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ABSTRACT. Feller diffusion is a continuous branching process. The branching property tells us that
for t > 0 fixed, when indexed by the initial condition, it is a subordinator (i. e. a positive–valued
Lévy process), which is fact is a compound Poisson process. The number of points of this Poisson
process can be interpreted as the number of individuals whose progeny survives during a number of
generations of the order of t × N , where N denotes the size of the population, in the limit N → ∞.
This fact follows from recent results of Bertoin, Fontbona, Martinez [1]. We compare them with older
results of de O’Connell [7] and [8]. We believe that this comparison is useful for better understanding
these results. There is no new result in this presentation.

RÉSUMÉ. La diffusion de Feller est un processus de branchement continu. La propriété de bran-
chement nous dit que à t > 0 fixé, indexé par la condition initiale, ce processus est un subordinateur
(processus de Lévy à valeurs positives), qui est en fait un processus de Poisson composé. Le nombre
de points de ce processus de Poisson s’interprète comme le nombre d’individus dont la descendance
survit au cours d’un nombre de générations de l’ordre de t × N , où N désigne la taille de la popu-
lation, dans la limite N → ∞. Ce fait découle de résultats récents de Bertoin, Fontbona, Martinez
[1]. Nous le rapprochons de résultats plus anciens de O’Connell [7] et [8]. Ce rapprochement nous
semble aider à mieux comprendre ces résultats. Cet article ne contient pas de résultat nouveau.
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1. Introduction

Consider the simplest continuous branching process, i. e. a Feller diffusion :

Xt(x) = x+ α

∫ t

0

Xs(x)ds+
∫ t

0

√
βXsdBs,

where {Bt, t ≥ 0} is a standard Brownian motion and x > 0. It is easy to check (see
section 5 below) that this process possesses the branching property, namely

Xt(x+ y)
(d)
= Xt(x) +X ′

t(y),

whereX ′
t(y) is a copy ofXt(y) which is independent ofXt(x). One can in fact construct

(see Lemma 5.2 below) a version of the two parameter process {Xt(x), x ≥ 0, t ≥ 0}
such for all x, y > 0, Xt(x + y) − Xt(x) is independent of {Xt(z), 0 ≤ z ≤ x}. In
other words, for each fixed t > 0, x→ Xt(x) is an IR+–valued process with independent
and stationary increments. It is in fact a compound Poisson process, i. e. the sum of a
finite number of jumps (see section 7). At the same time, for fixed x > 0, t→ Xt(x) is a
continuous process.

It is well known that, as stated in section 4, Xt(x) is the limit as N → ∞ of XN
t :=

N−1ZN
[Nt], where for each N, k ∈ IN, ZN

k denotes the size of the k–th generation of a
population starting with ZN

0 = [Nx], and the offsprings of the various individuals are i.
i. d., with mean 1 + α/N and variance β. Because of the division by N , Xt(x) does
not count individuals. This would be impossible, since in the limit there are intuitively
constantly infinitely many individuals which are born, and infinitely many who die.

However, if we consider in the population ZN
· the number of those individuals in the

generation 0 whose progeny is still alive in generation [Nt], that number does not explode
(due to the fact that the mean number of offsprings per individual is 1+α/N , and that we
look at a generation of order N ), and converges precisely to the number of jumps of the
Levy process (called also a subordinator, since it is increasing) {y → Xt(y), 0 < y < x},
while the contribution of the progeny of each of those in the population XN

t converges
to the size of the corresponding jump. This means that if consider only those individuals
whose progeny lives long enough, we should not divided the number of individuals byN ,
if we want a non trivial limit. The same is true for the number of those individuals whose
progeny never goes extinct.

The aim of this article is to explain those points in detail, by presenting both fifteen
years old results by Neil O’Connell (see [7] and [8]), and very recent ones by Jean Bertoin,
Joaquim Fontbona and Servet Martinez (see [1]). There is no new result in this paper, and
in particular nothing is due to the author, except for the way things are presented.

2. Bienaymé–Galton–Watson processes

Consider a Bienaymé–Galton–Watson process, i. e. a process {Zn, n ≥ 0} with
values in IN such that

Zn+1 =
Zn∑
k=1

ξn,k,
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Continuous branching process 213

where {ξn,k, n ≥ 0, k ≥ 1} are i. i. d. r. v.’s with as joint law that of ξ whose generating
function f satisfies

µ := IE[ξ] = f ′(1) = 1 + r, and 0 < q := f(0) = IP(ξ = 0) < 1.

We call f the probability generating function (p. g. f. in short) of the Bienaymé–Galton–
Watson process {Zn, n ≥ 0}. In order to exclude trivial situations, we assume that
IP(ξ = 0) = f(0) > 0, and that IP(ξ > 1) > 0. This last condition implies that
s→ f(s), which is increasing on [0, 1], is a strictly convex function.

