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ABSTRACT. The problem we are dealing with is to recover a Robin coefficient (or impedance) from
measurements performed on some part of the boundary of a domain, in the framework of nondestruc-
tive testing by the means of Electric Impedance Tomography. The impedance can provide information
on the location of a corroded area, as well as on the extent of the damage, which has possibly oc-
curred on an unaccessible part of the boundary. Two different identification algorithms are presented
and studied: the first one is based on a Kohn and Vogelius cost function, actually an energetic least
squares one, which turns the inverse problem into an optimization one ; as for the second, it makes
use of the best approximation in Hardy classes, in order to extend the Cauchy data to the unreachable
part of the boundary, and then compute the Robin coefficient from these extended data. Special focus
is put on the robustness with respect to noise, both from a mathematical and and numerical point of
wiew. Some numerical experiments are eventually presented and compared.

RÉSUMÉ. Dans ce travail nous nous sommes intéressé à un problème d’identification d’un coefficient
de Robin (ou une impédence) à partir de mesures effectuées sur une certaine partie de la frontière
d’un domaine. Ce problème est motivé par le contrôle non destructif des matériaux en tomographie
par impédance électrique. L’impédance peut fournir des informations sur l’emplacement d’une zone de
corrosion, ainsi que sur l’étendue des dommages, qui a peut-être eu lieu sur une partie inaccessible
de la frontière. Deux algorithmes d’identification sont présentés et étudiés: le premier est basé sur la
minimisation des fonctionnelles d’écart énérgitiques, dite de Kohn et Vogelius, comme pour le second,
il fait usage à l’approximation dans les classes de Hardy afin de prolonger les données de Cauchy à
la partie inaccessible de la frontière, puis calculer le coefficient de Robin qui est le quotient de ces
données étendues. L’accent est mis sur la robustesse par rapport au bruit, à la fois d’un point de vu
mathématique et numérique. Des expériences numériques sont finalement présentées et comparées.
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ery algorithms
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1. Introduction

Corrosion of materials impacts the impedance coefficient q, which intervening in a
Robin boundary condition, and identifying this coefficient turns out to be a way to locate
the corroded part in a structure, and possibly evaluate the damage level, by an electric
impedance tomography process. We are particularly interested in detecting corrosion on
the internal wall of a tubular domain, standing for a pipeline for example.

Several models are presented in the literature. The corrosion effects may be seen as a
loss of material modifying the geometry (see, for example, Kaup and Santosa [23], Inglese
[20] etc). Focusing on the energy dispersion due to the local damage of the insulating film,
Inglese and Fasino [19], give a simple model correlating the damage level to the transfert
coefficient in a Robin boundary condition. Buttazo and Kohn [7] observe that the Robin
boundary conditions can result from the introduction of a thin coating characterized by
rapid oscillations. The potential model proposed by Vogelius and Xu [36] leads to a non
linear relationship between the current flux and the potential, the simplest case of which
brings us once again to the Robin boundary condition.

The mathematical setting of the problem is thus the following: Let Ω ⊂ R 2 be a
connected or doubly-connected domain, the smooth boundary of which ∂Ω = Γ d ∪ Γu is
made of two Jordan closed curves Γd,Γu such that Γd ∩ Γu = ∅. The electric potential u
solves the Laplace equation in Ω, i.e.,

Δu = 0, in Ω . (1)

On Γd, both the Dirichlet and Neumann data of the electric potential u are given, the first
ones being provided by the measurements performed on this part of the boundary, and the
second stand for the prescribed current flux.

u = ud, on Γd , (2)

∂nu = φ, on Γd (3)

where ∂n stands for the partial derivative w.r.t. the outer normal unit vector to ∂Ω.

As for the boundary condition on the unaccessible part of the boundary, we shall stick
to the Robin model, as discussed by Santosa et al. [32]:

∂nu+ q u = 0 on Γu (4)

where q is the electrical impedance to be recovered.

The inverse problem we are interested in is to recover the unknown coefficient q from
the Cauchy data ud and φ on Γd. In the present paper, we shall focus on the design of
robust identification algorithms. Robustness is understood as the sensibility with respect
to noise in measured data. It is quite a different different issue from stability, though it is
sometimes confused with it. Stability means continuity of the theoretical inverse problem
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solution with respect to the prescribed data, and it needs the data to remain in a space
allowing the inverse problem to have a unique solution. Errors in data measurements are
however not expected to behave this way. No matter how small the measurement errors
are, there is usually no solution to the inverse problem related to the noisy data. One thus
needs to solve a different problem, such as an optimization or a least squares one, which
is equivalent to the original problem for exact data. The very issue to investigate is thus
to figure out how close to the original inverse problem solution the one we compute that
way is.

