OOSizeSize ∪= (11)

Où : Size_all, Sizej,k,et norm représentent respectivement la taille pour une seule
implémentation de tous les objets appartenant à la spécification, la taille matérielle
requise pour une seule implémentation des deux objets Oj et Ok et la norme globale[23]..
Ces métriques ont un sens puisque nous partitionnons parmi des composants hw et sw.
Elles permettent d’équilibrer des groupes d’objets de la spécification, ainsi la charge de
travail se trouve répartie sur les composants particulièrement similaires de
l’architecture.

3.2. Métriques globales

Le conflit existant entre qualité de la performance du partitionnement et la précision
du calcul est un facteur critique pour la grande partie des systèmes de conception
conjointe existants. Une approche d’estimation qui donne des résultats proches des
valeurs réelles permet une meilleure sélection de la réalisation. Par contre, cette
précision dégrade le temps de calcul du partitionnement, ce qui restreint beaucoup
l’exploration de l’espace des solutions. Ce conflit, oblige les méthodologies à fixer une
stratégie ou une heuristique afin de réduire l’espace des solutions exploré [11] [16].

Le but de l’opération d'estimation est de permettre au concepteur de prendre la plus
grande partie des décisions dès les premières étapes de la conception. Elle permet aussi
la réduction du coût de réalisation, puisqu’il n’est plus nécessaire de dimensionner
excessivement l’architecture afin d’être sûr de satisfaire les contraintes.

Notre objectif consiste à trouver un optimum entre coût et temps d’exécution, c’est
la raison pour laquelle nous avons proposé deux sortes de métriques globales :
métriques de performance comme le temps d’exécution, temps d’accès, latence de
circuit, etc. et métriques de coût comme surface du silicium nécessaire, mise en boîtier,
etc. Nous avons défini des métriques globales associées à la technologie
d’implémentation. Pour le logiciel : temps d’exécution, temps d’accès et espace
mémoire occupé et pour le matériel la surface de silicium (ou nombre de portes), la
latence du circuit et sa mise en boîtier.
- Métrique temps d’exécution, on peut utiliser l’une des équations pour la calculer :

TempsCycleeNombreCycltionTempsExécu *= (12)
 (13) eorFréquenceHCPIructionNombreInsttionTempsExécu log/*=

26 - ARIMA - Volume 7 - 2007

n

TempsCycleCPIructionNombreInsttionTempsExécu i
i

i **∑= (14)

- Métrique espace mémoire, cette métrique détermine le nombre d’octets requis pour
stocker les instructions et les données manipulées par chacun des blocs.
- Métrique temps d’accès mémoire, pour calculer cette métrique, on procède en
quatre étapes : 1) Déterminer les probabilités de branchement en utilisant l’une des
méthodes décrites ci-dessus, 2) Un nœud de début S, précédant le premier nœud du
graphe, est ajouté. Sa fréquence d’exécution, F(S) est égale à 1 puisque ce nœud est
exécuté exactement une seule fois durant l’exécution du graphe, 3) La fréquence
d’exécution F(Nj) pour un nœud Nj dépend des fréquences d’exécution de tous ces
nœuds prédécesseurs. La fréquence d’exécution pour chaque nœud prédécesseur Ni est
multipliée par la probabilité de branchement P(eij) de l’arc entre Ni et Nj. Pour chaque
nœud du graphe, l’équation de fréquence de branchement (15) est :

 ; pour tout nœud N)(*)(ij

i
ij ePNNF ∑= i prédécesseur de Ni (15)