The process is said to be subcritical if µ < 1 (r < 0), critical if µ = 1 (r = 0), and
supercritical if µ > 1 (r > 0). We shall essentially be interested in the supercritical case.

First note that the process {Zn, n ≥ 0} is a Markov process, which has the so–called
branching property, which we now formulate. For x ∈ IN, let IPx denote the law of the
Markov process {Zn, n ≥ 0} starting from Z0 = x. The law of {Zn, n ≥ 0} under
IPx+y is the same as that of the sum of two independent copies of {Zn, n ≥ 0}, one
having the law IPx, the other the law IPy .

We next define
T = inf{k > 0;Zk = 0},

which is the time of extinction. We first recall the

Proposition 2.1 Assume that Z0 = 1. Then the probability of extinction IP(T < ∞) is
one in the subcritical and the critical cases, and it is the unique root η < 1 of the equation
f(s) = s in the supercritical case.

PROOF. Let f◦n(s) := f ◦ · · · ◦ f(s), where f has been composed n times with itself. It
is easy to check that f◦n is the generating function of the r. v. Zn.

On the other hand, clearly {T ≤ n} = {Zn = 0}. Consequently

IP(T <∞) = lim
n

IP(T ≤ n)

= lim
n

IP(Zn = 0)

= lim
n
f◦n(0).

Now the function s → f(s) is continuous, increasing and strictly convex, starts from
q > 0 at s = 0, and ends at 1 at s = 1. If µ = f ′(1) ≤ 1, then limn f

◦n(0) = 1. If
however f ′(1) = 1 + r > 1, then there exists a unique 0 < η < 1 such that f(η) = η,
and it is easily seen that η = limn f

◦n(0).

Note that the state 0 is absorbing for the Markov chain {Zn, n ≥ 0}, and it is acces-
sible from each state. It is then easy to deduce that all other states are transient, hence
either Zn → 0, or Zn → ∞, as n → ∞. In other words, the population tends to infinity
a. s. on the set {T = ∞}.

Denote σ2 = Var(ξ), which is assumed to be finite. We have the

Lemma 2.2

IEZn = µnIEZ0

IE[Z2
n] =

µ2n − µn

µ2 − µ
σ2IEZ0 + µ2nIE(Z2

0 ).
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PROOF. We have

IEZn = IE

IE

Zn−1∑
k=1

ξn−1,k|Zn−1


= µIEZn−1

= µnIEZ0,

and

IE[Z2
n] = IE

IE


Zn−1∑

k=1

ξn−1,k

2

|Zn−1




= µ2IE[Zn−1(Zn−1 − 1)] + (σ2 + µ2)IEZn−1

= µ2IE[Z2
n−1] + σ2IEZn−1

= µ2IE[Z2
n−1] + σ2µn−1IEZ0.

Consequently an := µ−2nIE[Z2
n] satisfies

an = an−1 + σ2µ−(n+1)IEZ0

= a0 + σ2IEZ0

n∑
k=1

µ−(k+1).

Let now Z∗n denote the number of individuals in generation n with an infinite line of
descent. Under IP1, {T = ∞} = {Z∗0 = 1}. ξ denoting a r. v. whose law is that of the
number of offsprings of each individual, let ξ∗ ≤ ξ denote the number of those offsprings
with an infinite line of descent. Let q := 1− q. We have the

Proposition 2.3 Assume that Z0 = 1.

1) Conditional upon {T = ∞}, {Z∗n, n ≥ 0} is again a Bienaymé–Galton–
Watson process, whose p. g. f. is given by

f∗(s) = [f(q + qs)− q]/q.

2) Conditional upon {T < ∞}, the law of {Zn, n ≥ 0} is that of a Bienaymé–
Galton–Watson process, whose p. g. f. is given by

f̃(s) = f(qs)/q.

3) For all 0 ≤ s, t ≤ 1,

IE
[
sξ−ξ∗tξ

∗
]

= f(qs+ qt)

IE
[
sZn−Z∗ntZ

∗
n

]
= f◦n(qs+ qt).
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Continuous branching process 215

4) Conditional upon {T = ∞}, the law of {Zn, n ≥ 0} is that of {Z∗n, n ≥ 0}
to which we add individuals with finite line of descent, by attaching to each individual of
the tree of the Z∗n’s N independent copies of a Bienaymé–Galton–Watson tree with p. g.
f. f̃ , where

IE[sN |Z∗] =
Dnf(qs)
Dnf(q)

,

whereDnf denotes the n–th derivative of f , and n is the number of sons of the considered
individual in the tree Z∗.

PROOF. Let us first prove the first part of 3. Consider on the same probability space
mutually independent r. v.’s {ξ, Yi, i ≥ 1}, where the law of ξ is given as above, and
IP(Yi = 1) = q = 1 − IP(Yi = 0), ∀i ≥ 1. Note that q is the probability that any given
individual has an infinite line of descent, so that the joint law of (ξ − ξ∗, ξ∗) is that of(

ξ∑
i=1

(1− Yi),
ξ∑

i=1

Yi

)
.

