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ABSTRACT. The study of a 1D-shallow water model, obtained in a height-flow formulation, is pre-
sented. It takes viscosity into account and can be used for the flood prediction in rivers. For a lin-
earized system, the existence and uniqueness of a global solution is proved. Finally, various numerical
results are presented regarding the linear and non linear case.

RÉSUMÉ. Nous dérivons les équations de Saint-Venant complètes avec la formulation hauteur-débit.
La viscosité est prise en compte dans le modèle. Pour le système linéarisé, l’existence et l’unicité
de solution globale sont montrées. Des resultats numériques sont présentés aussi bien dans le cas
linéaire que non linéaire.
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1. Introduction

The geophysical flows in thin domains are described by the shallow water system,
see for example [2], [3], [16], and [22]. The classical shallow water system where the
viscosity is neglected is of current use. But the mathematical study of this model seems
to be not so satisfactory, see e.g. [9].

Most of the developed models use a section-flow formulation or a height-velocity one.
For example in [9], the height-velocity formulation gives a shallow water system includ-
ing frictions, viscosity and the Coriolis-Boussinesq coefficient. This model is numerically
validated and satisfactory results are obtained for the dam break case.

In [5], a global existence result of weak solutions in a R
2 periodic domain is given.

The reader interested with the derivation of the shallow water equations can consult [2],
[3], and [17]. The model used in our paper is heavily inspired by [2]. The considered flow
is one dimensional, in a channel with a parallelepipedic cross-section. The derivation of
a shallow water system for channels with other shape or for other kind of channel are
presented in [11].

This paper is divided into tree parts. In the first part, the derivation of a shallow
water system in one dimension, using a height-flow formulation, is presented. Then some
existence results of solutions are given in the second one. Finally numerical results for
the flow in a channel with different scenarios are presented.

2. The model

River flows are governed by the shallow water equations. These equations are obtained
using some lateral integration (i.e. in width and depth of the river) of the incompressible
Navier-Stokes equations.

The considered Navier-Stokes system has the following form.

∂u

∂t
+ (u · ∇)u − divσ = f in (0, T )× Ω, (1)

divu = 0 in (0, T ) × Ω, (2)

with the initial condition

u(0, x) = u0(x) in Ω, (3)

and the boundary conditions (see fig. 1)

σn = 0 on (0, T )× Γs, (4)

u · n = 0 on (0, T )× Γb, and (5)

σn · τi = fb,i on (0, T )× Γb, i = 1, 2, (6)

where u = (u1, u2, u3) is the velocity field, σ = −p + μ
2 (∇u + ∇ut) is the stress

tensor, p is the pressure, f represents the external forces, and f b is some traction vector
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on the river bed. Instead of using traction conditions on the bottom of the river, one can
also use a homogeneous Dirichlet condition:

u = 0 on (0, T )× Γb. (7)

h

Γs

Ω(x, t)
Γb

l

Figure 1. River section

The physical nature of rivers allows to simplify these equations. Indeed they are char-
acterized by the predominance of their length L, compared to the width l and the depth
H . This predominance induces the flow direction and other phenomena described by the
following different assumptions.

2.1. Assumptions

The following assumptions are used in our model.

1) The depth and the width are very small compared to the river length. So the
flow is essentially one dimensional and is parallel to the domain walls and bottom. Thus
when the stream line curvature is small, the vertical and lateral acceleration are negligible
compared to the longitudinal one and the pressure distribution is hydrostatic.

2) The variation of the water height is very small.

3) The geometry of the domain is fixed, thus deposit and leaching effects of the
sediment are neglected.

4) The slope of the domain bank is very small.

5) The friction effects on the shore will be estimated by some heuristic formula
like the Manning or the Chezy one.

6) The domain is assumed to be rectilinear. This allows to consider a parallelepi-
pedic domain with length L and width l. The water surface for each section of the river
is assumed to be horizontal. The extra height effects in a sloping domain are not taken
account in the analysis and are assumed to have very small influence on the result.

7) The momentum and the energy fluxes all along the river section resulting from
the non uniformity of the velocity distribution will be estimated using a mean velocity and
some correction coefficients which are function of the position along the water course and
of the height.

8) The gravity force is the only one taken into account. So the influence of the
Coriolis force is neglected.

