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RÉSUMÉ. Le but de ce travail est d’appliquer des outils de contrôle aux systèmes de population de
pêche. on construit un observateur pour un modèle continu structuré en age de population de pêche
exploitée qui tient compte des pré-recrutés. Les variables du modèle: l’effort de pêche, les classes
d’age et la capture sont considérés respectivement comme contrôleur, états du systèmes et sa sortie
mesurée. Le changement de variables basé sur les dérivés de Lie nous a permis de mettre le système
sous une forme canonique observable. La forme explicite de l’observateur est finalement donnée.

ABSTRACT. Our aim is to apply some tools of control to fishing population systems. In this paper
we construct a non linear observer for the continuous stage structured model of an exploited fish
population, using the fishing effort as a control term, the age classes as a states and the quantity of
captured fish as a measured output. Under some biological satisfied assumptions we formulate the
observer corresponding to this system and show its exponential convergence. With the Lie derivative
transformation, we show that the model can be transformed to a canonical observable form; then we
give the explicit gain of the estimation.
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1. Introduction

When solving control engineering problems, it is often necessary to know the state of
a dynamical system. Most of the modern control design methods, especially for nonlinear
systems, use a state feedback as the controller. Knowing the system state is also important
for surveillance of a technical system, either by a human or automatically. But in most ap-
plications, it is very difficult or even impossible to measure the entire state of the system :
either because applying sensors for all states would require too much effort, or because
there are no methods to measure a state variable in realtime. Thus the problem of observer
design is how to get an estimate for the state of a dynamical system from the knowledge
of its input and output signals.This is the case of many widely diffused process control
strategies. Therefore, the presence of unknown states becomes a difficulty which can be
solved by means of the inclusion of an appropriate state estimator. For this reason, many
researchers have focused their attention on the development of suitable algorithms to per-
form the estimation. In this sense, several techniques have been introduced to estimate
state variables from the available measurements, usually related to meaningful variables.
From the obtainable information about the process, there exist many possible kinds of esti-
mators to be used depending on the mathematical structure of the process model. With the
development of Kalman Filter and Luenberger observer [5], the linear estimation problem
in the presence of white noise is almost solved. The first important results for nonlinear
systems were obtained by Hermann and Krener [17], who gave a sufficient condition for
local observability. Gauthier and Bornard [7] found a class of systems which are obser-
vable for any input signal. Their result is quite important for control applications, where
the input is directly computed by the controller, usually without regarding whether the
system is observable with this input or not. A different approach for controlled systems
can be found in the work of Zeitz [14], where also derivatives of the input signal are taken
into account. The Kalman-like nonlinear observer produces good estimates in the sense of
mean square errors. For the system with white noises, a Kalman-like nonlinear observer
is widely accepted. The high gain observer is an appropriate technique for several class
of nonlinear systems. Its origin can be traced back to Gauthier [8]. The basic idea of this
approach is to dominate the nonlinear behavior of the system by applying high gains to
a slightly modified Luenberger observer. Convergence is then usually proven by giving a
quadratic Lyapunov function, as normally used for linear systems. An extension of this
observer synthesis to the multi out-put case is given in [11][12][13].
In fishery systems the states variables can’t be measured, and the resources cannot be
counted directly except with acoustic method which is not generalized yet. This difficulty
leds some authors to estimate the biomass through available data. Ouahbi [1] construct
an observer that gives an estimate of the state of the discrete time model and which is
independent of the choice of stock recruitment function. J.L Gouze et al [6]. present a
technique for the dynamic estimation of bounds and no-measured variables of an uncer-
tain dynamical systems. They show the applicability of this method to the three stages
structured population model ; one disadvantage of this method it is formulated under the
assumption that only the oldest stage is subject to be captured. In this paper, we deal with
the continuous age-structured model of population dynamics of exploited fish. The model
is structured in n age classes and we assume that at each time we can measure the quantity
of captured fishes and all age classes are subject to be captured. We show that it is possible
to construct an observer which gives an estimation of the biomass of fishes by age class.
The high gain observer technique is used based on the work of [8][13]. The exponential
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observer is explicitly formulated in an invariant domain.
The paper is organized as follows. We first consider the description of the continuous
stage structured model, under some biological satisfied assumptions. Next we give a state
transformation in order to transform our system in a canonical observable form relying
on the Lie derivative transformation. Then we investigate the technique for the estimation
of the biomass in an invariant domain. In section4 a numerical example is given and
simulation results are shown.