2. An overview on uniqueness, stability and identification
issues

Up to our knowledge, the first identifiability result regarding the Robin inverse prob-
lem has been given by Inglese in [20], who proved in a 2D situation that a single measure-
ment of u on Γd is enough to uniquely determine a positive coefficient q, provided q ∈ C 3

0.
This result has been improved in [8] in the 2D case, by extending the uniqueness result
to continuous Robin coefficients q with some appropriate negative lower bound. Some
identifiability results for the non-linear heat equation can also be found in Choulli [14].

The stability issue deals with the continuous dependence of the unknown parameter
on the measured data, which is a crucial issue for numerical applications, and has been
the concern of many authors. Inglese [20] has proved the continuity, and the Gateaux
differentiability of the direct map which associates to a given current flux φ, the mea-
sured data on the boundary. Based on the use of differentiation with respect to the Robin
parameter, a local and directional Lipschitz stability estimate is given in [8]. A Lisp-
schitz monotone result is also given in the same paper. More recently, Sincich [33] has
proved by a different way a global Lipschitz stability estimate in finite dimensional spaces
of Robin coefficients, namely piecewise constant ones. As expected, because the global
stability is well known to be no better than logarithmic, the Lipschitz constant in the
above-mentioned estimate exponentially blow up as the Robin coefficients space dimen-
sion grows to infinity.

Actually, several authors have proved by various means the logarithmic global stability
of the Robin inverse problem. Let us cite among them Fasino, Inglese [19], Alessandrini
and Del Piero, Rondi [1], Choulli [14], Alessandrini and Sincich [2, 3], Chaabane, Fel-
lah, Jaoua, Leblond [11], Leblond, Mahjoub, Partington [28]. In his already cited paper,
Choulli [14] proves a local Lipschitz stability estimate for an arbitrary smooth domain,
before establishing a log− log stability estimate for rectangular domains.

As for the identification issue, most of the methods are use iterative algorithms. Ka-
banikhin and Karchevsky [22] solved this inverse problem by minimizing the trace error
functional on L2(Γd) by a gradient iterative process. Klibanov and Santosa [24] used
the quasi-reversibility method to solve the Cauchy problem for the Laplace’s equation
from which they derive an error estimate by using Carleman’s inequalities. Slodi čka and
Van Keer [34] proved an identification result based on the difference in the L 2(Γu)-sense
between the outside and inside temperature on Γu. In [35], Slodička and Van Keer use
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the fact that the direct problem is linear wrt u and apply the linear superposition princi-
ple in oredr to built the unknown trace of u on the inaccessible boundary part Γ u using
the overabundant information on the measurement part Γ d. Inglese [20] has proposed an
identification algorithm of the Robin coefficient based on an asymptotic developpement
of the Robin function with respect to the width of the plate, leading to a thin plate approx-
imation of the corrosion coefficient. Further, Fasino and Inglese [19] have proposed a
Galerkin approximation for the Robin parameter by a trigonometric polynomial obtained
by minimization procedure.

In a recent work, Louati [29] has proposed a direct (non-iterative) technique for de-
tecting corrosion in pipelines from voltage-to-current observations. This algorithm is a
MUSIC-type (multiple signal classification) one and it is based on an accurate asymptotic
representation formula for the steady state current perturbations.

Any numerical identification method needs to overcome by some way or other the
intrinsic instability of the Cauchy data completion problem, which is basically the one we
explicitly or implicitly solve when aiming to recover the Robin coefficient, by some regu-
larization technique. This consists in adding to the data misfit term some additional term
whose role is to prevent instabilities from showing up. The main advantage of the fading
regularization method proposed by Cimetière et al. [15], is that this additional term, which
is the distance between two successive iterates on the completion part of the boundary,
is swept away as convergence goes along. Strong convergence on the completed data
however need to implement higher order versions of the algorithm, and though showing
excellent numerical robustness, this features is not so far theoretically proved.

The numerical algorithm based on an energetic least-squares proposed in [8], and
based on an idea by Kohn and Vogelius [25, 26], turns out to be quite general a method,and
moreover self-regularizing. The method actually relies on the fact that the overabundance
of boundary data on Γd allows to solve two boundary value problems, a Neumann-Robin
one and a Dirichlet-Robinn one, for any prescribed Robin coefficient. The solutions of
the two of these problems coincide for the actual impedance. Choosing the energy gap
between the two solutions as a misfit function to minimize is thus quite a natural idea.
Beside offering a mathematically convenient function, that can be easily handled for ex-
ample to differentiate, it also provides - because being distributed on the whole domain
instead of the measurement boundary - with costless stabilization effects. The Kozlov al-
ternated directions method [27], such as numerically exploited by A. Ben Abda et al. [4]
to solve several inverse problems (recovery of a heat field on the internal wall of a pipe,
identification of interface cracks, etc.) is based on the same idea.

