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ABSTRACT. In this paper we consider a predator-prey model given by a reaction-diffusion system.
It incorporates the Holling-type-II and a modified Leslie-Gower functional response. We focus on
qualitaive analysis, bifurcation mecanisms and patterns formation.

RÉSUMÉ. Nous considérons un modèle proie-prédateur exprimé sous forme de système de réaction-
diffusion. En absence de diffusion, le système étudié est de type Holling-type-II et la réponse fonc-
tionnelle une forme modifiée du terme de Leslie-Gower. Dans cet article, nous nous intéressons à
l’analyse qualitative des solutions , l’étude des bifurcations et la formation de motifs spatio-temporels.
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1. Introduction

The dynamical relationships between species and their complex properties are at the
heart of many important ecological and biological processes. Predator-prey dynamics are
well-studied in the process of control and conservation of some ecosystems. We assume
that only basic qualitative features of the system are known, namely the invasion of a prey
population by predators. The local dynamics has been studied in [4, 8]. This model incor-
porates the Holling-type-II and a modified Leslie-Gower functional responses. Without
diffusion it reads as,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dH

dT
=

(
a1 − b1H − c1P

H + k1

)
H

dP

dT
=

(
a2 − c2P

H + k2

)
P

(1)

with,

H(0) ≥ 0 , P (0) ≥ 0.

H and P represent the population densities at time T. r1, a1, b1, k1, r2, a2, and k2 are
model parameters assuming only positive values. a1 is the growth rate of preys H . a2

describes the growth rate of predators P . b1 measures the strength of competition among
individuals of species H . c1 is the maximum value of the per capita reduction of H
due to P . c2 has a similar meaning to c1. k1 measures the extent to which environment
provides protection to prey H . k2 has a similar meaning to k1 relatively to the predator
P .
The historical origin and applicability of this model is discussed in details in [4, 8, 15, 16,
6]. The corresponding PDE version has been first done and partially studied in [9].
This paper is organized as follows. In Section 2, we prove the global existence of so-
lutions, we also study the stability of the positive steady states. We investigate complex
pattern formation and spatiotemporal Chaos emergence.

2. Global existence of solutions

The mathematical model we consider here consists of reaction-diffusion equations
which express conservation of predator and prey densities. It has the following form,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂H

∂T
= D1ΔH +

(
a1 − b1H − c1P

H + k1

)
H

∂P

∂T
= D2ΔP +

(
a2 − c2P

H + k2

)
P

(2)

H = H(T, X) and P = P (T, X) are the densities of preys and predators, respectively.
Δ is the laplacian operator. D1 and D2 are the diffusion coefficients of prey and predator
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respectively.
To investigate problem (2), we introduce the following scaling tranformations,

t = a1T, x = X(
a1

D1
)

1
2 , y = Y (

a1

D1
)

1
2 , u(t) =

b1

a1
H(T ), v(t) =

c2b1

a1a2
P (T )

a =
a2c1

a1c2
, b =

a2

a1
, e1 =

b1k1

a1
, e2 =

b1k2

r1
, δ =

D2

D1

We obtain the following equations, for the local model,⎧⎪⎪⎨
⎪⎪⎩

dE1

dt
= E1

(
1 − E1 − aE2

E1 + e1

)
= f(E1, E2)

dE2

dt
= bE2

(
1 − E2

E1 + e2

)
= g(E1, E2)

(3)

and the following system for the spatio-temporal equations :⎧⎪⎪⎨
⎪⎪⎩

∂u(t, x)
∂t

= Δu + u

(
1 − u − av

u + e1

)
= Δu + f(u, v) , x ∈ Ω, t > 0

∂v(t, x)
∂t

= δΔv + bv

(
1 − v

u + e2

)
= δΔv + g(u, v) , x ∈ Ω, t > 0

(4)

We consider the Neumann boundary conditions given by,

∂u

∂ν
=

∂v

∂ν
= 0

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω ⊂ R
n, n = 1, 2, 3.