These assumptions allow some simplifications in the system (1-7).
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2.2. Simplified equations

Let U2 (resp. U1, U3) represents the characteristic velocity in the flow direction,(resp.
in the other directions). If T is a characteristic time, then U1 = l/T , U2 = L/T , and
U3 = H/T .
Let t = T t

′
, u1 = U1v1, u2 = U2v2, u3 = U3v3, x = lx

′
, dx = ldx

′
, y =

Ly
′
, z = Hz

′
, dz = Hdz

′
, p = p

′
U2

2 . The variables t
′
, x

′
, y

′
, z

′
, p

′
, v1, v2, v3 are

without dimension. Taking into account the previous assumptions, using variables with-
out dimension, redefining x

′
= x, y

′
= y, z

′
= z, t

′
= t, p

′
= p and assuming that the

mainstream is along the y-axis, we get for the equation (1):

∂v2

∂t
+ v2

∂v2

∂y
−

(
L

lU2
2

∂σ12

∂x
+

1
U2

2

∂σ22

∂y
+

L

lU2
1

∂σ32

∂z

)
= f, (8)

∂p

∂y
= 0, (9)

U2
2

ρl

∂p

∂z
= −g, (10)

divv = 0. (11)

We have

σ22 = −p +
μU2

L

∂v2

∂y
,

σ12 = μ

(
U2

l

∂v2

∂x
+

U1

L

∂v1

∂y

)
, σ32 = μ

(
U2

H

∂v2

∂z
+

U3

L

∂v3

∂y

)
.

The reader can consult [22] for more informations. Let Ω(y, t) be the river section:

Ω(y, t) =
{
(x, y, z) ∈ R

3 s.t. 0 ≤ x ≤ l, 0 ≤ z ≤ h(y, t)
}

.

The one dimensional shallow water model is obtained from equations (8)-(11) by in-
tegration over Ω(y, t).
The equation (11) give

v3(x, y, h) = −
∫ h(y,t)

0

∂xv1 dz −
∫ h(y,t)

0

∂yv2 dz + v3(x, y, 0).

We know that v3(x, y, h) =
dh

dt
.

Thus
∫ l

0

∂h

∂t
dx =

∫ h

0

v1(x = 0) dz−
∫ h

0

v1(x = l) dz−
∫ l

0

∫ h

0

∂yv2 dzdx+
∫ l

0

v3(x, y, 0) dx.

We define Q(t, y) =
∫ l

0

∫ h(t,y)

0
v2 dxdz, the flow through Ω(y, t). Then we have

l
∂h

∂t
+

∂Q

∂y
= hv1(y = 0) − hv1(y = l) + lv3(x, y, 0).

Besson - Kane - Sy - 250

Numéro spécial Claude Lobry



We assume for this model that v1 is the same to the left bank and right bank; and the
infiltration is null.

The first shallow water equation will be

l
∂h

∂t
+

∂Q

∂y
= 0.

The equation (8) gives

∫
Ω

∂tv2 dxdz+
∫

Ω

v2∂yv2 dxdz− L

U2
2 l

∫
Ω

∂xσ12 dxdz− 1
U2

2

∫
Ω

∂yσ22 dxdz− L

U2
2 l

∫
Ω

∂zσ32 dxdz =
∫

Ω

fdxdz.

If we denote by Ii, i = 1, 2, 3, 4, 5 the left integrate terms of the preview equality, we
have

I1 =
∫ l

0

∫ h(y,t)

0

∂tv2dxdz = ∂t

∫ l

0

∫ h(y,t)

0

v2dxdz −
∫ l

0

v2(z = h)∂thdx.

Then
I1 = ∂tQ + v2(z = h)∂yQ.

I2 =
∫ l

0

∫ h

0

v2∂yv2 dxdz =
1
2
∂y

∫ l

0

∫ h

0

v2
2 dxdz − 1

2
v2
2(z = h)∂yh.

I3 =
∫ l

0

∫ h

0

∂xσ12 dxdz =
∫ h

0

(σ12(x = l) − σ12(x = 0)) dz.

I5 =
∫ l

0

∫ h

0

∂zσ32 dxdz =
∫ l

0

(σ32(z = h) − σ32(z = 0)) dx.

I4 =
∫ l

0

∫ h

0

∂yσ22 dxdz

= ∂y

∫ l

0

∫ h

0

σ22 dxdz −
∫ l

0

σ22(z = h)∂yh dx

= ∂y

∫ l

0

∫ h

0

−p +
μU2

L
∂yv2 dxdz −

∫ l

0

σ22(z = h)∂yh dx

= −∂y

∫ l

0

∫ h

0

pdxdz +
μU2

L
∂2

y

∫ l

0

∫ h(y,t)

0

v2 dxdz − μU2

L
∂y

∫ l

0

v2(z = h)∂yh −
∫ l

0

σ22(z = h)∂yh dx

= −∂y

∫ l

0

∫ h

0

pdxdz +
μU2

L
∂2

yQ − μU2l

L
∂y(v2(z = h)∂yh) −

∫ l

0

σ22(z = h)∂yh dx.
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Let T the tangent of the surface. We have T =

⎛
⎝ 0

1
∂yh(y, t)

⎞
⎠ and the normal of T

is denote by

n =

⎛
⎝ 0

−∂yh(y, t)
1

⎞
⎠ . The adimensional normal is recall n =

⎛
⎝ 0

−l
L ∂yh(y, t)
1

⎞
⎠ .