4) Au cours de cette étape, on détermine le nombre d’accès mémoire d’un noeud. Il est
calculé en multipliant le nombre de variables utilisées dans ce nœud par sa fréquence
d’exécution calculée auparavant. Et enfin, en dernière étape, on évalue le temps d’accès
mémoire d’un bloc d’instructions Tab. Il est décrit par l’équation (16) :
Tab = Le nombre d’accès mémoire * le temps d’un seul accès e. (16)
- Métrique surface du circuit, la surface des circuits combinatoires se décompose en
surface active et surface des interconnexions. La surface active représente la surface des
portes combinatoires effectuant une opération booléenne. La surface d’interconnexion
ne représente qu’un petit pourcentage de la surface totale. On en déduit donc que la
surface active est une bonne estimation de la surface des circuits combinatoires et que la
surface des interconnexions correspondantes peut être négligée [14]. Cette surface
résulte principalement de l’architecture choisie.
- Métrique latence, la latence d’un circuit correspond au temps écoulé entre l’entrée
des données et leur sortie. Pour un circuit purement combinatoire, il s’agit du chemin
critique. Mais pour un circuit séquentiel, elle se calcule en nombre de cycles d’horloge.
Souvent, elle s’exprime en secondes et non en cycles d’horloge.
- Métrique coût de mise en boîtier, la mise en boîtier d’un circuit permet de
déterminer le coût matériel nécessaire à la réalisation d’une application, ajouté bien sûr
à la surface et à d’autres critères.

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 27

3.3. Contraintes

Il est connu lors de la conception des systèmes mixtes que l’implémentation
matérielle donne de meilleures performances tandis que l’implémentation logicielle
baisse considérablement le coût de la réalisation. Donc, il serait intéressant que lors de
la conception d’outils, de prendre en considération les désirs de l’utilisateur en
soumettant l’application à des contraintes en tenant compte de l’aspect matériel et
logiciel comme indiqué en figure 2.

3.3.1. Contraintes de performance

La méthode utilisée permet d’estimer les limites supérieures et inférieures upper
bound et lower bound du temps d’exécution d’un programme source sur une
architecture cible. En supposant que Ls et Li sont respectivement les limites supérieures
et inférieures de la performance calculée pour un cdfg d’une application donnée, il
faudrait que la performance résultat de l’utilisation de l’algorithme choisi soit incluse
dans l’intervalle [Ls,Li]. Cette méthode permet non seulement d’avoir une bonne
estimation de la performance mais aussi de vérifier si les exigences ou les besoins de
l’utilisateur sont satisfaits par l’architecture cible. Si le résultat est supérieur ou égal à
Ls cela signifie que la contrainte est satisfaite mais si le résultat est inférieur ou égal à
Li on dit que l’architecture choisie ne satisfait pas les contraintes [5] [8] [17].

Spécification cdfg

 non

 A

Figure 2. Influence des contra

La détermination de la limite sup
comporte deux étapes : On détermine

28 - ARIMA - Volume 7 - 2007
Partitionnement hw /sw

Métriques d’évaluation
 Contraintes satisfaites ?

 oui

 utres étapes du codesign

intes de conception sur le partitionnement

érieure de la performance pour un cdfg donné,
 d’abord la limite supérieure pour chaque bloc de

base du cdfg puis on déduit la limite supérieure pour tout le cdfg. La limite supérieure
de la performance pour un bloc de base, correspond à son temps d’exécution qui est
équivalent au temps nécessaire à l’exécution des opérations se trouvant dans le dfg
correspondant. La limite supérieure de la performance pour le cdfg, tout d’abord on doit
définir la longueur des chemins dans le cfg correspondant. Cette longueur se calcule en
sommant les temps d’exécution des blocs de base qui forment ce chemin. Pour les
boucles, cette longueur sera multipliée par le nombre d’itérations. La limite supérieure
de la performance prendra seulement en considération le plus long chemin.
L’algorithme ci-dessous résume la méthode :

l
c

3

d
f

T

L
o
n
t
L

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 29

- Remplacer cette boucle par un seul nœud dans le cfg.
- Associer à ce nœud un poids égal à ‘L * nombre d’itérations

maximum’
 Endpour
 Jusqu’à ce qu’il n’y ait plus de boucles dans le cdfg.

- Calculer la longueur du plus long chemin dans le graphe résultat
- Rendre cette longueur comme étant la limite supérieure du cdfg

 Fin

 Entrées : cdfg
 La limite supérieure de la performance pour chaque bloc de base.
 Nombre maximum d’itérations pour chaque boucle.

 Sorties : La limite supérieure de la performance pour tout le cdfg.
Début

 - Associer à chaque nœud du graphe un poids équivalent à sa
limite supérieure.

 Répéter
Pour chaque boucle interne faire

- Déterminer la longueur ‘L’ du plus long chemin dans le corps de
A R I M A

T

toccurtclkslacktoccurclkslackave
)(*),(tdelayclkNtclkslack −=

L’estimation de la limite inférieure de performance se calcule de la même façon que
’estimation de la limite supérieure de performance sauf que dans ce cas on prend en
onsidération les chemins les plus courts et le nombre minimal d’itérations.