An alternative approach has been successfully developed during the past decade. It
consists to construct analytic approximations to solve the Cauchy problem, which is
turned into a bounded extremal problem in a hardy space. Such a construction needs
an explicit asymptotic expansion of the analytic approximant, and it needs to determine
by some appropriate procedure the actual bound of that approximant on the unknown part
of the boundary in order to stabilize the whole algorithm. These extended Cauchy data
are then used in order to compute the Robin coefficient (see [12, 21]), and robustness of
the whole process with respect to measurement errors is proved.
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3. The Kohn and Vogelius algorithm

Let Ω = D such that: ∂Ω = T = Γu ∪ Γd. The inverse problem (IP) we are dealing
with is the following:

(IP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given a prescribed flux φ �≡ 0 and measurements f on Γd,
Find a function q on Γu such that the solution u of

(NP)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δu = 0 in Ω,
∂u

∂n
= φ on Γd

∂u

∂n
+ qu = 0 on Γu

also satisfies u|Γd
= f

We shall assume that φ ∈ L2(Γd) and q belongs to the restricted set of admissible
parameters Qad, defined by:

Qad =
{
q ∈ W 1,2(Γu), such that ‖q‖1,γ ≤ c and q ≥ c

′
χK

}

where c and c′ are two positive constants, andK is a nonempty connected open subset
of Γu such that Γu ∩K = ∅. Though uniqueness is proved in the almost largest possible
set of impedances, this restriction is necessary to prove stability and robustness.

For q ∈ Qad, we shall denote by uD(q, f) the solution of the following Robin-
Dirichlet problem (DP) using the measurements f as a Dirichlet data:

(DP)

⎧⎪⎨
⎪⎩

Δu = 0 in Ω
u = f on Γd

∂u

∂n
+ q u = 0 on Γu

and by uN (q) the solution of the Neumann problem (NP ) associated to q. As has
been above, given any q, one can solve the two of these boundary value problems. These
solutions coincide for the actual q, i.e. the one solving the inverse problem, that will be
denoted q̄. The cost function J defined below is actually the energy gap between uN(q)
and uD(q):

J(q) =
∫

Ω

|∇uN (q) −∇uD(q, f)|2 +
∫

Γu

q |uN (q) − uD(q, f)|2

Minimizing it appears as a suitable way to capture the inverse problem solution. This
leads to the following optimization problem:

(OP)
{

Find q̄ ∈ Qad such that
J(q̄) � J(q) ∀ q ∈ Qad.
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Referring to [8], the function J has indeed a unique minimum, which is nothing but
the solution q̄ of the inverse problem (IP).

3.1. Some features of the optimization problem

The first interesting feature of the optimization problem is that it still has a solution
[9], which is not proved to be unique, even when the inverse problem fails to have one,
for example in case the data lose compatible because of measurements errors.

However, a questioning raises about the sense of a solution to such a problem, which
links to the sought solution of the inverse problem obviously sinks with this latter.

3.1.1. Stability of the optimization problem

The ‘stability’ result of the optimization problem we are dealing with in the present
section actually extends this relationship to uncompatible prescribed data, and thus gives
an answer: provided the ‘measured data’ are close to the actual ones, so will be any
computed solution of the optimization problem to the inverse problem solution. Even
though this continuity result still lacks a stability estimate, it somehow legitimates the
algorithm process, which is to proceed looking at (OP) instead of (IP) even when this
latter collapses because of erroneous data.

Theorem 3.1 (Stability) [9]
Let (fn)n∈N be a sequence of measurements in W

1
2 ,2(Γd), such that

lim
n→∞ ‖fn − f‖ 1

2 ,2,Γd
= 0

Then, qn being any solution to the perturbated optimization problem (OP n) with fn as
input data, we have:

lim
n→∞ ‖qn − q̄‖L2(Γu) = 0

Proof (sketch): We first prove that the perturbated optimization problem (OP n) has at
least one solution qn. Picking any of these, we then establish that the sequence (qn)n∈N

is bounded in H 1(Γu) and moreover satisfies:

lim
n→∞J(qn) := lim

n→∞

∫
Ω

|∇uN (qn)−∇uD(qn, fn)|2 +
∫

Γu

qn |uN(qn)− uD(qn, fn)|2 = 0.

(5)
Let then μ be an accumulation point of the real bounded sequence ‖q n − q̄‖L2(Γu). Then,
there exists q ∈ Φad and a subsequence of qn still denoted by qn such that:

⎧⎪⎨
⎪⎩

lim
n→∞ ‖qn − q̄‖L2(Γu) = μ

qn ⇀ q weakly in H1(Γu)
qn → q strongly in L2(Γu)

According to (5) and the continuity of the mapping:
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η : L2(Γu) −→ H1(Ω)
q �−→ uN(q)

we obtain:
lim

n→∞uN (qn) = lim
n→∞uD(qn, fn) = uN (q̄).

Moreover, fn −→ f in H
1
2 (Γd), and therefore:

uN(q)|Γd
= f.

q then solves the inverse problem (IP), which by uniqueness yields q = q̄. Consequently,
μ = 0 and

qn −→ q̄ in L2(Γu).