IE
[
sξ−ξ∗tξ

∗
]

= IE
[
IE
[
sξ−ξ∗tξ

∗
|ξ
]]

= IE
[
s

Pξ
i=1(1−Yi)t

Pξ
i=1 Yi

]
= IE

[
IE[s1−Y1tY1 ]ξ

]
= IE[(qs+ qt)ξ]

= f(qs+ qt).

A similar computation yields the second statement in 3. Indeed

IE
[
sZn−Z∗ntZ

∗
n

]
= IE

[
IE
(
sZn−Z∗ntZ

∗
n |Zn−1

)]
= IE

[(
IE
[
sξ−ξ∗tξ

∗
])Zn−1

]
= f◦(n−1)(f(qs+ qt))

We next prove 1 as follows

IE
(
tξ
∗
|ξ∗ > 0

)
=

IE(1ξ−ξ∗tξ
∗
; ξ∗ > 0)

IP(ξ∗ > 0)

=
IE(1ξ−ξ∗tξ

∗
)− IE(1ξ−ξ∗tξ

∗
; ξ∗ = 0)

IP(ξ∗ > 0)

=
f(q + qt)− f(q)

q

=
f(q + qt)− q

q
.
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We now prove 2. It suffices to compute

IE
(
sξ|ξ∗ = 0

)
= IE

(
sξ−ξ∗ |ξ∗ = 0

)
=
f(sq + 0q)

q
.

Finally we prove 4. All we have to show is that

IE[sξ−ξ∗ |ξ∗ = n] =
Dnf(qs)
Dnf(q)

.

This follows from the two following identities

n!IE[sξ−ξ∗ ; ξ∗ = n] = qnDnf(qs+ qt)|t=0

= qnDnf(qs),

n!IP(ξ∗ = n) = qnDnf(qs+ qt)|s=1,t=0

= qnDnf(q).

3. A continuous time Bienaymé–Galton–Watson process

Consider a continuous time IN–valued branching process Z = {Zk
t , t ≥ 0, k ∈ IN},

where t denotes time, and k is the number of ancestors at time 0. Such a process is a
Bienaymé–Galton–Watson process in which to each individual is attached a random vec-
tor describing its lifetime and its numbers of offsprings. We assume that those random
vectors are i. i. d.. The rate of reproduction is governed by a finite measure on IN,
satisfying µ(1) = 0. More precisely, each individual lives for an exponential time with
parameter µ(IN), and is replaced by a random number of children according to the prob-
ability µ(IN)−1µ. Hence the dynamics of the continuous time jump Markov process Z is
entirely characterized by the measure µ. We have the

Proposition 3.1 The generating function of the process Z is given by

IE
(
sZk

t

)
= ψt(s)k, s ∈ [0, 1], k ∈ IN,

where
∂ψt(s)
∂t

= Φ(ψt(s)), ψ0(s) = s,

and the funcion Φ is defined by

Φ(s) =
∞∑

n=0

(sn − s)µ(n), s ∈ [0, 1].
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Continuous branching process 217

PROOF. Note that the process Z is a continuous time IN–valued jump Markov process,
whose infinitesimal generator is given by

Qn,m =


0, if m < n− 1,
nµ(m+ 1− n), if m ≥ n− 1 and m 6= n,

−nµ(IN), if m = n.

Define f : IN → [0, 1] by f(k) = sk, s ∈ [0, 1]. Then ψt(s) = Ptf(1). It follows from
the backward Kolmogorov equation for the process Z (see e. g. Theorem 7.6 in [9]) that

dPtf(1)
dt

= (QPtf)(1)

∂ψt(s)
∂t

=
∞∑

k=0

Q1,kψt(s)k

=
∞∑

k=0

µ(k)ψt(s)k − ψt(s)
∞∑

k=0

µ(k)

= Φ(ψt(s)).

The branching process Z is called immortal if µ(0) = 0.

4. Convergence to a continuous branching process

To each integer N , we associate a Bienaymé–Galton-Watson process {ZN
n , n ≥ 0}

starting from ZN
0 = N . We now define the continuous time process

XN
t := N−1ZN

[Nt].

We shall let the p. g. f. of the Bienaymé–Galton-Watson process depend upon N in such
a way that

IE[ξN ] = f ′N (1) = 1 +
α

N

Var[ξN ] = β,

where α ∈ IR, β > 0, and we assume that the sequence of r. v.’s {ξ2N , N ≥ 1} is
uniformly integrable. Let t ∈ IN/N and ∆t = N−1. It is not hard to check that

IE[XN
t+∆t −XN

t |XN
t ] = αXN

t ∆t,

IE[(XN
t+∆t −XN

t )2|XN
t ] = βXN

t ∆t+ α2(XN
t )2(∆t)2.