.3.2. Contrainte du taux d’utilisation du processeur

Pour que cette contrainte soit satisfaite, il faudrait que le taux d’utilisation calculé
u processeur soit supérieur au taux estimé [7]. Le taux est calculé en utilisant la
ormule (17) suivante :

clkclkslackaveclkaux /)(_1)(−= (17) T

i
ii (18)

ii (19)
es abréviations suivantes clk, N, delay(t

)(/),(*)([)(_ ∑∑=
i

i

i), slack(clk, ti), ave_slack et
ccur(ti) désignent respectivement : le temps du cycle horloge, le nombre de cycles
écessaires pour l’exécution ti , le temps effectif de l’opération ti , le temps perdu, le
emps perdu moyen et le nombre d’occurrences de l’opération ti dans un nœud [9].
’algorithme ci-dessous décrit le calcul de la contrainte :

 Taux =0 ;
Début

Pour chaque nœud logiciel dans le graphe faire
 Pour chaque opération Pi constituant le nœud faire

 Calculer le temps perdu slack pour chaque Pi
 Finpour

- Calculer le temps perdu moyen pour chaque nœud
ave_slack (clk)

 - Calculer Taux (clk)
 Finpour
 Fin

3.3.3. Contraintes du coût global

Cette contrainte sera satisfaite si le coût trouvé comme solution au problème est
inférieur au coût souhaité par l’utilisateur. Les métriques globales sont appliquées pour
le calcul de la fonction Objectif de cet algorithme dans le but d’atteindre le compromis
entre une implantation en matériel coûteuse mais rapide et une autre en logiciel moins
chère mais gourmande en temps d’exécution.

4. Le système Autodec

Le choix des caractéristiques suivantes est important : le modèle en entrée, la
granularité de la spécification, les métriques d’estimation et l’algorithme de découpage.

 Interface utilisateur

 Spécification
 formelle Spécification
 partitionnée
 partitionnée

Algorithme Métriques

Fonction coût

Modèle (cdfg)

Figure 3. Modèle de conception d’AutoDec

4.1. Principe

Le but de notre outil, est de fournir à partir d’une spécification formelle une
description partitionnée en utilisant des métriques de rapprochement et globales. Les

30 - ARIMA - Volume 7 - 2007

métriques de rapprochement confectionnent une partition initiale et les métriques
globales l’améliorent par itérations successives. La figure 3 montre ce processus.

4.2. Modèles en entrée et architecture

Quand les modèles utilisés pour la spécification et pour l’architecture cible sont
simples, le partitionnement automatique est alors possible [15]. Pour cette raison, on a
choisi comme spécification d’entrée un cdfg puisque c’est un modèle simple à
comprendre et en même temps puissant pour la modélisation des systèmes complexes
car il permet la représentation des dépendances entre les données ainsi que les
séquences d’exécution. Comme granularité pour cette spécification, on a considéré un
bloc de base. L’architecture cible adoptée est monoprocesseur, composée d’un
processeur central agissant comme maître, d’une mémoire et d’un ensemble de
coprocesseurs arithmétiques se comportant comme esclaves (figure 4).

Mémoire

Add Sub Mul Comp

Microprocesseur Bus de communication

 Figure 4. Architecture cible

Add : Additionneur, Mul : Multiplicateur, Sub : Soustracteur et Comp : Comparateur.
Les caractéristiques de cette architecture sont données dans le tableau 1 suivant :

Métrique/copr. Additionneur Multiplieur Soustract Comparateur

Surface 120 100 110 120

Boîtier 10 20 30 40

Temps d’exéc. 80 150 90 100

 Tableau 1. Caractéristiques de l’architecture cible

Lors des calculs, on a considéré les valeurs des types de base telles qu’un entier
occupe 2 octets, un réel 4 octets et un caractère 1 octet en mémoire. De même, le

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 31

temps de cycle du microprocesseur est de 2 ns et que le temps d’un accès mémoire est
de 120 ns [1] [4] [6] [19].