2. Problem Formulation and Assumptions

We consider a population of exploited fish which is structured in n age classes(n ≥ 2),
where every stage i is described by the evolution of it’s biomassXi for 0 ≤ i ≤ n. Under
some assumptions on the population ; we can represent it’s dynamics by the following
system of differential equation [18] [19].



Ẋ0 = −α0X0 +
∑n

i=1 filiXi −
∑n

i=0 piXiX0

Ẋ1 = αX0 − (α1 + q1E)X1

...
...

Ẋn = αXn−1 − (αn + qnE)Xn

Y = q1X1 + q2X2 + ...+ qnXn

[1]

Where :
αi = α+Mi.
Mi :is the natural mortality of the individuals of theith age class ;
α :is the linear aging coefficient ;
p0 : is the juvenile competition parameter ;
pi : predation parameter of class i on class 0 ;
fi :is the fecundity rate of class i ;
li : is the reproduction efficiency of class i ;
qi : is the catchability of the individuals of theith age class ;
Xi : is the biomass of class i ;
E :is the fishing effort at time t and is regarded as an input ;
Y :is the total catch per unit of effort and is regarded as output ;

Let us note that all the parameters of the model are positive. The recruitment from one
class to another can be represented by a strictly positive coefficient of passage. The pas-
sage rateα from the juvenile class to the adult stages is supposed to be constant with
respect to time and stages. This means that the time of residence is equal to1

α . The laying
eggs is considered continuous with respect to time. The total number of eggs introduced
in the juvenile stage is given by

∑i
1 filiXi. The cannibalism term

∑i
1 piX0Xi is based

on the Lotka-Volterra predating term between class i and class 0. The intra-stage compe-
tition for food and space is expressed asp0X

2
0 . The mortality of each stage i is caused by

the fishing and natural mortality which is supposed linear [19].

One supposes that the system [1] satisfies the following assumptions :
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Assumption 1:
One non linearity at least must be considered.∑n

i=0 pi 6= 0

Assumption 2:
The spawning coefficient must be big enough so as to avoid extinction.∑n

i=1 filiπi > α0

where :πi = αi∏i

j=1
(αj+qjĒ)

andĒ is a constant fishing effort.

Under the assumptions [1] and [2] the system [1] has two equilibrium points [19] :
The first one is the originX = 0 which corresponds to an extincted population and is
therefore not very interesting. The second one is the nontrivial equilibriumX∗ defined
as :

X∗
i = πiX

∗
0 andX∗

0 =
∑n

1
filiπi−α0

p0+
∑n

1
piπi

Assumption 3:
All age classes are subject to catch and the oldest one yields eggs.

∀ i = 1 . . . n qi > 0 andfnln 6= 0

Assumption 4:
Each predator lays more eggs than it consumes.

X∗
0 < µ = mini=1...n( fili

pi
) for filipi 6= 0.

Assumption 5:
We assume that the fishing effort is subject to the constraint.

0 < Emin ≤ E ≤ Emax

In [2] the authors show that the system [1] controlled by any positive constant feed-
back lawE is asymptotically stable. They also construct a nonlinear state feedback law
that allows to stabilize the system around the nontrivial steady stateX∗.

3. Nonlinear Observer Design

State observers (software sensors) are able to provide a continuous estimation of some
signals which are not measured by hardware sensors. They need a mathematical model of
the process and hardware measurements of some other signals. An observer is a dynamic
system whose input includes the controlu and the outputy and whose output is an esti-
mate of the state vector̂x.
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Figure 1. Principal of the observer

In general the biomassX(t) can’t be measured directly, so the problem addressed here
is how to use the measurable information the inputu and the outputY in order to construct
an exponential observer that is to say, an auxiliary system of differential equation whose
stateX̂(t) gives an estimate of the stateX(t) of the system [1]. More precisely we shall
havelimt−→+∞(X̂(t)−X(t)) = 0 with an exponential rate of convergence.
The system [1] can be written in the following general form.{

Ẋ = A1X +B1Xu+ F (X)
Y = C1X

[2]

where :

X = (X0, X1, ..., Xn)> u = E

A1 =


0 0 0 . . . 0
α 0 0 . . . 0
0 α 0 . . . 0

0 0
... 0 0

0 0 0 α 0


B1 =


0 0 0 . . . 0
0 −q1 0 . . . 0
0 0 −q2 . . . 0

0 0
...