Here, Ω is a bounded domain, the initial data u0 and v0, are non-negative functions.
∂u

∂ν
and

∂v

∂ν
are respectively the normal derivatives of u and v on ∂Ω.

2.1. Global existence

By standard existence theory, e.g. see [1], [3], and [2], it is not difficult to establish
the local existence of the unique solution (u(., t), v(., t)) of (4) for 0 = t < Tmax,
where Tmax is determined by u0(x) and v0(x). Now we establish the global existence by
proving that for any finite time T , ‖u(., t)‖L∞ , ‖v(., t)‖L∞ are bounded for 0 ≤ t < T .

Theorem 1 For any smooth nonnegative functions u0(x) and v0(x), such that,⎧⎪⎨
⎪⎩

u0(x) ≤ 1

max
Ω̄

(u0(x) + v0(x)) ≤ 5
4

+
(1 + b)2(1 + e2)

4b
,

(5)

system (4) has a unique smooth global solution for t > 0.

Proof. First, it is easily seen that u(x, t) ≥ 0 and v(x, t) ≥ 0 since (0, 0) is a sub-solution
of each equation of (4). We have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(t, x)
∂t

≤ Δu + u (1 − u)

∂u

∂ν
= 0, t > 0

u(x, 0) = u0(x) ≤ u01 ≡ max
Ω̄

u0(x).

(6)
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∂u

∂ν
is the normal derivative of u on ∂Ω.

By the comparison principle, we have u(x, t) ≤ u1(t) ≤ 1,

where, u1(t) =
u01

u01 + (1 − u01)e−t
is the solution of the initial value problem:

{
du1

dt
= u1(1 − u1)

u1(0) = u01 ≤ 1
(7)

From the second equation of system (4) we have

∂v

∂t
= δΔv + bv

(
1 − v

u + e2

)
,

By the comparison principle, we deduce that

∂v

∂t
≤ dE2

dt

where E2 is the solution of the second equation of system (3) satisfying E2(0) = max
Ω̄

v0(x).

Thus by comparison principle and from [4, 8],

∂v

∂t
≤ dE2

dt
+

dE1

dt
.

Let us denote by σ = E2 + E1,
∂v

∂t
≤ dσ

dt

From [4, 8] we have,
dσ

dt
≤ 5

4
+

(1 + b)2(1 + e2)
4b

− σ

Since σ(0) ≤ 5
4 + (1+b)2(1+e2)

4b and by Gronwall lemma we obtain,

σ ≤ 5
4

+
(1 + b)2(1 + e2)

4b

Thus,

v ≤ 5
4

+
(1 + b)2(1 + e2)

4b
.

The proof is complete.

Theorem 2 The domain given by

(i) A ≡ [0, 1] ×
[
0,

5
4

+
(1 + b)2(1 + e2)

4b

]
is a positively invariant region for the

global solutions of system (4).

(ii) The solutions of problem (4), which initial conditions are in R
+ × R

+ converge
towards A.
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Proof. For any initial condition (u0(x), v0(x)) of system (4) we have by comparison
principle,

u ≤ E1, v ≤ E2, with E1(0) = max
Ω

u0(x) and E2(0) = max
Ω

v0(x)

and from ([4, 8]) we have

lim
t→+∞E1(t) ≤ 1,

lim
t→+∞

(
E1(t) + E2(t)

)
≤ 5

4
+

(1 + b)2(1 + e2)
4b

.

This completes the proof

2.2. Stability of steady states

The steady states (u(x), v(x)) of system (4) satisfy,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δu + u

(
1 − u − av

u + e1

)
= 0, x ∈ Ω

δΔv + bv

(
1 − v

u + e2

)
= 0, x ∈ Ω

∂u

∂ν
=

∂v

∂ν
= 0.