3.1.2. Robustness

The robustness of the process is a different story: erroneous data are not expected to
lay inW

1
2 ,2(Γd), since noise is not smooth. Actually, noisy data can be written as follows:

fε = f + ε

where f are the exact data and ε ∈ L∞(Γd) such as:

‖ε‖L∞(Γd) ≤ ε

where ε ∈ R+ is the noise level.

The point is that we are unable to define what a solution to the optimization problem
with such unsmooth data might be. The data need to be smoothed before proceeding,
which is actually the way most numerical algorithms deal with measurements. Using to
that end the popular cubic B-splines, which are piecewise cubic functions that are twice
continuously differentiable, one may smooth f ε and get f̃ε ∈ W

1
2 ,2(Γd), thus making

(OP) have solutions among which we can pick q̃ ε.

Still, how close to the actual data are the smoothed ones ? Denoting by h the splining
path h and assuming f ∈ C2(Γd), we get the following estimates (see [10]):

‖f̃ε − f‖L∞(Γd) ≤ c1(ε + h2)
‖(f̃ε − f)

′‖L∞(Γd) ≤ c2(
ε

h
+ h) (6)

These error estimates inform us on the "‘best smoothing path"’ (with respect to the
noise level ε ) to choose when using cubic B-splines:

h � √
ε

Doing so, we obtain :

‖f̃ε − f‖L∞(Γd) = O(ε)
‖(f̃ε − f)

′‖L∞(Γd) = O(
√
ε)

(7)
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Theorem 3.2 (Robustness) [17]
Let (fε) = f +ε stand for noisy measurements with ε ∈ L∞(Γd) and ‖ε‖0,∞,Γd

≤ ε. Let
(f̃ε) be the data smoothed by using cubic B-splines with an appropriate path (h � √

ε).
Therefore, picking any solution (q̃ε) of the related optimization problem (OP ) problem
with input data f̃n, we have:

lim
ε→0

‖q̃n − q̄‖L2(Γu) = 0

Proof: This is actually a straightforward consequence of the above stability theorem,
and to the error estimates (7). Indeed, by interpolation, we get from these estimates:

‖f̃ε − f‖ 1
2 ,Γd

= O(ε
3
4 ). (8)

which means that lim
ε→0

‖f̃ε − f‖ 1
2 ,2,Γd

= 0. The splined noisy data f̃ε may thus be

seen as an approximation of the exact data f . Applying the above stability Theorem 3.1
to these input data immediately yield the announced robustness result.

3.2. Numerical results

Aiming to solve the optimization problem using a gradient method, we are interested
in computing the Gâteaux-derivative of the cost function J with respect to the unknown
Robin coefficient q. Thanks to [8], we are able to compute the gradient of the cost function
without needing to solve an adjoint problem solution, the result being the following: (see
[8]):

J ′(q).q′ := lim
h→0+

J(q + hq′) − J(q)
h

∫
Γu

q′
[
(uD(q, f))2 − (uN (q))2

]

The gradient algorithm applied to the Kohn and Vogelius cost function thus writes
down as follows:
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The Kohn & Vogelius algorithm:

1) Initialization : Choose an initial guess q0 in the approximation space, and a
step size ρ > 0;

2) Iteration : qk being computed,

a) Compute the solutions of uN
k and uD

k of the Neumann and Dirichlet problems
(PN

k ) and (PD
k ) related to qk

b) Compute the gradient of J at qk, using the following formula giving the deriva-
tive of J in any direction ψ:

∇J (qk) . ψ =
∫

Γu

ψ
[
(uD

k )2 − (uN
k )2

]

c) Update the Robin coefficient by:

qk+1 = qk − ρ∇J (qk)

3) Stop test: If
|qk+1 − qk|

|qk| is smaller than a prescribed threshold, then stop,

else return to step (2) with k = k + 1

Experimental measurements have been simulated by synthetic data obtained by means of
numerical computations, solving the forward problem (NP). All the numerical experi-

ments have been carried out on the unit disc, with Γu = { eiθ; θ ∈]0,
π

2
[ }. The forward

problems have been solved by quadratic finite elements.

Several options are available to represent the approximated impedance (Robin coef-
ficient). One of them is to use the finite element shape functions, not necessarily those
used to computate the states uD and uN . It is well known however that, aiming to solve
inverse problems, the unknowns to recover should preferably not be too numerous. A
hierarchic approach, gradually enriching the representation together with smoothing, can
make up for this limit. Though successful for smooth impedances recovery, this method
however fails when it comes to capture oscillating ones. The reason is that the gradient
components of the cost function with respect to the higher frequencies basis functions (for
instance cosines) are:

∂J

∂ϕ
(cos(2jθ)) = ∇J(ϕ) cos(2jθ) =

∫ π
2

0

cos(2jθ)
[
(uD)2 − (uN )2

]
dθ

This is nothing but the j − th Fourier coefficient of
[
(uD)2 − (uN )2

]
, which all the

more fastly decays to zero that this function is smooth. The gradient algorithm applied to
the Kohn & Vogelius cost function turns out to only seek descent along the lower frequen-
cies, damping down the higher order components. If aiming to capture these, one should
thus better prefer a relaxation method, which successively minimizes along each of the
frequencies without making them compete, rather than the gradient one. This needs to
preferably represent the impedance in a Fourier basis brings an additional improvement
(see Figure 1), which indeed has been noticed to provide a significant improvement with
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respect to the finite element representation.