Using (4), we have

σ22(z = h)∂yh =
L

l
σ23(z = h). (12)

The normal on the bottom is n =

⎛
⎝ 0

0
−1

⎞
⎠. Thus τb,2 =

⎛
⎝ 0

1
0

⎞
⎠ .

The assumption (4) gives
fb,2 = −k(v2)v2.

Then, we get with the equation (6) σ23(z = 0) = kU2v2.

If y is fixed, the stress tensor is the same in x = l and x = 0. Thus I3 = 0.
The equation (10) gives

p = − l

U2
2

g(z − h) + pa

with pa is the adimensional atmospheric pressure. From where, the first term of I 4

∂y

∫ l

0

∫ h

0

pdxdz =
l2

2U2
2

g∂yh
2 + pal∂yh.

Using (12), the last term of I4 will be

∫ l

0

σ22(z = h)∂yh dx =
L

l

∫ l

0

σ23(z = h) dx.

Let us gather the terms of momentum equation, we will have the second full equation of
shallow water

∂tQ− μ

U2L
∂2

yQ+∂y(lv2
2h)+pa

l

U2
2

∂yh+
l2g

2U2
2

∂yh2+
μl

U2L
∂y(v2∂yh)+

Lk

U2lh
Q =

∫
Ω

f.

(13)
Or

∂tQ − μl

U2L
∂y(h∂yv2) + ∂y(lv2

2h) + pa

l

U2
2

∂yh +
l2g

2U2
2

∂yh2 +
Lk

U2lh
Q =

∫
Ω

f. (14)

The assumptions 1. and 2. show that the term μl
U2L∂y(v2∂yh) of equation (13) is

negligible. If we linearize the term ∂y(lv2
2h) by lU 2

2∂y(h), we obtains for the momentum
equation

∂tQ − ν∂2
yQ + β(h)∂yh + K(Q)Q = Fext (15)

where the coefficient K is a friction coefficient, ν = μ
U2L is the renormalized viscosity,

β(h) = a + 2bh,
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whith

a = lU2
2 +

pal

U2
2

, b =
gl2

2U2
2

.

Let W = (0, T )× I with I = (0, L).

Assume that K is constant, the shallow water system that we want to study follows

l
∂h

∂t
+

∂Q

∂x
= 0 in W,

∂Q

∂t
− ν

∂2Q

∂x2
+ β(h)

∂h

∂x
+ KQ = 0 in W,

Q(t, 0) = Qe(t), Q(t, L) = Qs(t),

h(0, x) = h0(x), Q(0, x) = Q0(x).

If Q = q + Qs + 1
L (L − x)(Qe − Qs), then our 1-D shallow water model is

l
∂h

∂t
+

∂q

∂x
= f1 in W, (16)

∂q

∂t
− ν

∂2q

∂x2
+ β(h)

∂h

∂x
= f2 in W, (17)

q(t, x) = 0 on ∂I, (18)

h(0, x) = h0(x), (19)

q(0, x) = q0(x), (20)

with

f1(t, x) =
1
L

(Qe(t) − Qs(t)), (21)

f2(t, x) = −Q
′
s(t) −

1
L

(L − x)(Q
′
e(t) − Q

′
s(t)), (22)

and

q0(x) = Q0(x) − Qs(0) − 1
L

(L − x)(Qe(0) − Qs(0)). (23)

3. Existence of solution for the linearized problem (β is
constant)

In this section, we give some existence and uniqueness for solutions of equations
(16)-(20) assuming β is constant. For a given q, the hight h is obtained from equation
(16) using some time integration:

h(t, x) = h0(x) − 1
l

∫ t

0

(
∂q

∂x
− f1

)
ds. (24)

Moreover, if h is given, a weak formulation of equation (17) is

Shallow Water Model  - 253

Revue ARIMA - volume 9 - 2008



∫
I

∂q

∂t
vdx + ν

∫
I

∂q

∂x

∂v

∂x
dx −

∫
I

(ah +
1
2
bh2)

∂v

∂x
dx =

∫
I

f2v dx. (25)

Equation (24) makes sense when q ∈ L1(0, t; W 1,1(I)). In the same way, for equation
(25), we need v ∈ H 1

0 (I), and h ∈ L2(0, T ; L4(I)). Let us define the following space

V = L2(0, T ; H1
0 (I)) ∩ C(0, T ; H−1(I)),

and let F : V → V be the application defined in the following way:

1) For q in V , let h = h(q) be the solution of (24).

