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ABSTRACT. In a chemostat, transient oscillations are often experimentally observed during cell growth.
The aim of this paper is to propose simple autonomous models which are able (or not) to generate these
oscillations, and to investigate them analytically. Our point of view is based on a simplification of the cell
cycle in which there are two states (mature and immature) with the transfer between the two dependent
on the available resources. We built two similar models, one with cell biomass and the other with cell
number density. We prove that the first one oscillates, but not the second. This paper is dedicated to
Claude Lobry, who helped us to build a first version of these models.

RÉSUMÉ. On observe parfois des oscillations pendant la croissance de cellules dans un chémostat.
Nous proposons ici deux modèles autonomes simples de croissance cellulaire (en dimension trois) ba-
sés sur des hypothèses réalistes, structurés en stades (les cellules matures et les cellules immatures)
: le premier modèle est écrit en nombre de cellules, et peut présenter des oscillations. Le deuxième
modèle est écrit en biomasse, et n’admet pas d’oscillations à cause de la conservation de la masse.
Nous étudions les deux modèles. Cet article est dédié à Claude Lobry, qui a participé aux premières
étapes de l’écriture des modèles.
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1. Introduction

A chemostat is a laboratory apparatus, composed of a reservoir fed by a constant liquid
flow, used for experiments of controlled growth of micro-organisms. The inflow feeds the
culture with biochemicals called substrates (e.g. nitrate). In the vessel, microorganisms
grow consuming these nutrients, then the outflow retrieves substrates and cells present in
the reservoir. Usually, only one substrate is limiting in order to evaluate its influence on cell
growth. This idealized and controlled apparatus allows reproducible experiments and gives
a very good approximation of specific realistic biological mechanisms (see for example
[Sciandra et al.(2003)]).

Unstructured mathematical models, meaning that only one global variable is used to
represent the microorganisms, are often employed to describe cell growth in a chemo-
stat. The most representative one has been proposed by [Monod(1942)]. His approach
was based on the interaction between microorganisms, more precisely bacteria, and sub-
strates dissolved in the liquid medium. Although his model was successfully used to fit
data [Monod(1942)], its predictions in perturbed conditions are far from satisfactory. In
particular considering Saccharomyces cervisae [Porro et al.(1988)] or phytoplankton cells
(e.g. Chlamydomonas reinhardii, [Nisbet and Gurney(1982)]), it is not able to represent os-
cillatory transients in cell number as observed in chemostat experiments (see section 2.2).
A new modeling approach is therefore required.

One idea is to consider different uptake and growth rate functions in order to obtain
more complex dynamics [Arino et al(2003)]. Another one is to use structured models. The
population is then described by several variables such as the age or the size. But since it
is difficult to identify the age of a cell, variables representing physiological states are of-
ten used to describe cell population [Lemesle and Gouzé(2005)]. Different models can be
obtained by the choice of a structured variable: if this variable is continuous, a model con-
sisting of partial differential equations is obtained; if this variable is discrete, the model
results in a system of ordinary differential equations. In [Pascual and Caswell(1997)],
the structured variable is continuous and represents the cell maturation along its cycle.
Moreover, the cell number density is considered and the cell cycle is divided into two
parts: in the first part, the cell needs external resources to maturate and in the second
part, the cell does not need anything coming from the external environment. The authors
[Pascual and Caswell(1997)] demonstrate using numerical simulations the existence of so-
lutions exhibiting oscillations in cell number. In [Cazzador(1991)], a discrete variable rep-
resenting two phases of the cell maturation (unbudded and budded cells) is chosen, the
biomass concentrations are the variables, and numerical simulations show autonomous os-
cillatory behaviour.

We propose in the present paper two models inspired by both of the above models and
an analytical proof of the oscillatory behavior for one of them. Our global aim is to obtain a
simple unforced growth model, retaining the main qualitative biological hypotheses of the
more complex model [Pascual and Caswell(1997)] and giving the same qualitative results
(concerning the oscillations).
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2. The chemostat

The chemostat is a continuous device where microorganisms consume a nutrient to
grow. This nutrient is provided by a constant inflow, and a blend of nutrient and of mi-
croorganisms is retrieved in the constant outflow. In this paper, we denote by x the mi-
croorganisms concentration, s the nutrient concentration, V the volume of the chemostat,
sin the limiting nutrient inflow, q the constant flow passing through the chemostat and the
dilution rate d = q

V .This description leads to the mass balance model :

{
ẋ = μ(s)x − dx
ṡ = −αμ(s)x − ds + dsin

(1)

where μ(s) is the specific growth rate function, α the growth yield coefficient. Different
kinds of functions exist in the literature; the Monod function μ(s) = μms

s + k
is the most

classical one. This classical model is not structured in a sense that it doesn’t take into ac-
count the cell cycle stages. Its mathematical behavior is simple in the sense that every orbit
converges towards the nontrivial equilibrium, if it exists.