... 0
0 0 0 0 −qn,



F (X) =


−α0X0 +

∑n
i=1 filiXi −

∑n
i=0 piXiX0

−α1X1

...
−αnXn


and C1 = [0, q1, q2, . . . , qn]

In order to get asymptotic results. We restrict our study to the set D defined as follows
D = Πn

1 [ai, bi] whereai can be chosen as small as one need andbi = (1 + υi)πi with
υ0 = 0 < υ1 < ... < υn < 1. it is shown in [18] thatai andbi are bounded by some
function of the parameterfi,li andπi and that D is an invariant domain by system [1].
F is liptschitz in D
Let us define the liptschitz constant ofF
By the mean value theorem there exist a pointz on the line segment joiningX1 ∈ D and
X2 ∈ D such that :
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F (X1)− F (X2) = ∂F
∂X (z)(X1 −X2)

Thus

‖F (X1)− F (X2)‖ = ‖ ∂F
∂X (z)(X1 −X2)‖

≤ ‖ ∂F
∂X (z)‖‖(X1 −X2)‖

Taking into account ai ≤ Xi ≤ bi ∀i ≥ 0 it follows :

‖ ∂F
∂X (z)‖ ≤ 2p0b0 +

∑n
1 pibi +

∑n
1 fili + (α2

0 + α2
1 . . .+ α2

n)
1
2

ConsequentlyF is liptschitz in the domain D with the liptschitz constant :

L = 2p0b0 +
∑n

1 pibi +
∑n

1 fili + (α2
0 + α2

1 . . .+ α2
n)

1
2 .

3.1. State Transformation

To facilitate the design of the nonlinear observer, one considers the following change
of coordinates :

φ : X −→ Z = (h(X), Lfh(X), . . . , Ln
fh(X))

where :

f(X) = A1X, h(X) = C1X

AndL denotes the Lie derivative operator defined as :

Lfh(X) = ∂h(X)
∂X f(X) andLn

fh(X) = Lf (Ln−1
f h(X))

Z can be expressed as :

Z = (C1X,C1A1X, ..., C1A
n
1X)

= MX

Where :

M =


0 q1 q2 . . . qn
q1α q2α . . . qnα 0
q2α

2 . . . qnα
2 0 0

... . 0 0 0
qnα

n 0 0 0 0


It is easy to see that

detM = qn+1
n α

n(n+1)
2

Thus :
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∀ qn 6= 0 we have detM 6= 0

(qn 6= 0 means that the last stage-class is subject to catch.)
Consequentlyφ is a diffeomorphism in D
Having recourse to some global results found out by Gauthier et al [7] and Farza et al [13]
φ transform [2] to : {

Ż = AZ + ψ(Z)u+ ϕ(Z) + ω(Z)
Y = CZ

[3]

Where :

A =


0 1 . . . . . . 0
0 0 1 . . . 0

0 0 0
... 0

0 0 0 0 1
0 0 0 0 0

 C = [1, 0, 0, . . . , 0]

ϕ(Z) =


0
...
0

Ln+1
f h(φ−1(Z))

 = 0 (Ln+1
f h(φ−1(Z)) = C1A

n+1
1 X = 0)

ψ(Z) =


LgL

0
fh(φ

−1(Z))
LgL

1
fh(φ

−1(Z))
...