Still, this is not enough to capture the higher order oscillations. The method actually
shows its amazing regularization power, by its controlling the instabilities that show up in
the higher order components. Slight improvements can be brought by enhancing - how-
ever heuristically - the so dampened frequencies, or by giving to the Kohn and Vogelius
function the role of a regularizer instead of that of the cost function itself. An accurate
capture of the oscillations however definitely needs a specifically designed method to that
end (see Figure 1), such as those used in image processing [5] in order to recover the
textures.
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Figure 1. (a) Reconstruction by piecewise linear representation: hierarchic with smooth-
ing, (b) reconstruction on a Fourier basis: relaxation method, (c, d) Capturing oscillations
by anti-damping (Fourier + relaxation), (e, f) Reconstruction using 10 % noisy data.
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4. Algorithms based on analytic extensions

In this section, Ω is the annulus Ω = D \ sD for some fixed s with 0 < s < 1, where
D is the unit disc and T the unit circle. Omega stands here for the cross section of a
pipe. Up to a conformal mapping, all the results here presented can be extended to doubly
connected domain in R2. Consequently, ∂Ω = T ∪ sT.

Let Γd be a non-neglectible measurable subset of T, and Γu = ∂Ω \ Γd. In order to
recover both Dirichlet and Neumann boundary data on the internal boundary of an annu-
lus, and then compute the Robin coefficient which is actually the quotient of these data
described here, we shall use the theory of analytic approximations by solving "bounded
extremal problems" in Hardy spaces [6, 13].

Indeed, let φ ∈ L2(Γd) and assume that q ∈ Qad, then u|∂Ω ∈ W 1,2(∂Ω). Then,
from the Cauchy–Riemann equations, there exists a function v harmonic in Ω such that
∂θ v = ∂n u on ∂Ω, where ∂θ stands for the tangential partial derivative on ∂Ω. Hence, v
is given on Γd up to a constant by

v|Γd
(eiθ) =

∫ θ

θ0

φ(eiτ ) dτ.

The harmonic conjugate operator is bounded in L 2(∂Ω), whence v|∂Ω ∈ W 1,2(∂Ω).
Thus, f = u+ i v is analytic in Ω and f|∂Ω ∈W 1,2(∂Ω) is given on Γd by:

f(eiθ) = ud(eiθ) + i

∫ θ

θ0

φ(eiτ ) dτ . (9)

Then on Γu, we have

q = −∂θ v

u
− ∂θ Imf

Re f
, (10)

which gives the link to be used between q and f , in order to recover q from approxi-
mations to f on Γd of the boundary ∂Ω.

Let us introduce here the Hardy space H 2(D) of analytic functions in the unit disk D

whose L2 norms on the unit circle T are bounded [16]. Let H̄2
0 (sD) be the Hardy space

consisting of the analytic functions on the complement of sD that have boundary values
in L2(∂Ω) and vanish at infinity.

From the above-mentioned regularity properties, the function f is bounded in L 2(Γd),
and we then seek an (approximate) extension of f in the so-called Hardy space denoted
by H2(Ω) = H2(D) ⊕ H̄2

0 (sD) defined in [31]. It is also possible to define the Hardy
spaces H2(∂Ω), as the closure in L2(∂Ω) of the set RΩ of rational functions whose poles
lie in C \ Ω. The spaces H2(Ω) and H2(∂Ω) are then isomorphic in a natural way, and
so we identify the two spaces, see [13].

For m ≥ 1, introduce Hm,2 = H2(∂Ω) ∩Wm,2(∂Ω), the Hardy–Sobolev space of
the annulus Ω. So, a function f ∈ Hm,2 has the following expansion:
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f(z) =
∑
n∈Z

fnz
n for z ∈ Ω , where ‖ f ‖2

W m,2(∂Ω)

∑
n∈Z

lm,n|fn|2

where
⎧⎪⎨
⎪⎩

lm,n = wm,n + μm,ns
2n , with

wm,n = 1 +
m∑

k=1

k−1∏
q=0

(n− q)2 and μm,n = 1 +
m∑

k=1

s−2k
k−1∏
q=0

(n− q)2 . (11)

4.1. Approximation in Hardy-Sobolev classes

Suppose now we are given f ∈ L2(Γd) and we wish to approximate f as well as
possible by the restriction to Γd of an H2(∂Ω) function, i.e., g|Γd

for g ∈ H2(∂Ω). In
view of the results established in [6, 13], the space H 2(∂Ω)|Γd

is dense in L2(Γd). Then,
there exists a sequence (gn) of H2(∂Ω) functions such that ‖gn|Γd

− f‖L2(Γd) → 0.
However, if f �= g|Γd

for any g ∈ H2(∂Ω) then it follows that ‖gn|Γu
‖L2(Γu) → ∞,

which means that the approximation problem is ill-posed without further constraint.