As N →∞, XN ⇒ X , where {Xt, t ≥ 0} solves the SDE

dXt = αXtdt+
√
βXtdBt, t ≥ 0. (1)

A detailed proof of the convergence appear in [10], see also [3].
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5. The continuous branching process

Denote by {Xt(x), x > 0, t > 0} the solution of the SDE (1), starting from x at time
t = 0, i. e. such that X0(x) = x. For x > 0 and y > 0 consider {Xt(x), t > 0}
and {X ′

t(y), t > 0}, where {X ′
t(y), t > 0} is a copy of {Xt(y), t > 0} which is

independent of {Xt(x), t > 0}. Let Y x,y
t = Xt(x) +X ′

t(y). We have

dY x,y
t = α(Xt(x) +X ′

t(y))dt+
√
βXt(x)dBt +

√
βX ′

t(y)dB
′
t

= αY x,y
t dt+

√
βY x,y

t dWt,

Y x,y
0 = x+ y

where {Bt, t ≥ 0} and {B′
t, t ≥ 0} are two mutually independent standard Brownian

motions, and {Wt, t ≥ 0} is also a standard Brownian motion. Then clearly {Y x,y
t , t ≥

0} and {Xt(x + y), t ≥ 0} have the same law. This shows that {Xt(x), x > 0, t > 0}
possesses the branching property.

This property entails that for all t, λ > 0, there exists u(t, λ) such that

IE [exp(−λXt(x))] = exp[−xu(t, λ)]. (2)

From the Markov property of the process t → Xt(x), we deduce readily the semigroup
identity

u(t+ s, λ) = u(t, u(s, λ)).

We seek a formula for u(t, λ). Let us first get by a formal argument an ODE satisfied by
u(·, λ). For t > 0 small, we have that

Xt(x) ' x+ αxt+
√
βxBt,

hence
IE
(
e−λXt(x)

)
' exp (−λx[1 + αt− βλt/2]) ,

and
u(t, λ)− λ

t
' αλ− β

2
λ2.

Assuming that t→ u(t, λ) is differentiable, we deduce that

∂u

∂t
(0, λ) = αλ− β

2
λ2.

This, combined with the semigroup identity, entails that

∂u

∂t
(t, λ) = αu(t, λ)− β

2
u2(t, λ), u(0, λ) = λ. (3)

It is easy to solve that ODE explicitly, and we now prove rigorously that u is indeed the
solution of (3), without having to go through the trouble of justifying the above argument.
Let γ = 2α/β, γt = γ(1− e−αt)−1.

Lemma 5.1 The function (t, λ) → u(t, λ) which appears in (2) is given by the formula

u(t, λ) =
γeαt

eαt − 1 + γ/λ
=

λγt

λ+ γte−αt
, (4)

and it is the unique solution of (3).
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Continuous branching process 219

PROOF. It suffices to show that {Mx
s , 0 ≤ s ≤ t} defined by

Mx
s = exp

(
− γeα(t−s)

eα(t−s) − 1 + γ/λ
Xs(x)

)
is a martingale, which follows from Itô’s calculus.

The function Ψ : IR+ → IR given by

Ψ(r) =
β

2
r2 − αr

is called the branching mechanism of the continuous branching process X .

For each fixed t > 0, x → Xt(x) has independent and homogeneous increments
with values in IR+. We shall consider its right–continuous modification, which then is a
subordinator. Its Laplace exponent is the function λ → u(t, λ), which can be rewritten
(like for any subordinator, see the Levy–Kintchin formula in e. g. [4]) as

u(t, λ) = d(t)λ+
∫ ∞

0

(1− e−λr)Λ(t, dr),

where d(t) ≥ 0 and
∫∞
0

(r ∧ 1)Λ(t, dr) < ∞. Comparing with (4), we deduce that
d(t) = 0, and

Λ(t, dr) = p(t) exp(−q(t)r)dr,

where p(t) = γ2
t e
−αt, q(t) = γte

−αt. (5)

We have defined the two parameter process {Xt(x); x ≥ 0, t ≥ 0}. Xt(x) is the
population at time t made of descendants of the initial population of size x at time 0. We
may want to introduce three parameters, if we want to discuss the descendants at time t
of a population of a given size at time s. The first point, which is technical but in fact
rather standard, is that we can construct the collection of those random variables jointly
for all 0 ≤ s < t, x ≥ 0, so that all the properties we may reasonably wish for them are
satisfied. More precisely, following [2], we have the

Lemma 5.2 On some probability space, there exists a three parameter process

{Xs,t(x), 0 ≤ s ≤ t, x ≥ 0},

such that

1) For every 0 ≤ s ≤ t, Xs,t = {Xs,t(x), x ≥ 0} is a subordinator with Laplace
exponent u(t− s, ·).