4.3. Métriques

L’un des défis majeurs du partitionnement automatique est l’obtention d’un coût
minimal de la solution finale. Les critères choisis pour l’estimer varient d’un outil à un
autre. A chaque critère est associé une valeur métrique de même qu’un facteur qui sert à
les pondérer et qui dépend de la technologie utilisée et du domaine d’application.
Il est donc difficile de définir une fonction d’estimation qui soit réaliste même pour un
domaine d’application spécifique. AutoDec, notre outil réalisé, fournit une estimation
du coût de la partition résultat en utilisant comme métriques d’évaluation : La surface
en silicium nécessaire pour l’implémentation, la mise en boîtier des circuits utilisés, le
temps d’exécution requis, l’espace mémoire utilisé et le temps d’accès mémoire. Notre
but étant de minimiser cette fonction coût tout en cherchant un compromis coût /
performance. La fonction objective se formalise comme suit :

Min(Fct) = k1 * surf + k2 * meb + k3 * tpsexe + k4 * espace + k5 * acces

Sous les contraintes : CTotal ≤ coûtglobal, PerfTotal ≥ performance et Taux ≥ taux

Avec : Fct représentant un coût global; Surf indiquant une surface en silicium du
circuit (mm²), meb une mise en boîtier du circuit, tpsexe un temps d’exécution,
espace un espace mémoire utilisé, acces un temps accès mémoire et Ki des facteurs
choisis en fonction de l’importance de la métrique dans le calcul de la fonction Objectif.

4.4. Méthode de partitionnement

Pour réaliser AutoDec, on a opté lors du choix d’algorithmes pour Kernighan /Lin.
Pour remédier à ses inconvénients, notre outil tâchera de fournir une solution initiale
non aléatoire. Cette solution est calculée à partir de métriques de rapprochement.
Rappelons que lors de la spécification, le grain a été pris égal à un bloc de base, les
métriques de rapprochement appropriées, décrites précédemment sont : Hardware
Sharing et Balanced Size. Le seuil utilisé ou condition d’arrêt pour la partition initiale
est de 0.4 c'est-à-dire qu’on arrête le processus de regroupement si on ne trouve plus
deux noeuds avec une closeness metric supérieure à 0.4. Les autres métriques de
rapprochement sont beaucoup plus intéressantes à appliquer quand les grains choisis
sont des procédures ou des fonctions. Au moyen de métriques globales, l’algorithme
Kernighan/Lin modifie une fonction coût. Lorsque la condition d’arrêt est vérifiée c'est-
à-dire que les valeurs successives de la fonction coût ne diffèrent plus que d’une

32 - ARIMA - Volume 7 - 2007

précision de l’ordre de 5% sachant que cette dernière est une fonction monotone et
décroissante, alors la solution optimale est atteinte. La partition finale est exprimée
ensuite sous forme d’un cdfg bicoloré où chacune des deux couleurs indique une
technologie d’implémentation logicielle/matérielle. Les principales étapes de
conception de l’outil Autodec sont résumées à la figure 5.

4.5. Schéma général d’AutoDec

Nous avons recensé les principales fonctionnalités de notre démarche ainsi que les
liens entre-elles ci-dessous :
 Début

 Visualiser Closeness metrics

 Programme CDFG Diagramme Métriques globales

 Kernighan /Lin Algorithm

 Vérifier contraintes

 Test
 non
 Résultat final
 oui cdfg bicoloré

Spécification

Découpage

 Choix d’application

 Figure 5. Schém

5. Expérimenta

Pour valider cet o

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 33

 Contraintes

a des lie

tion e

util, troi

 Fin

ns entre les fonctionnalités d’AutoDec

t tests

s applications sont considérées :

- Une application réelle : un distributeur automatique, cas du sous-système de
rendu de monnaie.

- PGCD (Plus Grand Commun Diviseur) : Il s’agit d’un algorithme de calcul du
plus grand diviseur commun de deux nombres.

- Un algorithme standard, écrit en langage VHDL sans fonction sémantique
déterminée mais dont le rôle principal est de servir dans la comparaison de
résultats.