2) Then for h given by 1), let q = F (q) where q is the solution of (25).

We show that the problem (24)-(25) has a unique solution in V × H 1(0, T, L2(I))
when β is constant.

Theorem 3.1 Let 0 < T < lν
β , there exists a constant 0 < C(T ) < 1 such that

∀q1, q2 ∈ V, ‖F (q1) − F (q2)‖V ≤ C(T )‖q1 − q2‖V ,

i.e. F is a contraction.

proof
Let v ∈ H1

0 (I), qi = F (qi), and hi, i = 1, 2, where hi is the solution of (24) associated
to qi. We have

∫
I

∂qi

∂t
vdx + ν

∫
I

∂qi

∂x

∂v

∂x
dx − β

∫
I

hi
∂v

∂x
dx =

∫
I

f2v dx, i = 1, 2.

So
∫ t

0

∫
I

v
∂

∂t
(q1−q2)dxds+ν

∫ t

0

∫
I

∂

∂x
(q1−q2)

∂v

∂x
dxds−β

∫ t

0

∫
I

(h1−h2)
∂v

∂x
dxds = 0,

but

β

∫ t

0

∫
I

(h1 − h2)
∂v

∂x
dxds =

β

l

∫ t

0

∫
I

∂v

∂x

∫ s

0

(
∂q1

∂x
− ∂q2

∂x

)
dτdxds.

For v = q1 − q2, we get

1
2

∫ t

0

d

ds

∫
I

(q1 − q2)
2dxds + ν

∫ t

0

∫
I

(
∂

∂x
(q1 − q2))

2dxds

=
β

l

∫ t

0

∫
I

(
∂

∂x
(q1 − q2)

(∫ s

0

∂

∂x
(q1 − q2)dτ

))
dxds,

and for t = T

1
2
‖q1(T ) − q2(T )‖2

L2(I) + ν‖q1 − q2‖2
V ≤ β

l
T ‖q1 − q2‖V ‖q1 − q2‖V ,

so
‖q1 − q2‖V ≤ C(T )‖q1 − q2‖V

with C(T ) = β
lν T < 1.
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Theorem 3.2 Let β be a positive constant, and let T > 0, f1 ∈ L1(0, T ; L2(I)), and
f2 ∈ H−1(0, T ; H1

0 (I)) ∩ L2(0, T ; H−1(I)).

The problem (24)-(25) admits a unique solution (q, h) ∈ V × H 1(0, T ; L2(I)).

Proof
For q given in V we have

h(t, x) = h0(x) − 1
l

∫ t

0

(
∂q

∂x
− f1

)
ds,

so h ∈ H1(0, T ; L2(I)). For this h, equation (25) admits a unique solution q = F (q).
From theorem 3.1, the application F verifies the hypothesis of the Banach fixed point
theorem for T = T ∗ < lν

β . Thus there is a unique (q, h) ∈ V ×H 1(0, T ; L2(I)), solution
of (24), (25). The global existence for any T is then obtained by continuity.
Remark : The non linear case is a open problem.
In the follow, we give a numerical result in the case β is constant and no constant.

4. Numerical results

4.1. Introduction

In this section we will give some numerical simulation of the following problem:

l
∂h

∂t
+

∂q

∂x
= f1 dans W, (26)

∫
I

∂q

∂t
v dx + ν

∫
I

∂q

∂x

∂v

∂x
dx −

∫
I

(ah +
1
2
bh2)

∂v

∂x
dx +

∫
I

κqv dx =
∫

I

f2v dx. (27)

A Lax-Friedrichs scheme is used to solve equation (26). Equation (27) is solved using
a finite element method in space and an implicit Euler scheme in time.

The following methodology is used: if the hight h and the flow q is known at a given
time step, the hight at the next step is solved using equation (26), then the flow is obtained
using equation (27).

Let us introduce the following notations.