2) For every n ≥ 2, 0 ≤ t1 < t2 < · · · < tn, the subordinators
Xt1,t2 , . . . , Xtn−1,tn

are mutually independent, and

Xt1,tn
(x) = Xtn−1,tn

◦ · · · ◦Xt1,t2(x), ∀x ≥ 0, a. s.

3) The processes {X0,t(x), t ≥ 0, x ≥ 0} and {Xt(x), t ≥ 0, x ≥ 0} have the
same finite dimensional distributions.
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Now consider {Xs,t(x), x ≥ 0} for fixed 0 ≤ s ≤ t. It is a subordinator with Laplace
exponent (the functions p and q are given in (5))

u(t− s, λ) = p(t− s)
∫ ∞

0

(1− e−λr)e−q(t−s)rdr.

We shall give a probabilistic description of the process {Xs,t(x), x ≥ 0} in a further
section. For now on, we shall write Xt(x) for X0,t(x).

Let us first study the large time behaviour of the process Xt(x). Consider the extinc-
tion event

E = {∃t > 0, s. t. Xt(x) = 0}.

We define again γ = 2α/β.

Proposition 5.3 If α ≤ 0, IPx(E) = 1 a.s. for all x > 0. If α > 0, IPx(E) = exp(−xγ)
and on Ec, Xt(x) → +∞ a. s.

PROOF. If α ≤ 0, {Xt(x), t ≥ 0} is a positive supermartingale. Hence it converges a.
s. The limit r. v. X∞(x) takes values in the set of fixed points of the SDE (1), which is
{0,+∞}. But from Fatou and the supermartingale property,

IE( lim
t→∞

Xt(x)) ≤ lim
t→∞

IE(Xt(x)) ≤ x.

Hence IP(X∞(x) = +∞) = 0, and Xt(x) → 0 a. s. as t→∞.

If now α > 0, it follows from Itô’s formula that

e−γXt(x) = e−γx − γ

∫ t

0

e−γXs(x)
√
βXs(x)dBs,

hence {Mt = e−γXt(x), t ≥ 0} is a martingale with values in [0, 1], hence it converges a.
s. as t → ∞. Consequently Xt(x) = −γ log(Mt) converges a. s., and as above its limit
belongs to the set {0,+∞}. Moreover

IP(E) = lim
t→∞

IP(Xt(x) = 0)

= lim
t→∞

IE[exp{−xu(t,∞)}]

= lim
t→∞

exp
{
−x γeαt

eαt − 1

}
= exp{−xγ}.

It remains to prove that

IP(Ec ∩ {Xt → 0}) = 0. (6)

Define the stopping times

τ1 = inf{t > 0, Xt(x) ≤ 1}, and for n ≥ 2,

τn = inf{t > τn−1 + 1, Xt(x) ≤ 1}.
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Continuous branching process 221

On the set {Xt(x) → 0, as t→∞}, τn <∞, ∀n. Define for n ≥ 1

An = {τn+1 <∞, Xτn+1(x) > 0}.

For all N > 0,

IP(Ec ∩ {Xt → 0}) ≤ IP(∩N
n=1An)

≤ IE

(
N∏

n=1

IP(An|Fτn
)

)
≤ (IP(X1(1) > 0))N

→ 0, as N →∞,

where we have used the strong Markov property, and the fact that

IP(An|Xτn
) ≤ IP(X1(1) > 0).

6. Back to Bienaymé–Galton–Watson

6.1. The individuals with an infinite line of descent

Let us go back to the discrete model, indexed by N . For each t ≥ 0, let Y N
t denote

the number of individuals in the population ZN
[Nt] with an infinite line of descent. Let us

describe the law of Y N
0 . Each of theN individuals living at time t = 0 has the probability

1 − qN of having an infinte line of descent. It then follows from the branching property
that the law of Y N

0 is the binomial law B(N, 1 − qN ). It remains to evaluate qN , the
unique solution in the interval (0, 1) of the equation fN (x) = x. Note that

f ′′N (1) = IE[ξN (ξN − 1)] = β − α

N
+
( α
N

)2

.

We deduce from a Taylor expansion of f near x = 1 that

qN = 1− 2α
Nβ

+ ◦
(

1
N

)
, 1− qN =

2α
Nβ

+ ◦
(

1
N

)
.

Consequently, Y N
0 converges in law, as N → ∞, towards a Poisson distribution with

parameter γ = 2α/β.