A partial differential equations oscillatory model

In the literature, one of the most useful structured variables for describing cell growth is
the size of the cell [Metz and Diekmann(1986)]. However, in the case of cell division, this
variable is not specific enough since the size of a new born cell is difficult to determine.
Therefore in [Pascual and Caswell(1997)] a new variable describing the position along the
cell cycle is used. Moreover, to specify the cell division, the cell number density is con-
sidered. A dynamical system given by partial differential equations based on the Monod
hypotheses is derived as follows:

∂x
∂t

+ ν0s
K + s

∂x
∂p

= −(d + b(p))x for p ∈ [p0; pc]

∂x
∂t

+ νc
∂x
∂p

= −(d + b(p))x otherwise

ds
dt

= d(sin − s) − Vms
K + sxtot

where s is the substrate concentration, xtot =
∫

p x(t, p)dp the total population, p gives
the position along the cell cycle, b(p) the division rate, d the dilution rate, s in the inflow
substrate concentration. The variable p is normalized so that p0 = 0 and the average
cell divides at p = 1. The cell cycle is divided into two parts: in the first part the cell
needs external resources to grow and in the second part the cell does not need anything
coming from the external environment. These two segments are separated by a transition
point denoted pc. Units of all the variables and parameters of this model can be found in
[Pascual and Caswell(1997)].

Cell division is described by a boundary condition for the newborn cell at p = 0

νcx(0, t) = 2
∫

p

b(p)x(p, t)dp

where each cell divides into two immature cells.
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Proposition 1 (see [Pascual and Caswell(1997)]) For some parameters values (using the
numerical method known as the escalator boxcar train [de Roos(1988)]), an oscillatory
behavior is observed. The disappearance of oscillations depends on the value of d or s in.

Let us remark that some local mathematical results ensure the existence of exponentially
periodic behavior [Webb(1995)] for such a structured model of cell population dynamics
without cell division (the division rate could easily be incorporated into the analysis). Yet,
the analysis of such models (especially the global analysis of non linear partial differential
models) is often rather difficult or even intractable.

Since our purpose is to capture the essential qualitative mechanisms of the cell cycle, we
want to build models easy to study analytically. To do this, an approach based on ordinary
differential equations is followed and two structured model are built under the same main
assumptions as the above system.

3. A non conservative size structured model

3.1. The model

Two main states are considered in our model. The first state corresponds to the imma-
ture phase and the second one to the mature one. In each state, the cell number density is
considered: using this unit the division of the cell (meaning that one mature cell gives two
immature cells) can be easily described.

The transfer rate between the two states is given by different maturation and division
rates. The maturation rate depends on the limiting substrate, but the division rate does not.
The uptake nutrient rate function is different from the maturation rate meaning that the
energy used for growth is assumed to be different from the energy furnished by consump-
tion of substrate. Thus the model does not have a conservative form. All these biological
phenomena are described in Figure 1.

Division:
Mature x2

k−→ 2x1 Immature
Maturation:
Immature x1

g(s)−→ x2 Mature
Nutrient uptake:
Substrate s

ν(s)−→ Mature x2 + Immature x1

Figure 1. (left) Two steps representing the cell cycle: substrate dependence and indepen-
dence. (right) Biochemical diagram of the biological mechanisms: division at rate k, matu-
ration at rate g(s) and nutrient uptake at rate ν(s) .

This leads to the model :

ẋ1 = −g(s)x1 + 2kx2 −dx1

ẋ2 = g(s)x1 − kx2 −dx2

ṡ = −ν(s)(x1 + x2) −ds + dsin

Biological part Physical part

(2)
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where s is the limiting substrate concentration (mass/l3), x1 is the number density of the
immature cells (number/l3), x2 the number density of the mature cells (number/l 3); k > 0
is the division rate (1/T ), g(s) the maturation rate (1/T ), ν(s) the uptake rate function
(mass/(T ×number)); d is the dilution rate (1/T ) and s in the input substrate concentration
(mass/l3).

We choose initial conditions which have a biological meaning x1(0) > 0, x2(0) > 0
and s ≥ 0.

As in the Monod model, some mathematical and qualitative hypotheses on the specific
maturation rate g(s) and the uptake rate ν(s) have to be made.

