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ABSTRACT. In the context of Nonstandard Analysis, we study stochastic difference equations with
infinitesimal time-steps. In particular we give a necessary and sufficient condition for a solution to
be nearly-equivalent to a recombining stochastic process. The characterization is based upon a par-
tial differential equation involving the trend and the conditional variance of the original process. An
analogy with Ito’s Lemma is pointed out. As an application we obtain a method for approximation of ex-
pectations, in terms of two ordinary differential equations, also involving the trend and the conditional
variance of the original process, and of Gaussian integrals.

RÉSUMÉ. Dans le contexte de l’Analyse Nonstandard, nous étudions des équations différentielles
stochastiques avec des pas infiniment petits. En particulier, nous formulons une condition nécessaire
et suffisante pourqu’une solution soit presque-équivalente à un processus stochastique recombinant.
La caractérisation est donnée par une équation aux dérivées partielles de la tendance et de la va-
riance conditionnelle du processus de départ. Nous indiquons une analogie avec le Lemme d’Ito.
Nous appliquons cette caractérisation au problème de la détermination d’espérances pour le pro-
cessus de départ. En fait, on obtient une approximation infinitésimale en resolvant deux équations
différentielles ordinaires, également de la tendance et de la variance conditionnelle de ce processus,
et en calculant une intégrale de Gauss.
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1. Introduction

We study in the context of Nonstandard Analysis a class of stochastic processes which
are nearly-equivalent to recombining processes, otherwise said, processes which are nearly-
equivalent to deterministic functions of time t and the Wiener Walk W 1.

The Wiener Walk W is given by the initial condition W (0) = 0, and has independent
increments δWt = ±√

δt, where δt is a fixed infinitesimal time-interval. The processes
in question satisfy a stochastic difference equation of type

δXt = μ (t, Xt) δt ± σ (t, Xt)
√

δt; (1)

here μ is the trend and σ2 the conditional variance of the process X , and t is of the form
t = kδt, where k is an integer and t ≤ T , for some standard T . These discrete processes
with infinitesimal increments are, in a sense, imitations of continuous-time processes,
given by stochastic differential equations. In particular, under rather mild conditions on
μ and σ, almost all of their trajectories are S-continuous - a nonstandard notion of near-
continuity shared by standard continuous functions - , and also the laws of their stochas-
tic variables may be S-continuous. Such processes have been rather intensively studied
within Nonstandard Analysis, for instance in [2][12][18][17][1][27][22][20][4] and [7].
Well-known introductions to the classical approach are the books by Øksendal [23] and
Protter [24].

A process is said to be recombining if, like in the case of the Wiener Walk, an up-
ward movement followed by a downward movement yields the same result as a down-
ward movement followed by an upward movement. This leads to a property of path-
independence: starting at a given initial point, every trajectory with the same number of
upward movements and downward movements ends at the same point.

The notion of near-equivalence was introduced in [22]. In particular, if two processes
X and Y are nearly-equivalent, the expectations EF (X t) and EF (Yt) of limited and S-
continuous functions F of their respective stochastic variables are infinitely close. Here
lies a principal motivation of our work, for it induces an effective strategy to determine
an infinitesimal approximation of expectations of stochastic variables F (X t) related to
the stochastic difference equation (1), whenever its solution X is nearly-equivalent to a
recombining process Y . Indeed, for non-infinitesimal t an infinitesimal approximation of
the stochastic variables of the recombining process Y may be determined by solving two
ordinary differential equations, in terms of the trend μ and the conditional variance σ 2

of the process X , while their laws are binomial, hence almost Gaussian. Then EF (X t)
will be infinitely close to a Riemann-sum, and in case of convergence, to an improper
Riemann-integral (see formulae (6) and (7) and Theorem 6.4).

In this article we present a construction which associates a recombining process Y to
any process X given by equation (1). The Main Theorem gives necessary and sufficient

1. An overheard occasional discussion remark by Claude Lobry happened to be the incentive for
this study of recombining processes. Claudy Lobry also animated a workgroup on discrete stochastic
processes leading to the expository text of Benoit [3]. This contains a characterization of nearly-
equivalent processes which is essential for this article.
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conditions for the processes X and Y to be nearly-equivalent. Indeed, it is needed that μ
and σ satisfy the partial differential equation

σ
∂μ

∂X
− Dσ = 0, (2)

where D = μ ∂
∂X + ∂

∂t + σ2

2
∂2

∂X2 is the operator of Dynkin. The remaining conditions are
regularity conditions, on existence, continuity and boundedness of some partial deriva-
tives of μ and σ. Notice some similarity between (2) and the Cauchy-Riemann conditions
for path-independence, where to the operator μ ∂

∂X are added the terms ∂
∂t and σ2

2
∂2

∂X2 .