6.2. The individuals whose progeny survives during tN generations

The result of the last section indicates that if we consider only the prolific individuals,
i. e. those with an infinite line of descent, in the limit N → ∞, we should not divide by
N , also ZN

[Nt] → +∞, as N → ∞, for all t ≥ 0. If now we consider those individuals
whose progeny is still alive at time tN (i. e. those whose progeny contributes to the
population at time t > 0 in the limit as N →∞), then again we should not divide by N .
Indeed, we have the (we use again the notation γ = 2α/β)
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Theorem 6.1 Under the assumptions from the beginning of section 4, with the notation

γt = γ
(
1− e−αt

)−1
,

1) for N large,

IP1(ZN
[Nt] > 0) =

γt

N
+ ◦

(
1
N

)
,

and

2) as N →∞,

IE1

(
exp[−λZN

[Nt]/N ]|ZN
[Nt] > 0

)
→ γte

−αt

λ+ γte−αt
.

PROOF OF 1 : It follows from the branching property that

IP1(ZN
[Nt] > 0) = 1− IP1(ZN

[Nt] = 0)

= 1− IPN (ZN
[Nt] = 0)1/N

= 1− IP1(XN
t = 0)1/N .

But

log
[
IP1(XN

t = 0)1/N
]

=
1
N

log IP1(XN
t = 0)

=
1
N

log IP1(Xt = 0) + ◦
(

1
N

)
.

From (2) and (4), we deduce that

IP1(Xt = 0) = lim
λ→∞

exp[−u(t, λ)]

= exp(−γt).

We then conclude that

IP1(ZN
[Nt] > 0) = 1− exp

[
−γt

N
+ ◦

(
1
N

)]
=
γt

N
+ ◦

(
1
N

)
.

PROOF OF 2 :

IE1 exp[−λZN
[Nt]/N ] =

(
IEN exp[−λZN

[Nt]/N ]
)1/N

' (IE1 exp[−λXt])
1/N

= exp
(
− λγt

N(λ+ γte−αt)

)
,
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since again from (2) and (4),

IE1 exp(−λXt) = exp
(
− λγt

λ+ γte−αt

)
.

But

IE1

(
exp[−λZN

[Nt]/N ]|ZN
[Nt] > 0

)
=

IE1

(
exp[−λZN

[Nt]/N ];ZN
[Nt] > 0

)
IP1(ZN

[Nt] > 0)

=
IE1

(
exp[−λZN

[Nt]/N ]
)
− 1 + IP1(ZN

[Nt] > 0)

IP1(ZN
[Nt] > 0)

= 1 +
IE1

(
exp[−λZN

[Nt]/N ]
)
− 1

IP1(ZN
[Nt] > 0)

' 1− λ

λ+ γte−αt
,

from which the result follows.

7. Back to the continuous branching process

Note that the continuous limit {Xt} has been obtained after a division by N , so that
Xt no longer represents a number of individuals, but a sort of density. The point is that
there are constantly infinitely many births and deaths, most individuals having a very short
live. If we consider only those individuals at time 0 whose progeny is still alive at some
time t > 0, that number is finite. We now explain how this follows from the last Theorem,
and show how it provides a probabilistic description of the subordinator which appeared
at the end of section 4.

The first part of the theorem tells us that for large N , each of the N individuals from
the generation 0 has a progeny at the generation [Nt] with probability γt/N + ◦(1/N),
independently of the others. Hence the number of those individuals tends to the Poisson
law with parameter γt. The second statement says that those individuals contribute to Xt

a quantity which follows an exponential random variable with parameter γte
−αt. This

means that

X0,t(x) =
Zx∑
i=1

Yi,

where Zx, Y1, Y2, . . . are mutually independent, the law of Zx being Poisson with param-
eter xγt, and the law of each Yi exponential with parameter γte

−αt.

Taking into account the branching property, we have more precisely that {X0,t(x), x ≥
0} is a compound Poisson process, the set of jump locations being a Poisson process with
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intensity γt, the jumps being i. i. d., exponential with parameter γte
−αt. We can recover

from this description the formula for the Laplace exponent of Xt(x). Indeed

IE exp

(
−λ

Zx∑
i=1

Yi

)
=

∞∑
k=0

(
IEe−λY1

)k
IP(Zx = k)

= exp
(
−x λγt

λ+ γte−αt

)
.

We can now describe the genealogy of the population whose total mass follows the
SDE (1).

Suppose thatZ ancestors from t = 0 contribute respectively Y1, Y2, . . . , YZ toX0,t(x).
Consider now X0,t+s(x) = Xt,t+s(X0,t(x)). From the Y1 mass at time t, a finite num-
ber Z1 of individuals, which follows a Poisson law with parameter Y1γs, has a progeny at
time t+s, each one contributing an exponential r. v. with parameter γse

−αs toX0,t+s(x).

Fo any y, z ≥ 0, 0 ≤ s < t, we say that the individual z in the population at time t is
a descendant of the individual y from the population at time s if y is a jump location of
the subordinator x→ Xs,t(x), and moreover

Xs,t(y−) < z < Xs,t(y).

Note that ∆Xs,t(y) = Xs,t(y)−Xs,t(y−) is the contribution to the population at time t
of the progeny of the individual y from the population at time s.