Hypotheses H 3.1

(a) g(s) ≥ 0.

(b) g(s) is an increasing function.

(c) There exists s and s such that g ′(s) � 1 for s ≤ s ≤ s.

(d) g(s) is bounded.

(e) g(0) = 0.

(f) ν(0) = 0 and ν(.) is C1, bounded, positive and increasing.

(g) The domain of study of the system (2) is R
3
+.

The function g(s) which is assumed to be sigmoïdal (see Figure 2) can have the follow-

ing form g(s) = αsa

kg + sa with a > 1. Let us remark that the unit of α is 1/T and the unit

of kg is the same as sa. This formulation for the maturation rate means that cells need to
have enough substrate to maturate, with a threshold effect. This is often observed in cell
growth experiments (A. Sciandra, personal communication 2006). Moreover, the fact that
the slope g′(s) � 1 means that we are free to choose the slope as large as desired: this
feature will be useful in the convergence proofs. The function ν(s) can have the following
form ν(s) = νms

kn + s
where the unit of νm is mass/(T × number) and the unit of kn is the

same as s.

Figure 2. Maturation rate function.

We add two useful hypotheses:
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Hypothesis H 3.2 k − d > 0 and
d(k + d)
k − d

< g(sin).

Hypothesis H 3.3 s < s∗ < s

The first hypothesis ensures the existence and the uniqueness of a non-trivial equi-
librium point. The second one implies that g ′(s∗) � 1, meaning that the slope of the
maturation function is very stiff at equilibrium.

3.2. Existence of steady states, boundedness and an invariant set for
model (2)

The set of study of the system (2) is R
3
+ since it is of biological interest.

Proposition 2 Under (H3.2) two steady states exist for the system (2): (0, 0, s in) referred
to as the washout point (i.e. whole population disappearance), (x ∗

1, x
∗
2, s

∗) referred to as
the non trivial point (i.e. population persists).

Proof: Computing the steady states, we find that :

• (0, 0, sin) is always a solution.

• a positive equilibrium (x∗
1, x

∗
2, s

∗) such that x∗
1 > 0, x∗

2 > 0, s∗ > 0 exists and is
unique. Indeed,

g(s∗) = d(k + d)
k − d has a unique solution under the hypothesis (H3.2) and because g is

strictly increasing.

Let us remark that g(sin) > g(s∗), and since g is strictly increasing sin > s∗. �

Proposition 3 Under the hypotheses (H3.1), the closed domain of study R
3
+ is invariant

for (2).

Proof: Computing the dynamical equations ẋ1, ẋ2 and ṡ at x1 = 0, x2 = 0 and s = 0
respectively and showing that the edges are repulsive, we can prove the invariance of the
set R

3
+ for the system (2). �

Remark 1 Consider the subset U = R
2
+ × [0, sin]. We can prove that this set is invariant

for the system (2). Indeed, computing the dynamical equation ṡ at s in, we obtain ṡ(s=sin) =
−ν(sin)(x1 + x2) < 0.

Proposition 4 In the domain R
3
+, the state variables are bounded.

Proof: Let c > 0 be defined such that for all s ≥ 0, c >
g(s)
ν(s) (see Remark 2). Let

V = x1 + 2x2 + cs be a positive definite function. Then we obtain:

V̇ = −dV + (g(s) − cν(s))x1 − ν(s)x2 + dcsin < −dV + dcsin

so that
V (t) < (V (0) − csin)e−dt + csin.

Then for V (0) > csin, V (t) < V (0) and for V (0) ≤ csin, V (t) ≤ csin. Thus the
variables x1, x2, s are bounded. �
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Remark 2 The existence of a positive constant c is always possible even near s = 0.
Indeed since g(s) is a sigmoïdal function and ν(s) a Monod like function, near 0, g(s) ∼
ksa and ν(s) ∼ k′s with k > 0, k′ > 0, a > 1. Thus

g(s)
ν(s) exists on R+ and can be

bounded.

Using the hypothesis (H3.2), we prove that, for the washout point (0, 0, s in). one eigen-
value is positive and the two others are negative. We can conclude that the washout point
is unstable. Moreover, the following proposition can be used to prove persistence of the
positive solutions (cf [Lemesle and Gouzé(2008)] for more details).

Proposition 5 The only eigenvector intersecting R
3
+ is the vector associated with the pos-

itive eigenvalue. The stable manifold of the washout equilibrium does not intersect the
positive orthant.