LgL
n
fh(φ

−1(Z))

 = MB1M
−1Z whereg(X) = B1X

ω(Z) = MF (M−1Z)

The system [3] can be written as :{
Ż = AZ +MB1M

−1Zu+MF (M−1Z)
Y = CZ

[4]

3.2. Proposition

For any initial conditionX(0) ∈ D and anyX̂(0) ∈ D and forθ large enough the
system [2] satisfying assumptions [1], [2], [3], [4] and [5]. can be exponentially estimated
by the following dynamical system :

˙̂
X = A1X̂ +B1X̂u+ F (X̂)− θM−1d−1

θ S−1
1 C ′(C1X̂ − Y ) . [5]

Where :
S1 is the symmetric positive definite solution of the algebraic equation :
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θSθ +A′Sθ + SθA− C ′C = 0

For θ = 1 and it can be expressed as :

S1(i, j) = (−1)i+jCj−1
i+j−2 for 1 ≤ i, j ≤ n Where Ci

j = j!
i!(j−i)!

dθ is a diagonal matrix defined by :dθ = diag(1, 1
θ , . . . ,

1
θn )

3.3. Lemma

Forθ large enough the system below is an exponential observer for the system [4],

˙̂
Z = AẐ +MB1M

−1Ẑu+MF (M−1Ẑ)− θd−1
θ S−1

1 C ′(CẐ − Y ) [6]

Proof

Let e = Ẑ − Z
Then on can check that :

ė = (A− θd−1
θ S−1

1 C ′C)e+MBM−1ue+ ∆(F )

Where∆(F ) = MF (M−1Ẑ)−MF (M−1Z)
F is lipschitz with the constant L so :

‖∆(F )‖ ≤ L1‖e‖

Where

L1 = L‖M‖‖M−1‖

Let Vθ a candidate lyapunov equation for the system [4].

Vθ = 1
θ e
′dθS1dθe

The time derivative ofVθ computed along solutions of the differential equations [4] is
given by :

V̇θ = 1
θ e
′(A′dθS1 − θC ′C)dθe+ 2 1

θ e
′dθS1dθMBM−1ue+ e′dθ(S1dθA− θC ′C)e

+2 1
θ (∆(F ))dθS1dθe)

= 1
θ e
′dθ(d−1

θ A′dθS1 + S1dθAd
−1
θ − θd−1

θ C ′C − θC ′Cd−1
θ )dθe

+2 1
θ e
′dθS1dθMBM−1ue+ 2 1

θ (∆(F ))dθS1dθe
[7]

Taking into account the algebraic equation :

θSθ +A′Sθ + SθA− C ′C = 0

And
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dθAd
−1
θ = θA, C ′Cd−1

θ = C ′C

It follows

V̇θ = 1
θ e
′dθ(−θS1 − θC ′C)dθe+ 2 1

θ e
′dθS1dθMB1M

−1ud−1
θ dθe+ 2 1

θ (∆(F ))dθS1dθe

We indeed get :

V̇θ ≤ −θVθ + 2
θλmax(S1)(‖MB1M

−1‖Emax + L1)‖dθe‖2

Using the above inequality :

λmin(S1)‖dθe‖2 ≤ e′dθS1dθe ≤ λmax(S1)‖dθe‖2

where :λmin(S1) andλmax(S1) are respectively the minimal and the maximal eigenva-
lues ofS1.
it Follows :

V̇θ ≤ −(θ − θ1)Vθ

Where :

θ1 = 2λmax(S1)(‖MB1M−1‖Emax+L1)
λmin(S1)

Consequently

Vθ(t) ≤ exp[−(θ − θ1)t]Vθ(0)

Then

‖dθe(t)‖ ≤
√

λmax(S1)
λmin(S1)

exp[−( θ−θ1
2

)t]‖dθe(0)‖

From the inequality :

1
θn+1 ‖e(t)‖ ≤ ‖dθe(t)‖ ≤ ‖e(t)‖

We get :

‖e(t)‖ ≤ θn+1

√
λmax(S1)
λmin(S1)

exp[−(
θ − θ1

2
)t]‖e(0)‖ [8]

Consequently Forθ large enough‖e‖ converge exponentially to zero.
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Proof of the Proposition
we have

X̂ = M−1Ẑ

Then

˙̂
X = M−1 ˙̂

Z

= M−1(AẐ +MB1M
−1Ẑu+MF (M−1Ẑ)− θd−1

θ S−1
1 C ′(CẐ − Y ))

= M−1AẐ +B1M
−1Ẑu+ F (M−1Ẑ)− θM−1d−1

θ S−1
1 C ′(CẐ − Y )

= M−1AMX̂ +BX̂u+ F (X̂)− θM−1d−1
θ S−1

1 C ′(C1X̂ − Y )
= A1X̂ +B1X̂u+ F (X̂)− θM−1d−1

θ S−1
1 C ′(C1X̂ − Y )

Which end the proof of the proposition.