(8)

From analysis above and from [4, 9, 8], it is easily seen that system (8) has the following
nonnegative solutions:

S0 = (0, 0)

S1 = (1, 0)

S2 = (0, e2) (9)

S3 = (u∗, v∗) , where (u∗, v∗) is the positive solution of the system⎧⎪⎨
⎪⎩

1 − u∗ − av∗

u∗ + e1
= 0

1 − v∗

u∗ + e2
= 0.

S4 = (u(x), v(x)) , where u(x) and v(x) are two positive functions.

In this section, we are going to investigate the linear stability of the above equilibrium so-
lutions Si of system (8) whose existence has been proved in last section. It is well-known
(see [11]) that the stability question for Si is answered by considering the corresponding
eigenvalue problem for the linearized operator around S i. Let us substitute
(u(x, t), v(x, t)) = Si + W (x, t) = Si + (w1(x, t), w2(x, t)) into system (4) and then
pick up all the terms which are linear in W :

∂W

∂t
= DΔW + L(Si)W, (10)

where
D = diag(1, δ),
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L(u, v) =

(
1 − 2u − ae1v

(u+e1)2 − au
u+e1

bv2

(u+e2)2 b − 2bv
u+e2

)
. (11)

Proposition 1 S0 = (0, 0) is unstable.

Proof. From equation (10), the linearized system of equation (4) around S 0 is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂w1

∂t
= Δw1 + w1, x ∈ Ω

∂w2

∂t
= δΔw2 + bw2, x ∈ Ω

∂w1

∂ν
|∂Ω =

∂w2

∂ν
|∂Ω= 0.

(12)

Now we study the following eigenvalue problem :⎧⎪⎨
⎪⎩

Δw1 + w1 = ηw1, x ∈ Ω
δΔw2 + bw2 = ηw2, x ∈ Ω

∂w1

∂ν
|∂Ω =

∂w2

∂ν
|∂Ω= 0.

(13)

To prove Proposition 1, we need to prove that the largest eigenvalue of system (13) is
positive. Let η be an eigenvalue of system (13) with eigenfunction (w 1, w2). If w1 �≡
0, then η is an eigenvalue of Δ + 1 with homogeneous Neumann boundary condition.
Therefore, η must be real. Similarly, if w2 �≡ 0, η is also real. Hence all eigenvalues
of system (13) are real. Let η1 be the largest eigenvalue of system (13). The principal
eigenvalue λ1 of {

Δw1 + w1 = λw1, x ∈ Ω
∂w1

∂ν
|∂Ω = 0

(14)

is positive and the associated eigenfunction w̃1 > 0. We claim that λ1 is also an eigen-
value of system (13). In fact, we take w2 ≡ 0 then (w1, w2) = (w̃1, 0) satisfies system
(13) with η = λ1. So λ1 > 0 is an eigenvalue of system (13). Therefore we must have
η1 ≥ λ1 > 0. Hence S0 is unstable.

Proposition 2 S1 = (1, 0) is unstable.

Proof.
From (10), the linearized system of (4) around S 1 is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂w1

∂t
= Δw1 − w1 − a

1+e1
w2, x ∈ Ω

∂w2

∂t
= δΔw2 + bw2, x ∈ Ω

∂w1

∂ν
|∂Ω =

∂w2

∂ν
|∂Ω= 0

(15)

Now we study the following eigenvalue problem:⎧⎪⎪⎨
⎪⎪⎩

Δw1 − w1 − a

1 + e1
w2 = ηw1, x ∈ Ω

δΔw2 + bw2 = ηw2, x ∈ Ω
∂w1

∂ν
|∂Ω =

∂w2

∂ν
|∂Ω= 0

(16)
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We need to prove that the largest eigenvalue of system (16) is positive. First, same as in
Proposition 1, all eigenvalues of system (16) are real. Let η1 be the largest eigenvalue of
system (16). Since b > 0, the principal eigenvalue λ1 of{