3.3. Global analysis

To study the stability of the non trivial point when it exists, we make the change of
variables z = ln(x1 + x2), u = x1

x1 + x2
, s = s. Because of the dissipativity and the

uniform persistence of the original system, the new system is well defined in the open set
D1 = R × R

∗
+ × R

∗
+. Moreover, there exists a compact subset B ∈ D1 which attracts all

solutions starting in D1. From a biological point of view, we remark that this change of
variables amounts to taking the total number of cells, and the proportion of mature cells, as
the new variables.

We obtain the new dynamical system:

ż = k(1 − u) − d
u̇ = −g(s)u + k(1 − u)(2 − u)
ṡ = −ν(s)ez − ds + dsin

(3)

with its associated Jacobian matrix

J =

⎛
⎝ 0 −k 0

0 −g(s) − k − 2k(1 − u) −g′(s)u
−ν(s)ez 0 −ν′(s)ez − d

⎞
⎠

This new system is competitive in D1 since all the off-diagonal terms of the Jacobian
matrix are non positive [Smith(1995)]. Moreover this system is irreducible in D 1 since J
is an irreducible matrix.

Proposition 6 Under the hypothesis (H3.3), the non trivial equilibrium (z ∗, u∗, s∗) is un-
stable. Moreover, the stable manifold is one-dimensional.

cf [Lemesle and Gouzé(2008)].

To prove the existence of a stable limit cycle, the following theorem [Zhu and Smith(1994)]
using competitive property is applied:

Theorem 1 (see [Zhu and Smith(1994)]) Let ẋ = f(x) be a dissipative, irreducible and
competitive system in an open subset D ⊂ R

3. Moreover, let D be a p−convex system of
R

3. Assume that D contains a unique equilibrium point ξ ∗ and det(J∗) < 0. Then either
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(i) ξ∗ is stable, or

(ii) there exists a non trivial orbitally stable periodic orbit in D.

Let us denote the non trivial steady state (x∗
1, x

∗
2, s

∗) = ξ and consider (3) in the open
set D1.

Proposition 7 Under the hypotheses (H3.2), a non trivial stable periodic orbit exists for
(3) in D1.

Proof: To prove this proposition, let us verify the hypotheses of the above theorem 1.
We compute the Jacobian matrix J at ξ.

(a) The system is dissipative, irreducible and competitive using proposition 4.

(b) D1 is p−convex by definition and contains a unique equilibrium point ξ ∗.

(c) Since J∗ has two non negative eigenvalues, ξ∗ is unstable and moreover det(J ∗) <
0 (see proof of proposition 6).

Thus since all the hypotheses of theorem 1 are verified, a non trivial stable positive orbit
exists for (3), and therefore for system (2). �

Remark 3 (The dilution rate as a bifurcation parameter) An important hypothesis en-
suring the existence of the limit cycle is g ′(s∗) � 1. Recall that the non trivial point is
defined such that:

g(s∗) =
d(k + d)
k − d

= f(d)

where f(d) is an increasing function of d. When the dilution rate d varies, s∗ can leave
the interval [s, s] and g ′(s∗) may become smaller (see Figure 3). Thus for higher or lower
dilution rates, the limit cycle may disappear and the non trivial equilibrium becomes stable
or disappears.

3.4. Simulations

We choose for parameter values k = 0.6 days−1, sin = 10 μmol × L−1,

g(s) = s18

1 + s18 (α = 1 days−1, kg = 1 μmol × L−1) and ν(s) = s
1 + s (νm =

1 μmol×106cells×days−1, kn = 1 μmol×L−1), which verify (H3.3) for d = 0.02 days−1,
0.1 days−1 and 0.25 days−1. These values correspond to classical common values usually
taken in growth phytoplankton chemostat experiments (A. Sciandra, private communica-
tions). Notice that the exponent 18 put in the formula of g(s) has to be large so that all the
mathematical hypotheses are verified. Notice also that the unit of s is μmol × L−1 and the
unit of x1 and x2 is 106cells × L−1.

A limit cycle can be observed for d = 0.1 days−1 which disappears for higher dilution
values. Indeed, an approximate study of the function g(s) and its derivative provide s ∼
0.9 μmol × L−1, s ∼ 1 μmol × L−1; then g(0.9) = 0.07 days−1, g(1) = 0.5 days−1

and therefore if 0.07 � f(d) � 0.5, there is no limit cycle. With the chosen values we
have f(0.02) ∼ 0.02, f(0.1) ∼ 0.14 and f(0.25) ∼ 0.6. Thus for d = 0.02 days−1 and
d = 0.25 days−1, the limit cycle disappears (see Figure 3).
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Figure 3. Phase diagram of the model given by equation (2) illustrating disappearance of
the limit cycle for different values of d (d = 0.02 days−1, d = 0.1 days−1, d = 0.25 days−1)

4. A conservative size structured model

As in the previous section, we consider two stages in the cell cycle. But the variables
of this model are the biomasses, and not the cell number density as above.