8. The prolific individuals

We want to consider again the individuals with an infinite line of descent, but directly
in the continuous model. Those could be defined as the individuals such that ∆X0,t(y) >
0, for all t > 0. However, it should be clear from Proposition 5.3 that an a. s. equivalent
definition is the following

Definition 8.1 The individual y from the population at time s is said to be prolific if
∆Xs,t(y) →∞, as t→∞.

For any s ≥ 0, x > 0, let

Ps(x) = {y ∈ [0, Xs(x)]; ∆Xs,t(y) →∞, as t→∞},

Ps(x) = card(Ps(x)).

Define the conditional probability, given extinction

IPe = IP(·|E)

= exγIP(· ∩ E)

It follows from well–known results on conditioning of Markov processes, see [4] or [10],
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Continuous branching process 225

Proposition 8.2 Under IPe, there exists a standard Brownian motion {Be
t , t ≥ 0} such

that X·(x) solves the SDE

Xt(x) = x− α

∫ t

0

Xs(x)ds+
∫ t

0

√
βXs(x) dBe

s .

The branching mechanism of X under IPe is given by

Ψe(r) =
β

2
r2 + αr = Ψ(γ + r).

Next we identify the conditional law of Xt(x), given that Pt(x) = n, for n ≥ 0.

Proposition 8.3 For any Borel measurable f : IR → IR+,

IE[f(Xt(x))|Pt(x) = n] =
IEe[f(Xt(x))(Xt(x))n]

IEe[(Xt(x))n]
.

PROOF. Recall that the law of P0(x) is the Poisson distribution with parameter xγ.
Clearly from the Markov property of X·(x), the conditional law of Pt(x), given Xt(x),
is the Poisson law with parameter Xt(x)γ. Consequently for λ > 0, 0 ≤ s ≤ 1,

IE
(
exp[−λXt(x)]sPt(x)

)
= IE (exp[−λXt(x)] exp[−γ(1− s)Xt(x)])

= IE (exp[−(λ+ γ)Xt(x)] exp[γsXt(x)])

=
∞∑

n=0

(sγ)n

n!
IE (exp[−(λ+ γ)Xt(x)](Xt(x))n) .

Now define
h(t, λ, x, n) = IE (exp[−λXt(x)]|Pt(x) = n) .

Note that

IP(Pt(x) = n) = IE [IP(Pt(x) = n|X(t, x))]

=
γn

n!
IE
(
e−γXt(x)(Xt(x))n

)
.

Consequently, conditioning first upon the value of Pt(x), and then using the last identity,
we deduce that

IE
(
exp[−λXt(x)]sPt(x)

)
=

∞∑
n=0

(sγ)n

n!
h(t, λ, x, n)IE (exp[−γXt(x)](Xt(x))n) .

Comparing the two series, and using the fact that, onFt, IPe is absolutely continuous with
respect to IP, with density exγ exp[−γXt(x)], we deduce that for all n ≥ 0,

h(t, λ, x, n) =
IE (exp[−(λ+ γ)Xt(x)](Xt(x))n)

IE (exp[−γXt(x)](Xt(x))n)

=
IEe (exp[−λXt(x)](Xt(x))n)

IEe [(Xt(x))n]
.
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To any probability law ν on IR+ with finite mean c, we associate the so–called law of
its size–biased picking as the law on IR+ c−1yν(dy). We note that the conditional law of
Xt(x), given that Pt(x) = n + 1 is obtained from the conditional law of Xt(x), given
that Pt(x) = n by sized–biased picking.

We now describe the law of {Pt(x), t ≥ 0}, for fixed x > 0. Clearly this is a
continuous time B–G–W process as considered in section 3 above. We have the

Theorem 8.4 For every x > 0, the process {Pt(x), t ≥ 0} is an IN–valued immor-
tal Branching process in continuous time, with initial distribution the Poisson law with
parameter xγ, and reproduction measure µP given by

µP (n) =

{
α, if n = 2,
0, if n 6= 2.

In other words, {Pt(x), t ≥ 0} is a Yule tree with the intensity α.

REMARK. — I
f we call ΦP the Φ–function (with the notations of section 3) associated to the measure
µP , we have in terms of the branching mechanism Ψ of X

ΦP (s) = α(s2 − s) =
1
γ

Ψ(γ(1− s)).

Note that Ψe describes the branching process X , conditioned upon extinction, while ΦP

describes the immortal part of X . ΦP depends upon the values Φ(r), 0 ≤ r ≤ γ, while
Ψe depends upon the values Φ(r), γ ≤ r ≤ 1. The mapping Ψ → (Ψe,ΦP ) should be
compared with the mapping f → (f̃ , f∗) from Proposition 2.3. PROOF. The process P
inherits its branching property from that of X . The immortal character is obvious. P0(x)
is the number of individuals from the population at time 0, whose progeny survives at
time t, for all t > 0. Hence it is the limit as t→∞ of the law of the number of jumps of
{Xt(y), 0 ≤ y ≤ x}, which is the Poisson distribution with parameter xγ. This coincides
with the result in the subsection 6.1, as expected.