δΔw2 + bw2 = λw2, x ∈ Ω
∂w2

∂ν
|∂Ω= 0

(17)

is positive and the associated eigenfunction w̃2 > 0. Let us prove that λ1 is also an
eigenvalue of system (16). In fact, we take w̃1 to be the solution of linear problem⎧⎪⎨

⎪⎩
Δw1 − (1 + λ1)w1 =

a

1 + e1
w̃2, x ∈ Ω

∂w1

∂ν
|∂Ω= 0

(18)

then (w1, w2) = (w̃1, w̃2) is a solution of problem (16) with η = λ1. So λ1 > 0 is an
eigenvalue of problem (16). Therefore we must have η 1 ≥ λ1 > 0. Hence S1 is unstable.

Proposition 3
If e1 > ae2 then S2 = (0, e2) is unstable. If e1 < ae2 then S2 = (0, e2) is stable.

Proof.
From equation (10), the linearized system of equation (4) around S 2 is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂w1

∂t
= Δw1 + (1 − ae2

e1
)w1, x ∈ Ω

∂w2

∂t
= δΔw2 + bw1 − bw2, x ∈ Ω
∂w1

∂ν
|∂Ω=

∂w2

∂ν
|∂Ω= 0

(19)

Now we study the following eigenvalue problem :⎧⎪⎪⎨
⎪⎪⎩

Δw1 + (1 − ae2

e1
)w1 = ηw1, x ∈ Ω

δΔw2 + bw1 − bw2 = ηw2, x ∈ Ω
∂w1

∂ν
|∂Ω=

∂w2

∂ν
|∂Ω= 0

(20)

We need to prove that the largest eigenvalue of system (20) is positive if e 1 > ae2. First,
same as before, all eigenvalues of problem (20) are real. Let η 1 be the largest eigenvalue
of problem (20). Since e1 > ae2, the principal eigenvalue λ1 of⎧⎪⎨

⎪⎩
Δw1 + (1 − ae2

e1
)w1 = λw1, x ∈ Ω

∂w1

∂ν
|∂Ω= 0

(21)

is positive and the associated eigenfunction w̃1 > 0. Let us prove that λ1 is also an
eigenvalue of problem (20). In fact, we take w̃2 > 0 to be the solution of linear problem{

δΔw2 − (b + λ1)w2 = −bw̃1, x ∈ Ω
∂w2

∂ν
|∂Ω= 0

(22)
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then (w1, w2) = (w̃1, w̃2) satisfies problem (20) with η = λ1. So λ1 > 0 is an eigenvalue
of problem (20). Therefore we must have η1 ≥ λ1 > 0. Hence S2 is unstable.
Let (w̃1, w̃2) be the principal eigenfunction of problem (20) corresponding to the largest
eigenvalue η1. If w̃1 �≡ 0, then η1 is also an eigenvalue of problem (21). Then we must
have η1 < 0 if e1 < ae2 because, in this case, the largest eigenvalue of problem (21) is
λ1 = 1 − ae2

e1
< 0.

If w̃1 ≡ 0, then we have w̃2 �≡ 0. Therefore η1 is an eigenvalue of

{
δΔw2 − bw2 = λw2, x ∈ Ω

∂w2

∂ν
|∂Ω= 0

(23)

Obviously the largest eigenvalue of problem (23) is −b < 0. Therefore we also have
η1 < 0. Thus we know that if λ1 = 1 − ae2

e1
< 0, then S2 = (0, e2) is stable.

Proposition 4 Assume that a ≥ 1
2 and 0 < e1 < ē1 with

ē1 = −(a + 1) +
√

(a + 1)2 + 2a(1 + 2a) − 1.

Then (u∗, v∗) is stable.