- L is the length of the domain,

- l is its width,

- T is the final time,

- ν is the viscosity,

- κ is the friction coefficient,

- n is the number of spatial steps,

- m is the number of time steps,

- δ = L/(n + 1) is the space step,
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- τ = T/m is the time step,

- xi = iδ is the i-th node,

- tk = kτ is the k-th time step,

- hk
i is the approximation of h(tk, xi) at time tk and position xi,

- qk
i is the approximation of q(tk, xi) at time tk and position xi.

4.2. Approximate problem

Let Vδ be the usual subspace of H 1(I) associated with finite elements of type P1:

Vδ = {v ∈ C0(I); ∀i ∈ {0, . . . , n}, v|[xi,xi+1] ∈ P1},

and set
Vδ,0 = Vδ ∩ H1

0 (I).

Let also φi, 0 ≤ i ≤ n + 1 be the usual basis of Vδ; the set {φi, 1 ≤ i ≤ n} is the
canonical basis of Vδ,0.

For equation (27), the following Lax-Friderichs scheme is used (see [12]):

hk+1
i =

1
2
(hk

i−1 + hk
i+1) −

τ

2lδ
(qk

i+1 − qk
i−1). (28)

The approximate solution h of (24) is then interpolated as

h(x, tk) =
n+1∑
i=0

hk
i φi(x).

For the numerical solution of equation (27), let

q(x, t) =
n∑

i=1

qi(t)φi(x).

For v = φj , (j ∈ {1, . . . , n}), if qk
i is the approximation of q(xi, tk), the implicit Euler

scheme for (27) is

n∑
i=1

qk+1
i

∫
I

φiφj dx +
n∑

i=1

ντqk+1
i

∫
I

φ
′
iφ

′
j dx +

n∑
i=1

qk+1
i

∫
I

τκφiφj dx =

n∑
i=1

qk
i

∫
I

φiφj dx +
n∑

i=1

∫
I

τ(ah(x, tk) + bh2(x, tk))φ
′
j dx +

∫
I

f2φj dx.

Let qk = (qk
1 , . . . , qk

n)t, A = (Aij)1≤i,j≤n, B = (Bij)1≤i,j≤n, and Lk = (Lk
j )1≤j≤n,

with

Aij =
∫

I

(1 + τκ)φiφj dx + ντ

∫
I

φ
′
iφ

′
j dx
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Bij =
∫

I

φiφj dx,

Lk =
∫

I

τ(ah(x, tk) + bh2(x, tk))φ
′
j dx +

∫
I

f2φj dx.

Then the approximate solution of q is given as usual by the solution of the linear system.

Aqk+1 = Bqk + Lk. (29)

4.3. Some numerical results

In this section, some numerical results are presented in the following situation. A
canal with length L = 1m, and width l = 5cm is considered. This canal is subdivided
by a dam into two parts with length 20cm, and respectively 80cm. The final time is set to
T = 5s. So b = l2 · g · T 2/(2 · L2) and the coefficient a is set to a = 2.5 · 10−4 · l.

Figure 2. The case β constant, μ = 5.0 10−3, and κ = 1.5.

Figure 3. The case β non constant, μ = 5.0 10−3, and κ = 1.5.

At time t = 0 the hight in the first part equals 0.3m, and the other part is empty. The
aim of the simulation is to determine the evolution of the hight and flow when the dam is
removed.

All the simulations have been done with a time step τ = 10−4s and a space step
δ = 10−4m. The friction coefficient equals κ = 1.5m2s−2 for the first three simulations,
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κ = 0.6m2s−2 two next situations and finally κ = 0 for the last one. The following
figures show the flow evolution in the canal for various situations.

We can observe that the wave generated by the dam break is twice reflected on the
downstream wall at x = L. We can also notice the influence of the function β: the
case when β is constant gives rise to much more diffusion on the hight h, see fig. 2 and
3. Therefore the non linearity seems to provide a more precise description of the hight.
When β is not constant, the influence of the viscosity has a strong influence on the fluid
hight: see figures 3 and 4. Figure 6 shows the situation of two dam brakes, with a non
constant function β, μ = 5.0 10−4, κ = 0.6. In this case we observe the formation
of two waves moving in opposite directions. Figure 7 shows the case when the friction
coefficient equals zero. In this situation, we can observe some instabilities for a too low
viscosity coefficient. Therefore a larger one is used.

Figure 4. The case β non constant, μ = 1.0 10−3, and κ = 1.5.

Figure 5. The case β non constant, μ = 5.0 10−3, and κ = 0.6.
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Figure 6. The case β non constant, μ = 5.0 10−4, and κ = 0.6.

Figure 7. The case β non constant, μ = 5.0 10−2, and κ = 0.0.
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