Now from the Markov property of X , the conditional law of Pt(x), given Xt(x), is
the Poisson law with parameter Xt(x)γ. Consequently

IE
(
sPt(x)

)
= IE (exp[−(1− s)γXt(x)])

= exp[−xu(t, (1− s)γ)].

Moreover, if we call ψt(s) the generating function of the continuous time B–G–W process
{Pt(x), t ≥ 0}, we have that

IE
(
sPt(x)

)
= IE

(
ψt(s)P0(x)

)
= exp[−xγ(1− ψt(s))].

Comparing those two formulas, we deduce that

1− ψt(s) =
1
γ
u(t, (1− s)γ).
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Taking the derivative with respect to the time variable t, we deduce from the differential
equations satisfied by ψt(·) and by u(t, ·) the identity

ΦP (ψt(s)) =
1
γ

Ψ(u(t, (1− s)γ)) =
1
γ

Ψ(γ(1− ψt(s))).

Consequently

ΦP (r) =
1
γ

Ψ(γ(1− r)).

The measure µP is then recovered easily from ΦP .

We next note that the pair (Xt(x), Pt(x)), which we now write (Xt(x), Pt(x)), enjoys
the Branching property, in the following sense. For every x > 0, n ∈ IN, denote by
(X·(x, n), P·(x, n)) a version of the process {(Xt(x), Pt(x)), t ≥ 0}, conditioned upon
P0(x) = n. What we mean here by the branching property is the fact that for all x, x′ > 0,
n, n′ ∈ IN,

(X·(x+ x′, n+ n′), P·(x+ x′, n+ n′))

has the same law as

(X·(x, n), P·(x, n)) + (X ′
· (x

′, n′), P ′· (x
′, n′)),

where the two processes (X·(x, n), P·(x, n)) and (X ′
· (x

′, n′), P ′· (x
′, n′)) are mutually

independent.

We now characterize the joint law of (Xt(x, n), Pt(x, n)).

Proposition 8.5 For any λ ≥ 0, s ∈ [0, 1], t ≥ 0, x > 0, n ∈ IN,

IE
(
exp[−λXt(x, n)]sPt(x,n)

)
= exp[−x(u(t, λ+ γ)− γ)]

(
u(t, λ+ γ)− u(t, λ+ γ(1− s))

γ

)n

.

PROOF. First consider the case n = 0. We note that X·(x, 0) is a version of the con-
tinuous branching process conditioned upon extinction, i. e. with branching mechanism
Ψe(r) = Ψ(γ + r), while Pt(x, 0) ≡ 0. Hence

IE
(
exp[−λXt(x, 0)]sPt(x,0)

)
= exp[−x(u(t, λ+ γ)− γ)]. (7)

Going back to the computation in the beginning of the proof of Proposition 8.3, we have

IE
(
exp[−λXt(x)]sPt(x)

)
= IE (exp[−(λ+ γ(1− s))Xt(x)])

= exp[−xu(t, λ+ γ(1− s))].

Since the law of P0(x) is Poisson with parameter xγ,

IE
(
exp[−λXt(x)]sPt(x)

)
=

∞∑
n=0

e−xγ (xγ)n

n!
IE
(
exp[−λXt(x, n)]sPt(x,n)

)
.
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>From the branching property of (X,P ),

IE
(
exp[−λXt(x, n)]sPt(x,n)

)
= IE

(
exp[−λXt(x, 0)]sPt(x,0)

)
×
[
IE
(
exp[−λXt(0, 1)]sPt(0,1)

)]n
.

(8)

Combining the four above identities, we obtain

∞∑
n=0

(xγ)n

n!

[
IE
(
exp[−λXt(0, 1)]sPt(0,1)

)]n
= exp {x [u(t, λ+ γ)− u(t, λ+ γ(1− s))]}

=
∞∑

n=0

{x [u(t, λ+ γ)− u(t, λ+ γ(1− s))]}n

n!
.

Identifying the coefficients of x in the two series yields

IE
(
exp[−λXt(0, 1)]sPt(0,1)

)
=
u(t, λ+ γ)− u(t, λ+ γ(1− s))

γ
.

The result follows from this, (7) and (8).

9. Bibliographical comments

We have essentially followed the treatment from [6] in section 2. Section 3 is inspired
from [4]. Section 5 owes much to [4], [2] and [5]. The subsection 6.1 is taken from [7],
6.2 from [8]. Section 8 is a translation of the results in [1] to our particular case. Note
that [1] considers more general CSBP’s, than just the Feller diffusion. This includes the
CSBP’s which are obtained as limits of BGW processes where the offspring distribution
has infinite variance.
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