Proof. Let φj denote the j-th eigenfunction of −Δ on Ω with homogenous Neumann
boundary condition. That is,{ −Δφj = λjφj , in Ω

∂φj

∂ν = 0, on ∂Ω,
(24)

for scalar λj satisfying 0 = λ0 < λ1 < λ2...
From (10), the linearized system of (4) around (u ∗, v∗) is

∂W

∂t
= DΔW + ΣW, (25)

where D = diag(1, δ), and

Σ =
(

A B
Q R

)
=

(
1 − 2u∗ − e1(1−u∗)

u∗+e1
− au∗

u∗+e1

b −b

)
. (26)

We expand the solution W of (25) via

W =
∞∑

j=0

zj(t)φj(x), (27)

where each zj(t) ∈ R
2. Substituting (27) into (25) and equating the coefficients of each

φj , we have
dzj

dt
= Cjzj,

where Cj is the matrix
Cj = Σ − λjD.
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Now the solution (u∗, v∗) is stable if and only if each zj(t) decays to zero. This is
equivalent to the condition that each Cj has two eigenvalues with negative real parts. The
eigenvalues η1,2 of Cj are determined by

η2 − η[A + R − λj(1 + δ)] + λ2
jδ − λj(R + δA) + AR − BQ = 0.

Therefore the fact that each Cj has two eigenvalues with negative real parts is guaranteed
by

A + R − λj(1 + δ) < 0, (28)

and

λ2
jδ − λj(R + δA) + AR − BQ > 0. (29)

We have R = −b < 0. Therefore, observing that λj ≥ 0 and B < 0, (28) and (29) hold
if

A ≤ 0, and Q > 0.

Therefore to have A ≤ 0, we need

2u∗ − 1 + e1 ≥ 0

Let us recall that, u∗ =
1
2

(
1 − a − e1 + Δ

1
2

)
, where Δ = (a+ e1− 1)2− 4(ae2− e1).

Consequently, we need that 1 − a − e1 + Δ
1
2 − 1 + e1 ≥ 0

Thus,

(a + e1 − 1)2 − 4(ae2 − e1) − a2 ≥ a

e2
1 + (2a + 2)e1 − 2a(1 + 2e2) + 1 ≥ 0.

This is true from the assumptions of the proposition, hence A ≤ 0. Obviously Q > 0,
and this completes the proof.

3. Complex pattern formation and spatiotemporal chaos

3.1. Local bifurcation in a one dimensional space

In this section, we present our numerical results in one dimensional space. We suppose
that the two species diffuse on a line, Ω ⊂ R.
At boundaries we use the zero-flux condition. Let us consider the two following intial
conditions :

u(0, x) = u0 for L1u < x < L2u, otherwise u(0, x) = 0

v(0, x) = v0 for L1v < x < L2v, otherwise v(0, x) = 0 (30)

The initial domain, where the prey moves, is larger than that of the predator for making,
during the simulation, the impact of the boundaries as small as possible. Thus, we assume,

0 < L1u ≤ L1v < L2v ≤ L2u < L
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Figure 1. System (4) density of spatial distribution, the parameters and initial data are
fixed as given in (31) and (32) and b = 0.256

We choose the parameters so that the populations do not disappear when the growth or
the decrease degree of prey, (that is (birth quantity of prey)/(death quantity of prey)) and
the predator vary. In the following of this section, the parameters are fixed as follows,

L = 100, L1u = 40, L1v = 48, L2v = 56, L2u = 60, u0 = 1.0, v0 = 0.1 (31)

e1 = 0.08, e2 = 0.01, a = 3.0, δ = 1. (32)

Figure 1 is an example of species spatial distribution, observed for b = 0.256, at (a) t =
250, (b) t = 750 and (c) t = 1200. With these fixed parameters, and these initial
distributions, there are two patches at the beginning and the end of the field which are
formed at the first moments of simulation. Between these patches the densities remain
constant with respect to the time parameter.
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Figure 2. A cascade of bifurcations leading to the onset of chaotic oscillations in the phase
plane (U,V ) for different values of b : (a) b = 0.197, (b) b = 0.203, (c) b = 0.23, (d) b = 0.26.
The other parameters are given in (31) and (32)
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Figure 3. Bifurcation diagram when the parameter b varies.