5.1. Distributeur automatique

Etant donné un distributeur qui peut être de friandises ou de boissons, n’acceptant
que des pièces de 5, 10 ou 20 um (unités monétaires), on va prendre en considération le
sous-système de rendu de monnaies. La machine rend de préférence des pièces de 10
um, ensuite des pièces de 5 um. Par exemple, sur 20 um, la machine rend de préférence
(si le stock de pièces le permet) 10 um + 5 um plutôt que trois fois 5 um. Pour
implémenter ce système, on doit disposer : d’une information N concernant le type de
pièce introduite (N = 5 → Pièce de 5 um, N = 10 → Pièce de 10 um et N = 20 →
Pièce de 20 um), d’une information Si donnant l’état de stock des pièces (S5 → Stock
de pièces de 5 um, S10 → Stock de pièces de 10 um et S20 → Stock de pièces de 20
um) ainsi que des informations donnant l’état du stock du produit et l’état du
distributeur.

5.2. PGCD

Cet exemple calcule le plus grand diviseur commun pour deux entiers quelconques.

5.3. Algorithme standard

Cet exemple, tiré du guide utilisateur VHDL, est un algorithme standard dont les
résultats optimaux sont connus, utilisé à des fins de comparaison de résultats.

5.4. Quelques écrans du système Autodec

Nous présentons dans cette sous-section quelques écrans pour donner une idée sur
les possibilités de notre outil. La figure 6.a montre l’interface principale, la figure 6.b
visualise les choix retenus par le concepteur des différentes métriques et contraintes et
en figure 6.c, est affiché le résultat du partitionnement M/L du distributeur automatique
représenté par un cdfg bicoloré.

34 - ARIMA - Volume 7 - 2007

(6.a)

(6.b) (6.c

Figure 6. (6.a) interface utilisateur, (6.b) choix de métriques et de contraintes par
l’utilisateur et (6.c) CDFG distributeur automatique partitionné

Une double comparaison a été imposée à AutoDec : d’abord par rapport à

Kernighan/Lin seul puis par rapport à deux approches, l’une utilisant le recuit simulé
et l’autre un algorithme génétique sur des exemples similaires et sous les mêmes
conditions [18] [28].

Les graphiques ci-dessous montrent les résultats de simulation obtenus sur
l’application du distributeur automatique en utilisant : seulement l’algorithme de
Kernighan/Lin, Kernighan/Lin en combinaison avec hierarchical clustering en

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 35

appliquant Hadware Sharing (HS) puis Balanced Size (BS) comme closeness metrics.
On constate que la closeness metric HS a une influence plus importante que BS sur le
coût, elle le réduit de 5% (figure 7.a) tandis que BS agit beaucoup plus sur le temps
d’exécution et par conséquent sur la performance donnant respectivement une réduction
de 20 % du temps d’exécution et une amélioration de performance de 25
%.approximativement (figure 7.b).

1350

1400

1450

1500

1550

Coût

K/L HS BS

Algorithmes

Coût

0
5

10
15
20
25
30
35
40

Perf

K/L HS BS

Algorithmes

Perfor
mance

(7.a) (7.b)

. Figure 7. (7.a) diagramme montrant la réduction de coût Kernighan/Lin combiné,
(7.b) diagramme illustrant le gain en performance de K/L combiné

Le tableau 2, résume des résultats obtenus par Kernighan/Lin combinée avec
hierarchical clustering utilisant la métrique HS et les algorithmes de recuit simulé et
génétique. Ces résultats sont des moyennes arithmétiques de 3 essais successifs. Le
choix de paramètres se trouve dans [3], pour le recuit simulé la température initiale T
est prise égale à 7000, loi de décroissance T=T-10 et critère d’arrêt à T = 0 ou après 50
déplacements sans changements de valeur de la fonction coût. Pour l’algorithme
génétique, la taille de la population est égale à 20 individus, le nombre de générations
est de 100, l’opérateur de mutation est appliqué avec une probabilité de 0.001 et le
critère d’arrêt est soit le nombre de générations ou une convergence de la population
vers une même solution. Pour ces deux algorithmes, la partition initiale est aléatoire.
L’expérience consiste en 3x3 simulations faites sur le troisième exemple pour chacun
des algorithmes avec des contraintes et des métriques différentes.