4.1. Description of the model

The model is therefore similar to the first model, but has to check mass balance con-
straints: a mature cell does not give two immature cells (as above), but the biomass of the
mature cells results in a larger biomass of immature cells, with consumption of substrate.

That leads to the dynamical system :
⎧⎨
⎩

ẋ1 = −μ1(s)x1 + (1 + β)μ2(s)x2 − dx1

ẋ2 = (1 + α)μ1(s)x1 − μ2(s)x2 − dx2

ṡ = −αμ1(s)x1 − βμ2(s)x2 − ds + dsin

(4)

where x1 is the biomass concentration of the immature cells, x2 the biomass concentra-
tion of the mature cells; μ1(s) is the growth rate function, μ2(s) the division rate function;
αμ1(s), βμ2(s) the intake rates of x1 and x2, respectively.

Hypotheses H 4.1 μ1(s) 	= μ2(s)

μ1(s) and μ2(s) positive increasing C1 functions with μ1(0) = μ2(0) = 0.

4.2. Study of the model

Two steady states exist for this model: the washout steady state x1 = 0, x2 = 0, s = sin

and the normal steady state x∗
1 > 0, x∗

2 > 0, 0 < s∗ < sin.

Proposition 1 The system (4) has no periodic orbit.

First, we prove the following lemma.

Lemma 1 The positive orthant R
3+ is invariant for the system (4).
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Sketch of the proof. The ideas are the same as before. First we prove the repulsivity
of the faces of the orthant R

3+, without (0, 0, sin). Then, we prove the instability of the
washout steady state considering the evaluated Jacobian matrix :

Jwo =

⎛
⎝ −μ1(sin) − d (1 + β)μ2(sin) 0

(1 + α)μ1(sin) −μ2(sin) − d 0
−αμ1(sin) −βμ2(sin) −d

⎞
⎠

and using the hypotheses 4.1 and the existence of the normal steady state ( d 2 +
(μ1(s∗)+μ2(s∗))d−μ1(s∗)μ2(s∗)(α+β+αβ) = 0 and μi(s∗) < μi(sin) for i = 1, 2).�

Moreover, we need the lemma:

Lemma 2 The mass conservation principle is verified : x1 + x2 + s tends to sin when t
tends to infinity.

Proof. Let us consider the variable z = x1 + x2 + s. Then we obtain the equation :
ż = −dz + dsin. Thus, we get the result. �

As we want to study the asymptotic behavior of the system, only two variables are
needed to describe the model using the above lemma. Then, we can apply the Bendixson
criterion.

Theorem 2 If on a simply connected region D ⊆ R
2 the trace of the associated Jacobian

matrix is not identically zero and does not change sign, then the dynamical system has not
closed orbit lying entirely in D.

Proof See [Guckenheimer(1983)]. �

Thus, we study the sub-system in R
2 :

{
ẋ2 = (1 + α)μ1(s)(sin − s − x2) − μ2(s)x2 − dx2 = f1(x2, s)
ṡ = −αμ1(s)(sin − s − x2) − βμ2(s)x2 − ds + dsin = f2(x2, s)

(5)

with the associated Jacobian matrix

J =

„ −(1 + α)μ1(s) − μ2(s) − d −(1 + α)μ1(s) + (1 + α)μ′
1(s)(sin − s − x2)

αμ1(s) − βμ2(s) αμ1(s) − αμ′
1(s)(sin − s − x2) − βμ′

2(s)x2 − d

«

As the trace is negative and does not change sign in a simply connected region, we can
conclude that there is no closed orbit for the system (4). �

5. Comments and Conclusion

These two simple ODE models are based on the same biological hypotheses as the PDE
model [Pascual and Caswell(1997)]. Indeed, these PDE models have a richest behavior
but their study is difficult. Thus, the simplicity of the proposed models and their easy
mathematical study are advantages. These two kind of models which describe the structure
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in two stages, the growth and the transfer between the two stages, do not give similar results.
The first one (the variables are the cell number density) has an oscillatory behaviour, quite
similar to the model of [Pascual and Caswell(1997)]. The second model is built with the
cell biomass, and the oscillatory behaviour is precluded by the mass conservation. It would
be interesting to study if such a model with more stages (at least three) could oscillate.
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