3.4. An observer for n=6

Below, we expose a system that we claim to be an observer for [1]. For simplicity of
exposition, and to show that the observer implementation is simple and it requires small
computational effort, the construction is made in the 7-dimensional case (7 age classes).



Ẋ0 = −α0X0 +
∑n

i=1 filiXi −
∑6

i=0 piXiX0

Ẋ1 = αX0 − (α1 + q1E)X1

Ẋ2 = αX1 − (α2 + q2E)X2

Ẋ3 = αX2 − (α3 + q3E)X3

Ẋ4 = αX3 − (α4 + q4E)X4

Ẋ5 = αX4 − (α5 + q5E)X5

Ẋ6 = αX5 − (α6 + q6E)X6

Y = q1X1 + q2X2 + q3X3 + q4X4 + q5X5 + q6X6

[9]

The matrix of the state transformationM is expressed as :

M =



0 q1 q2 q3 q4 q5 q6

q1α q2α q3α q4α q5α q6α 0

q2α2 q3α2 q4α2 q5α2 q6α2 0 0

q3α3 q4α3 q5α3 q6α3 0 0 0

q4α4 q5α4 q6α4 0 0 0 0

q5α5 q6α5 0 0 0 0 0

q6α6 0 0 0 0 0 0


.
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M−1 =



0 0 0 0 0 0 1
q6 α6

0 0 0 0 0 1
q6 α5 − q5

q6
2α6

0 0 0 0 1
q6 α4 − q5

q6
2α5 − β1

q6
3α6

0 0 0 1
q6 α3 − q5

q6
2α4 − β1

q6
3α5 − β2

q6
4α6

0 0 1
q6 α2 − q5

q6 α3 − β1
q6

3α4 − β2
q6

4α5 − β3
q6

5α6

0 1
q6 α − q5

α2q6
2 − β1

α3q6
3 − β2

α4q6
4 − β3

α5q6
5 − β4

q6
6α6

1
q6

− q5

αq6
2 − β1

α2q6
3 − β2

q6
4α3 − β3

α4q6
5 − β4

q6
6α5 + β5

α6q6
6


.

Where

β1 = q4 q6 − q5 2;
β2 = −2 q5 q6 q4 + q5 3 + q3 q6 2;
β3 = q6 3q2 − q6 2q4 2 − 2 q3 q6 2q5 + 3 q5 2q6 q4 − q5 4;
β4 = q6 4q1 + 3 q5 q6 2q4 2 − 2 q4 q6 3q3 − 4 q5 3q6 q4 − 2 q2 q5 q6 3 + 3 q6 2q5 2q3 + q5 5;
β5 = 2 q6 4q5 q1 − q6 3q4 3 + 6 q6 2q5 2q4 2 + 2 q4 q2 q6 4 − 6 q4 q5 q6 3q3 − 5 q4 q5 4q6

+q6 4q3 2 − 3 q5 2q2 q6 3 + 4 q5 3q6 2q3 + q5 6;

The other matrix that appear in the gain of estimation−θM−1d−1
θ S−1

1 C ′ are given by :

dθ =



1 0 0 0 0 0 0
0 1

θ 0 0 0 0 0
0 0 1

θ2 0 0 0 0
0 0 0 1

θ3 0 0 0
0 0 0 0 1

θ4 0 0
0 0 0 0 0 1

θ5 0
0 0 0 0 0 0 1

θ6


. S−1

1 C ′ =



C7
1

C7
2

C7
3

C7
4

C7
5

C7
6

C7
6


.