In order to determine an extension on Γu, and to prevent instability to show up, we
thus impose a norm constraint, an upper-bound, to the approximation of f on Γ d. This
motivates the following bounded extremal problem (BEP), which is a problem of ana-
lytic approximation of incomplete data in Hardy classes. To fix ideas, we consider the
following (BEP) problem:

⎧⎨
⎩

Given f ∈ Wm,2(Γd) \Hm,2
|Γd

, and M > 0,
find a function g ∈ Hm,2 such that ‖g‖W m,2(Γu) ≤M and
‖f − g‖W m,2(Γd) = inf{‖f − ψ‖W m,2(Γd) : ψ ∈ Hm,2 , ‖ψ‖W m,2(Γu) ≤M}.

Recall that, in practice, f is given by the available data from (9), whereas Γ d is the part
where these data can be measured. The (BEP) problem has a unique solution gm ∈ Hm,2,
which can expressed as follows [21, 30]:

gm = (I + λTm)−1
PHm,2 f̃ , where

f̃ = χΓd
(f , · · · , f (m)) and Tmg = PHm,2χΓu(g , · · · , g(m)) ,

for the unique λ > −1 such that ‖gm‖W m,2(Γu) = M if f /∈ Hm,2
Γd

.

REMARK. — T
he Bounded Extremal Problem has also been studied for the unit disc D by Chaabane
et al. [12] (for m = 0). On the Fourier basis, the operator T := T 0 is in that case a
semi-infinite Toeplitz matrix Tk,l = Tk−l, k, l ≥ 0. Whenever Γd coincides with the arc
(e−iθ0 , eiθ0), T can be expressed as:

Tk,l =
sin(k − l)θ0
π(k − l)

, for k �= l , Tl,l
θ0
π
.
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Now, we shall be concerned with continuity properties of the solutions gm with respect
to the data f and M , see [21, 28, 30]. Let Ψm be the mapping defined by:

Ψm : Wm,2(Γd) × R∗
+ �−→ Hm,2

(f, M) �−→ gm(f, M) ,

where gm(f, M) the solution for Hm,2 associated to the data f and M .
Let Dm = { (h,M) ∈ Hm,2

|Γd
× R∗

+ tq ‖ h ‖W m,2(Γu) < M }.

Theorem 4.1 (Continuity with respect to the prescribed data and the bound) The map-
ping Ψm is continuous on

(
Wm,2(Γd) × R∗

+

) \Dm, with respect to the strong topology.
Moreover, on Wm,2(Γd) × R∗

+, the mapping Ψm is continuous with respect to the weak
topology of Hm,2 while PW m,2(Γd)Ψ is a strongly continuous mapping into W m,2(Γd).
Thus, Ψm is continuous with respect to the strong topology of Hm−1,2.

Proof (Sketch): Let us start with m = 0. The first step in the proof consists to establish,
for a given f ∈ L2(Γd), f �∈ H2(Γd) the continuity of the error mapping ef defined by:

ef : R∗
+ → R+

M �→ ‖g(f, M) − f‖L2(Γd) ,

after having proved that its convexity and its decay to zero when M → ∞.

Next, (fn) being a sequence in L2(Γd) such that ‖fn − f‖L2(Γd) → 0 and choosing a
sequence (Mn) in R∗

+ such that Mn →M , we prove that:

lim
n→∞ efn(Mn) = ef (M) . (12)

On the other hand, the sequence (g(fn,Mn)) being bounded inH 2, there exists a sub-
sequence that weakly converges there to some g̃ ∈ H 2(Ω). Since the solution to (BEP) is
unique (thanks to the strict convexity of the norm), we necessarily have that g̃ = g(f,M).
This proves the weak convergence of (g(fn,Mn)) to (g(f,M)) in H2(Ω). Moreover, we
deduce from (12) and ‖g(fn,Mn)− fn‖L2(Γd) → ‖g(f,M)− f‖L2(Γd) that strong con-
vergence actually holds in L2(Γd).

Now, whenever (f,M) �∈ D0, we get :

lim sup
n→∞

‖g(fn,Mn)‖L2(Γu) ≤ lim sup
n→∞

Mn = M = ‖g(f,M)‖L2(Γu) ,

which yields, since we already have the weak convergence of g(fn,Mn) to g(f,M)
in H2(Ω), its strong convergence on Γu.

Applying these results to the m first derivatives of the function gm finally ends the
proof.
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REMARK. — :
It might sound surprising that the strong convergence Γu is only obtained for non an-
alytic data. As a matter of fact, this only highlights the ill posedness of the analytic
extension problem. Besides, there is a fundamental discontinuity in the (BEP) problem
for analytic data : it has a unique solution provided the prescribed bound is large enough
(actually larger than the actual one), otherwise it has none. Whereas for non analytic data,
the (BEP) always has a unique solution, whatever the value of the bound is. Hopefully,
real data (i.e. noisy ones, even smoothed) are not analytic, which is a chance for the
forthcoming algorithmic construction.