To explore the properties of the population dynamics as a whole we estimate the species
size of prey and predator by,

U(t) =
∫ L

0

u(t, x)dx and V (t) =
∫ L

0

v(t, x)dx (33)

The aim is to study the properties of the oscillations of the dynamics of the populations
when one varies the control parameter, the choice of this parameter is then important.
We will choose b as control parameter since it determines the ratio of two factors which
are the birth rates of the prey and the predator. Therefore, while b varies between 0.195
and 0.26, other parameters will be fixed as in equation (32) and initial conditions are
given as in (31). For each value of b system (4) is solved with the initial conditions given
in equation (32). We leave a rather large transitory time, so that the total quantities of
the species U and V are in the attractor domain. We start with b = 0.26 and make b
decreasing. For b = 0.26, the system presents an attractor focus in (U, V ), see figure
2(d). The same phase plane is obtained as long as b is higher than 0.255. We have a first
bifurcation when this ratio is equal to 0.255. When b belongs to [0.208 , 0.255] the system
exhibits periodic attractors, see figure 2(c). A second bifurcation leads to the dynamics
of the species in quasi-periodic attractors, for b between 0.208 and 0.199, see figure 2(b).
Finally for b between 0.199 and 0.195, it becomes chaotic, see figure 2(a). These results
are summarized by the bifurcation diagram given in figure 3.

3.2. Complex pattern formation in two dimensional space

Biological systems are in general far-from-equilibrium systems. Self-organization can
operate via symmetry-breaking instabilities. Structures such as target patterns and spiral
waves are observed in a wide set of chemical and biological system, see [12, 13]. For
model (4), we observe spiral waves, see figure 4. Another kind of spatial pattern is spatial
chaos, in which concentration waves change aperiodically through space, as in turbulence.
These structures and spatiotemporal phenomena are emergent and arise from very simple
causes, in the sense that they are macroscopic patterns emerging from simple coupling
interaction and local diffusion rules. The last has huge implications for our understanding
of complexity. In other words, they are not programmed in the equations structure, see
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[5, 10, 14, 13].
In this last subsection we study the problem in the limited field Ω = [0 , 900]× [0 , 900]
of R

2. We are interested in the emerging structures when the homogeneous equilibrium
(u∗, v∗) of system (4) is unstable and the species diffuse in the same way. Let us remark

Figure 4. Spatial spiral waves type distribution of species at t = 1200 for respectively the
prey and the predator. Initial conditions are given in (35). b = 0.042, e 2 = 0.2, the other
Parameters are given in (36)

that, if (u∗, v∗) is unstable for equation (3) it becomes also unstable for (4) as soon as
the coefficient of diffusion is equal to one. In the case of Turing instability, developed
in ([13, 17]), all the eigenvalues of (f(u, v), g(u, v)) Jacobian matrix at (u ∗, v∗) have
negative real parts. A necessary condition to observe a manifestation of instability is that
predator must diffuse faster than prey. In this part, we suppose that the prey and the
predator diffuse in the same way (δ = 1). The global emerging structures are given only
by the local interactions of the functional response (f(u, v), g(u, v)). We start from an
initial condition rather close to (u∗, v∗), having a low disparity of the space distribution.
These initial conditions have been chosen as,

u(0, x, y) = u∗ − 2 10−7(x − 0.1y − 231)(x − 0.1y − 632) (34)

v(0, x, y) = v∗ − 3 10−5(x − 450) − 1.2 10−4(y − 150) (35)

we now set the parameters so that the the positive homogeneous solution is unstable,

e1 = 0.3, e2 = 0.1, b = 0.02, a = 1.1, δ = 1 (36)

We observe the following time evolution of spatial distributions. The left figures are the
evolution of the prey spatial distribution and the right are the predator’s.

Spatial distribution of species at t = 400

Camara - Aziz Alaoui - 120

Numéro spécial Claude Lobry



t = 800

t = 3000

t = 10000
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