The system [9] can be exponentially estimated by the following dynamical system :



˙̂
X0 = −α0X̂0 +

∑6
i=1 filiX̂i −

∑6
i=0 piX̂iX̂0 − θP0(θ)(

∑6
i=0qiX̂i − Y )

˙̂
X1 = αX̂0 − (α1 + q1E)X̂1 − θP1(θ)(

∑6
i=0qiX̂i − Y )

˙̂
X2 = αX̂1 − (α2 + q2E)X̂2 − θP2(θ)(

∑6
i=0qiX̂i − Y )

˙̂
X3 = αX̂2 − (α3 + q3E)X̂3 − θP3(θ)(

∑6
i=0qiX̂i − Y )

˙̂
X4 = αX̂3 − (α4 + q4E)X̂4 − θP4(θ)(

∑6
i=0qiX̂i − Y )

˙̂
X5 = αX̂4 − (α5 + q5E)X̂5 − θP5(θ)(

∑6
i=0qiX̂i − Y )

˙̂
X6 = αX̂5 − (α6 + q6E)X̂6 − θP6(θ)(

∑6
i=0qiX̂i − Y )

Y = q1X1 + q2X2 + q3X3 + q4X4 + q5X5 + q6X6

[10]
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where
P0(θ) = θ6C7

7
q6 α6 ;

P1(θ) = θ5C7
6

q6 α5 − θ6C7
7q5

q6
2α6 ;

P2(θ) = θ4C7
5

q6 α4 − q5 θ5C7
6

q6
2α5 − β1θ6C7

7
q6

3α6

P3(θ) = θ3C7
4

q6 α3 − q5 θ4C7
5

q6
2α4 − β1θ5C7

6
q6

3α5 − β2θ6C7
7

q6
4α6 ;

P4(θ) = θ2C7
3

q6 α2 − q5 θ3C7
4

q6
2α3 − β1θ4C7

5
q6

3α4 − β2θ5C7
6

q6
4α5 − β3θ6C7

7
q6

5α6 ;

P5(θ) = θ C7
2

q6 α −
q5 θ2C7

3
α2q6

2 − β1θ3C7
4

α3q6
3 − β2θ4C7

5
α4q6

4 − β3θ5C7
6

α5q6
5 − β4θ6C7

7
q6

6α6 ;

P6(θ) = 7
q6
− q5 θ C7

2
αq6

2 − β1θ2C7
3

α2q6
3 − β2θ3C7

4
q6

4α3 − β3θ4C7
5

α4q6
5 − β4θ5C7

6
q6

6α5 + β5θ6C7
7

α6q6
7 ) ;

4. Results and Discussion

One considers here a population with five stages age (n=4) :
Stage0 represents the biomass of juvenile ; stage1 represents the young adults biomass
without reproduction and cannibalism ; the stages2,3 and4 are adults biomass with the
same term of predation and the same proportion on the female mature but have different
reproduction rate (l2 ≤ l3 ≤ l4).

The system [1] forn = 4 is given by :



Ẋ0 = −α0X0 +
∑4

i=1 filiXi −
∑4

i=0 piXiX0

Ẋ1 = αX0 − (α1 + q1E)X1

Ẋ2 = αX1 − (α2 + q2E)X2

Ẋ3 = αX2 − (α3 + q3E)X3

Ẋ4 = αX3 − (α4 + q4E)X4

Y = q1X1 + q2X2 + q3X3 + q4X4

[11]

The inverse of the state transformation matrixM is expressed as :

M−1 =



0 0 0 0 1
q4 α4

0 0 0 1
q4 α4 − q3

q2
4 α4

0 0 1
q4 α2 − q3

q2
4 α3 − (q2 q4−q3

2)
q3
4 α4

0 1
q4 α − q3

q2
4 α2 − (q2 q4−q2

3 )
q3
4 α3 − (q2

4 q1−2q4 q2 q3+q3
3 )

q4
4 α

4

1
q4

− q3

q2
4 α1 − (q2 q4−q2

3 )
q3
4 α2 − (q2

4 q1−2q4 q2 q3+q3
3 )

q4
4 α

3 δ3


Where

δ3 = (q3
3 q1−3q2

3 q4 q2+q3 q2
4 q1+q4

3 +q2
2 q2

4 )
q5
4 α4
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The system [11] can be exponentially estimated by the following dynamical system :

˙̂
X0 = −α0X̂0 +

∑4
i=1 filiX̂i −

∑4
i=0 piX̂iX̂0 − θQ0(θ)(

∑4
i=0qiX̂i − Y )