36 - ARIMA - Volume 7 - 2007

 Algorithmes de partitionnement RS AG KL_HS

Contraintes
Coût global PS 740 707

Taux PS 59.35 59.35
Taux CPU ≥ 50,33 %
Coût matériel ≤ 750

Métriques
C S E T A

Coût matériel PS 240 240

Contraintes Coût global 244 208 200

Taux 60,82 60,68 60.7 Taux CPU ≥ 0%
Coût matériel ≤ 900

Métriques
C S E - A

Coût matériel 130 86.66 80.5

Contraintes
Taux CPU ≥ 0
Coût matériel ≤ 300

Coût global 372 284 270

Métriques Taux 60,4 60.4 59
- S - T A Coût matériel 60 76.66 70

 Tableau 2. Résultats comparatifs KL combiné à Hierarchical clustering avec recuit
simulé et algorithme génétique

Avec C : coût global, S : surface du matériel, E : espace mémoire occupé par les
données,.T : temps d’exécution et A : accès mémoire. Les abréviations utilisées dans le
tableau concernant les algorithmes sont RS pour Recuit Simulé, AG pour algorithme
génétique et KL_HS pour Kernighan/Lin combiné avec Pre-assignment clustering
utilisant la closeness metric Hardware sharing.

Le tableau 2 montre clairement que les résultats obtenus par l’algorithme
Kernighan/Lin sont satisfaisants comparés à ceux obtenus par les algorithmes de recuit
simulé et génétique. D’après ces résultats, le clustering pour l’algorithme de KL est
d’un apport important car il le fait converger vers la solution optimale en une seule
itération tout en améliorant la performance sans un surcoût supplémentaire.

En conséquence, nous pouvons avancer que les closeness metrics utilisés par

l’algorithme herarchical clustering réduisent le temps d’exécution sans perte de la
qualité de la partition (pas d’augmentation du coût) pour l’algorithme Kernighan/Lin.
Cette réduction du temps d’exécution est intéressante à plus d’un titre, d’une part elle
encourage le concepteur à traiter de gros problèmes et d’autre part elle éveille un vif
intérêt envers les algorithmes de partitionnement automatique. Les closeness metrics

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 37

utilisées par l’algorithme constructif peuvent être considérées comme un complément
des métriques globales, puisque l’ensemble de ces métriques concourt à l’amélioration
des performances et à la réduction du coût. Autres caractéristiques de notre travail : la
fonction objective avec plus de critères contraints et pondérés et également
l’interactivité entre l’outil et le concepteur qui est importante à nos yeux : le concepteur
est appelé à prendre diverses décisions sur le choix des métriques, des contraintes par
exemple pour partitionner son système avec une assistance aisée de Autodec dans la
sélection et la correction.

6. Conclusion

Notre travail peut être perçu sous plusieurs aspects : la combinaison de deux
algorithmes constructif (Hierarchical Clustering) et itératif (Kernighan / Lin), basés sur
l’utilisation des métriques, l’extension de la fonction Objectif à plus de critères et
l’interactivité concepteur-outil. Les résultats obtenus sont satisfaisants comparés à ceux
obtenus par les algorithmes génétiques et de recuit simulé avec une partition initiale
aléatoire. Nous estimons avoir amélioré l’algorithme kernighan/Lin en le dotant d’une
partition initiale réfléchie et nous pouvons dire sans réserves que le clustering avec un
choix judicieux de métriques, améliore les algorithmes de partitionnement itératifs, et
par conséquent réduit le gap entre les algorithmes rapides et les algorithmes hautement
optimaux.

Ce travail peut être étendu à d’autres métriques de rapprochement comme celles de
connectivité ou de performance voire les combiner éventuellement et en diversifiant
autant que possible les domaines d’applications. Nous sommes actuellement en train de
refaire la même expérience avec les algorithmes de recuit simulé et génétique pour les
doter d’une solution initiale réfléchie afin de consolider nos propos sur le clustering,
qu’il est un facteur améliorant de la qualité de solution et des performances des
algorithmes de partitionnement itératifs. Une autre direction améliorante du travail
porte sur la combinaison du partitionnement avec l’ordonnancement des blocs de base
sur les composants de l’architecture.

Enfin, mentionnons que le partitionnement automatique, avec la jeunesse de ses
outils et méthodes actuelles, ne peut prétendre concurrencer le partitionnement
interactif sur les petites applications, dans lequel l’intervention du concepteur expert
demeure incontournable. Toutefois, pour les applications assez complexes, un
partitionnement automatique est nécessaire.