4.2. Robust algorithms based on (BEP) approximants

Because experimental measurements or numerical data are attached to errors, the
choice of the constraintM on Γu is crucial for the problem. In the case where fε = f+ε,
with a non analytic perturbation ε (ε ∈ W m,2(Γd) and ε /∈ Hm,2

|Γd
), and f ∈ Hm,2, then

the bound allowed to the data on Γu is always saturated, which means that the extension
process makes totally use of the the granted freedom on Γu in order to better fit the pre-
scribed data on Γd.

Let us denote by M0 := ‖f‖W m,2(Γu).

The continuity results of Theorem 4.1 indicate that if one wants to find a best approx-
imant gm, it is necessary to choose a constraint sufficiently close to M0‖f‖W m,2(Γu).
However, this constraint M0 is an unknown of the problem, since it depends on the be-
haviour of f on Γu, whereas measurements are made only on Γd.

There are several possible methods for determining a suitable value. One of them is
the so-called "cross-validation" method, consisting to devote some part of the available
data on Γd in order to obtain an estimate for M as in [12].

The analytic extension/cross validation algorithm:

1) Split the measurement set into two parts Γd = Γ1
d ∪ Γ2

d;

2) Given M > 0, solve (BEP) with respect to (fε|Γ1
d

,M) and get gm,ε(M) =

Ψ(fε|Γ1
d

,M);

3) Find M ε := ArgminM>0τε(M) : ‖gε(M) − fε‖W m,2(Γ2
d)

and compute gm,εΨ
(
fε|Γ1

d

,Mε

)
;

4) Compute

qm,ε − ∂θ Im gm,ε

Re gm,ε
.

A less data consuming approach, not requiring to devote a part of them to the bound
determination task, has been proposed and successively implemented in [21]. Whichever
method is used to determine the bound, it should be stressed however that both tasks of
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recovering the bound and extending the data by solving a (BEP) need to be tackled in
the same time. They are actually two inseparable parts of a single algorithm: an accurate
estimate of the bound is needed to construct a proper approximation of the extended data,
which in turn are the material the bound is computed from.

Let c, c > 0 and define the following classes of “admissible" electrical impedances:

Qm
ad = {q ∈ Cm(Γu); |q(k)(x)| ≤ c, 0 ≤ k ≤ m, and q(x) ≥ c ∀x ∈ Γu}

Therefore, we have the following continuity results:

Theorem 4.2 (Robustness) Suppose Φ ∈ Wm−1,2(Γd), q ∈ Qad
m−1, m ≥ 2. Let then

fε = ud + i

∫
Φ dθ + ε ∈ Wm−1,2(Γd) and gm,ε as above. As ‖ε‖W m−1,2(Γd) → 0 it

holds that:

Re gm,ε → u in Wm−1,2(∂Ω) , ∂θIm gm,ε → ∂nu in Wm−2,2(∂Ω) .

Also
qm,ε → q (strongly) in Wm−2,2(Γu) .

Proof : This is an immediate consequence of Theorem 4.1 and if gm solve the (BEP)m

problem for the data f and the constraintM , then for all k = 0, · · · ,m the k-th derivative
g
(k)
m is the solution of (BEP) problem associate to the data f (k) and Mk := ‖g(k)

m ‖L2(Γu).

The algorithm that has been described above in the present section is the m−th or-
der one. From Theorems 4.1 and 4.2, we can notice that an additional regularity on the
data, and a higher order method too, are required to get acceptable continuity results, i.e.
strong convergence of qm,ε to q in Wm−2,2(Γu). The 1-st order method is the minimal
one needed to get strong convergence of the extended data, whereas it requires up to the
second order one to obtain strong convergence on the Robin coefficients in L 2(Γu). The
numerical results shown in the next section confirm this analysis.

REMARK. — A
s for the above Kohn and Vogelius algorithm of Section 3, the Theorem 4.1 result is not
exactly a robustness one, since the noisy data fε cannot be expected to hold the required
regularityWm−1,2(Γd). Smoothing the noisy data prior to solving the analytic extension
problem is therefore required. The estimates (7) actually show that the differentiated
smoothed noisy data may be seen as approximations of the derivatives of the actual ones,
with a noise level

√
ε. This allows to reiterate the splining procedure with an appropriate

path hk as many times as desired, thus obtaining smooth approximants of the k − th

derivatives with an O(ε
1
2k ) error [10]. The so-splined noisy data, which satisfy the above

theorem assumptions, are actually the ones that have been used as inputs in the analytic
extension algorithm.
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4.3. Numerical results

In the numerical experiments we are presenting in this section, a numerical validation
of the (BEP) reconstruction of the impedance q. Let us consider explicit data with a polar
singularity a, resulting from:

f(z) = 12 +
2 (z − 1)
z − a

, a ∈ sD . (13)

We have considered both cases of full prescribed data (i.e., Γd = T), and of incom-
plete data (i.e., data prescribed on a part of the outer boundary). The latter case is actually
the most realistic one in the framework of non-destructive testing applications.