˙̂
X1 = αX̂0 − (α1 + q1E)X̂1 − θQ1(θ)(

∑4
i=0qiX̂i − Y )

˙̂
X2 = αX̂1 − (α2 + q2E)X̂2 − θQ2(θ)(

∑4
i=0qiX̂i − Y )

˙̂
X3 = αX̂2 − (α3 + q3E)X̂3 − θQ3(θ)(

∑4
i=0qiX̂i − Y )

˙̂
X4 = αX̂3 − (α4 + q4E)X̂4 − θQ4(θ)(

∑4
i=0qiX̂i − Y )

Y = q1X1 + q2X2 + q3X3 + q4X4

[12]

. Where
Q0(θ) = θ4C5

5
q4a4

Q1(θ) = θ3C5
4

q4a3 − q3 θ4C5
5

q2
4 a4

Q2(θ) = θ2C5
3

q4a2 − q3 θ3C5
4

q2
4 a3 − (q2 q

2
4−q3

2)θ4C5
5

q2
4 a4

Q3(θ) = θ C5
2

q4a
− q3 θ2C5

3
q2
4 a2 − (q2 q4−q2

3 )θ3C5
4

q3
4 a3 − (q2

4 q1−2q4 q2 q3+q3
3 )θ4C5

5

q4
4 a

4

Q4(θ) = 5
q4
− q3 θ C5

2
q2
4 a

− (q2 q4−q2
3 )θ2C5

3

q3
4 a2 − (q2

4 q1−2q4 q2 q3+q3
3 )θ3C5

4

q4
4 a

3 + δ1θ
4C5

5

The results obtained from the observer are illustrated by the example characterized
by the parameter value inspired from literature data [18] given in table1. Here we have
employed for the simulation a constant fishing effortE(t) = E and arbitrary initial states

X(0) = (5, 8, 10, 10, 8)
X̂(0) = (6, 4, 5, 10, 8)

It is shown from figure 2 and 3 that the observer converges asymptotically.
In order to show the effect of high gain, we first simulate the proposed system with the
high gainθ = 15 and the results are presented in figures 2 which give time evolution of
the stage ageXi and theirs estimateŝXi respectively fori = 0 to 4 . Then in Figures 3 we
give the simulation results with the high gainθ = 30. Both the two values ofθ guarantees
asymptotic convergence, and the second one shows good tracking performances than the
first.

stage i 0 1 2 3 4 stage i 0 1 2 3 4
pi 0.2 0 0.1 0.1 0.1 Mi 0.5 0.2 0.2 0.1 0.05
fi 0.5 0.5 0.5 0.5 α 0.8
li 0 10 20 15 αi 1.3 1 1 0.9 0.85
mi 0.5 0.2 0.2 0.2 0.2 Ē 1
qi 0 0 0 0.1 0.15 Xini 5 8 10 10 8
X̂ini 6 4 5 10 8

Tableau 1. simulation data
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Figure 2. Convergence asymptotic of the observer with the high gain θ = 15

14 - El Mazoudi, Mrabti, Elalami

Numéro spécial CARI'06



0 5 10 15 20
5

10

15

20

25

30

X 0(t)

X 0(t)
^

Time (year)

0 5 10 15 20
0

5

10

15

20

25

X 1(t)

X 1(t)
^

Time (year)

0 5 10 15 20
5

10

15

20

X 2(t)

X 2(t)
^

Time (year)
0 5 10 15 20

8

9

10

11

12

13

14

15

X 3(t)

X 3(t)
^

Time (year)

0 5 10 15 20
7

8

9

10

11

12

X 4(t)

X 4(t)
^

Time (year)

Figure 3. Convergence asymptotic of the observer with the high gain θ = 30
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5. Conclusion

We are interested in constructing a simple observer for the harvested fish population
model structured in n ages classes, in an invariant domain using the Lie Derivative trans-
formation. The high gain observer technique is used. The exponential convergence of the
estimation error is proved under certain conditions and the gain of the observer is expli-
citly formulated. The ongoing research work focuses on the stability and the estimation
of the states when stock is subjected to environmental fluctuations and disturbances.
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