7. Bibliographie

[1] Azizi Mostafa, "Covérification des Systèmes Intégrés", Phd de l'université de Montréal,
2000.

38 - ARIMA - Volume 7 - 2007

[2] Ben Ismail Tarek, "Synthèse au niveau système et conception de systèmes mixtes
Logiciels/Matériels", Thèse INPG, Grenoble 1996.

[3] Chaffai M. N., Bouzbid H. et Boudour R., « Partitionnement automatique au niveau de la
méthodologie codesign », RR 10-2002, département d’informatique, université d’Annaba,
Algérie, 2002

[4] Coste Pascal, "Conception des systèmes hétérogènes multilangages", Thèse de l'université
Joseph Fourier, 2001.

[5] Diguet J. P., Gogniat G. et Martin E., «Codesign ou Conception Conjointe Logiciel/Matériel»,
Lester, UBS.

[6] Eles P., Kuchcinski K. et Peng Z., "System synthesis with VHDL", Kluwer Academic
Publisher, 1998.

[7] Gajski D.D., Vahid F., Narayan S. et Gong J., "Estimation", Université d’Irvine, 1994.

[8] Gajski D.D. et al., " Specification and design of Embedded Systems", PTR Prentice Hall,
1994, pp. 171-231.

[9] Gong J., Gajski D. D., Narayan S., “Software Estimation from Executable Specifications”, T
echnical Report ICS-93-5, 1993.

[10] Kahlo Alexander, "Functional verification of an ASIC design on register transfer level with
Celaro/ModelSim co-simulation" , Thèse University of Applied Sciences Braunschweig,
2000.

[11] Kajonen Jarkko, “Electronics and signal processing”, 2001

[12] Knerr B., Holzer M. et Rupp M., « Hw/Sw Partionin Using High level Metrics »,
proceedings conférence CCCT, p. 33-38, Austin, 2004.

[13] Kuchcinski Kris, “ System Partitioning”, 2002.

[14] Laurent Bernard, "conception des blocs réutilisables et réflexion sur la méthodologie", Thèse
INPG, 1999.

[15] Marchioro Gilberto Fernandes, "Découpage Transformationnel pour la Conception de
Systèmes Mixtes Logiciel/Matériel", Thèse INPG, 1998.

[16] Martin Eric, "Méthodes de développement logiciel/matériel : le CODESIGN", Brest, 1998.

[17] MCC/OMI, "Hardware software codesign study report", MCC/OMI, 1997.

[18] Serra M. et Gardner W. B., " Hardware/Software Codesign – introducing an
interdisciplinary course", Conférence WCCCE Vancouver, 1998.

[19] Roux Sébastien, «Adéquation Algorithme – Architecture pour le traitement multimédia
embarqué », Thèse INPG, 2002.

[20] Suger Zoltan, " Synthèse comportementale basée sur l’ordonnancement", Thèse INPG,
2000.

Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré - 39

[21] Thomas Hervé, Diguet J-P. et Philippe J-L., "Estimation et métriques au niveau système
pour la conception conjointe logicielle/matérielle", Lester, UBS

[22] Vahid F. et Gajski D.D., " Clusetring for improved system-level functional partitioning",
1997.

[23] Vahid F. et Gajski D. D., "Closeness metrics for system-level functional partitioning",
EURODAC 1995, p. 328-333.

[24] Vahid F. et Thuy Dm LE, "Extending the Kernighan / Lin heuristic for hardware and
software functional partitioning", Design automation for embedded systems, Vol.. 2, p. 237-
261, 1997.

[25] Vahid et Le, "HW/SW Partitioning based on Kernighan and Lin", Version 2, October 2000.

[26] Valderrama Carlos Alberto, " Prototype virtuel pour la génération des architectures mixtes
Logicielles/Matérielles", Thèse INPG, 1998.

[27] Wander Oliveira Cesărio, "Synthèse architecturale flexible", Thèse INPG, 1999.

[28] Williams Mickey, “VISUAL C++ 6”, Edition CampusPress, 2001

40 - ARIMA - Volume 7 - 2007