For Γd � T, a = 0.1 and s = 0.6, Figure 2 illustrates the accuracy of the method
at order m = 1, 2 and for M � M0, as regards the analytic extension as well as the
associated electrical impedance for noisy data. Noise has been generated by a random
variable whose uniform norm ranges from 1% to 10% of ‖f‖∞. As expected from the
robustness results of the above subsection 4.2, the data extension process resists to noise
better than the Robin coefficient recovery one does, although this latter is pretty robust.
Also, we observe that the zero-order method (a) is uneffective for the Robin coefficient
recovery and for order 1 and 2, the reconstruction of q shows ill behaviour on the extremes
of the inner circle sT. Indeed, the effect of noise is more important on the derivatives of
the smoothed function f̃ε obtained by using cubic B-splines (see (6)-(7)).

Let us now study the behaviour of the (BEP) method for the reconstruction of oscil-
lating impedances. First we are considering the case of full data (Γd = T). The data used
are generated by the finite element computation of the forward problem with Neumann
data φ = 1 on T and the exact Robin coefficient q = sin(kθ) on sT for k ≥ 3.

Figure 3 shows the sensitivity of the reconstruction method with respect to k, which
parameterizes the number of oscillations. For full data, the reconstruction remains accept-
able up to k = 8, whereas it goes harsher beyond.

In Figure 4, two plots of the error are given, the first one with respect to the number of
oscillations k (full data on the outer boundary), and the second with respect to the amount
of available data whenever these data are incomplete.

In case of incomplete data (Γd � T), the second plot Figure 4 shows that the error
on the Robin coefficient remains acceptable for a rather small quantity of available data
- actually half of the outer boundary is enough - and the error decreases quite fast with
respect to the increase of prescribed data.

5. Comparison

In this section we are briefly comparing the numeric behaviour of the two of the algo-
rithms here presented and studied. The cross section Ω is an annular thick domain with
radii r1 = 1 and r2 = 0.6. The internal boundary is denoted sT on which the data are
lacking and the external one T on which the data are overspecified. For the example the
data used are generated by the finite element computation of the forward problem with
Neumann data φ = 1 on T or Γd � T and the exact Robin coefficient ϕ = | sin(kθ)|
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(a)

Figure 2. Recovery from noisy data (1%, 5%, 10% noise, methods of order zero (a) and
of order 1, 2)-bounded extensions (left) and electrical impedances q (right) on sT.
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(k=2) (k=5)

(k=8) (k=9)

Figure 3. Recovery from full external data, 2nd order method of oscillating impedances
sin(kθ), k = 2, 5, 8, 9.

(a) (b)

Figure 4. Errors w.r.t. number of oscillations k (a) and amount of prescribed data (b) (2nd
order algorithm).
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on sT. Figure 5 shows the reconstructed impedances on sT with both methods presented
above. As expected, the Kokn & Vogelius method is efficient for the recovery tasks as
far as the impedances do not oscillate much, whereas the (BEP) method still works for
oscillatory ones.
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Figure 5. Recovery impedance for Kohn&Vogelius and (BEP) methods.

6. Conclusion

We have described in this paper two robust numerical algorithms designed to recover
the impedance in a Robin inverse problem. The first one is based on the minimization
of an energy least squares function due to Kohn and Vogelius, it is an iterative process
needing to solve two forward PDE problems at each iteration. The method is proved to
be robust, even too much since its self-regularizing features make it uneasy to accurately
capture highly oscillating impedances. As for the second, based on approximation in
Hardy-Sobolev classes, its computational costs are quite low since it makes use of quasi-
explicit expansions of the solutions (up to a conformal mapping). However, it is limitated
to 2D situations, and to the Laplace operator too.

For both these methods, the focus has been put on the robustness issue, which is sen-
sibility of the computed solutions with respect to noise. Noise are errors making the data
violate both admissibility conditions: smoothness and compatibility. Splining the noisy
data can make up for smoothness, but uncompatibility remains. What has been theoret-
ically proved for these two algorithms is that appropriately smoothing and regularizing
yields robustness.

The main issue remaining to be studied regards the search of a robustness estimate.
What have been obtained so far are qualitative continuity results, with no estimates. On
the numerical level, 3D experiments with the Kohn and Vogelius method would be in-
teresting, they are indeed theoretically possible, though heavy to implement. Extending
the analytic extension approach to 3D situations needs additional theory, but it would be
of great interest since the method is accurate and cheap. Finally, seeking an accurate re-

Robin inverse problem  - 305

Revue ARIMA - volume 9 - 2008



covery of oscillating impedances by methods inspired by the textures recovery in image
processing [5] is another issue remaining to explore.
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