The necessary part of the Main Theorem is in a sense an obvious consequence of
the classical Lemma of Ito. Ito’s Lemma, applied to stochastic differential equations
dXt = μ (t, Bt) dt + σ (t, Bt) dBt, where B is the Brownian Motion, states that if

Xt = f(t, Bt) for some sufficiently regular function, it holds that μ = ∂f
∂t + 1

2
∂2f
∂x2 and

σ = ∂f
∂x . Then formula (2) follows by partial differentiation and an appropriate change

of variables (see Theorem 7.1.7 and the final proof of this article). In fact, we derive a
sort of discrete version of Ito’s Lemma. Indeed, the Wiener Walk W being recombining,
it follows from elementary geometric considerations that any recombining process satis-
fying the stochastic difference equation (1) is a function f(t, W t) of time and the Wiener
Walk. For such functions f we derive formulae for μ and σ which are analogous to those
given by Ito’s Lemma, now in terms of near-equalities and partial difference-quotients. In
a sense the Main Theorem adds to this discrete Ito Lemma a converse, stating that a suf-
ficiently regular function f exists only if μ and σ satisfy the partial differential equation
(2).

The two ordinary differential equations used for the determination of the stochastic
variables of the recombining processes Y are obtained as infinitesimal approximations of
ordinary difference equations, by the general nonstandard method of transition from the
discrete to the continuous called stroboscopy. It is interesting to note that the differential
equations are special cases of those obtained by Halim Doss [16] for continuous-time
processes, with entirely different methods.

There is a new interest in the determination of expectations in view of the emergence
of mathematical finance, for they may be interpreted as the price of options and other fi-
nancial instruments. In [8] some steps are taken to apply the above-mentioned strategy in
this context. The strategy may be seen as an extension of the method used in [7] and [10]
to derive the Black Scholes price [9] of options for continuous-time pricing-models from
the discrete pricing-model of Cox-Ross-Rubinstein [11]. In that case the process is the -
recombining - Discrete Geometric Brownian Motion, and the difference equations respec-
tively differential equations reduce to Riemann-sums respectively Riemann-integrals.

We begin this article by recalling, in Section 2, some notions and properties with re-
spect to discrete stochastic processes. In Section 2.1 we define some planar geometric
notions, motivated by the regular, uniform behaviour of the trajectories of the Wiener
Walk. In Section 2.2 we define formally discrete stochastic processes. In Section 2.3
we consider in particular the processes originating from stochastic difference equations
and, within this category, in Section 2.4 those processes which are recombining. To the
recombining processes we associate a geometric tool, the discrete surface, an infinites-
imally fine network consisting of all points lying on the trajectories of the process. In
Section 2.5 we consider the probability law of these processes, which is the Binomial
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Law; the latter is in the case of a sufficiently large number of steps infinitely close to the
Normal Law, by the DeMoivre-Laplace central limit theorem. Section 2.6 recalls various
notions of near-continuity and near-differentiability for discrete functions defined on in-
finitesimal grids, including functions of two variables. We indicate how the relation with
standard continuous and (partially) differentiable functions is made through the notion
of shadow. In Section 2.7 we recall the definition of near-equivalence of [22] and the
criterion for near-equivalence for solutions of stochastic difference equations proved in
[3].

The preliminary work of defining the principal notions and the setting being done, we
are able to present the Main Theorem in Section 3. We give some examples and sketch
the structure of the proofs of the sufficient and necessary parts.

In Section 4 we construct a recombining process Y t for every discrete stochastic pro-
cess Xt satisfying the stochastic difference equation (1), that we will call the associated
recombining process. The construction is made by a form of vertical induction, starting
from the central median trajectory of X . An important feature of the construction is that
it modifies only the trend of the original process, maintaining its conditional variance.

In Section 5 we derive the two differential equations which permit to determine the
limited part of the discrete surface Ỹ up to an infinitesimal. Also, the regularity condi-
tions of the Main Theorem permit to show that Ỹ is limited and S-continuous for limited
arguments, and as a consequence we obtain that nearly all trajectories of the associated
recombining process are limited and S-continuous.

In Section 6 we analyze the error made when approximating the original stochastic
process by the associated recombining process. Because the inductive method induces cu-
mulative errors, in principle the approximation does not need to be very good. However,
under the conditions of the Main Theorem the trend of the recombining process differs
from the trend of the original process only infinitesimally for limited arguments. Know-
ing that the two processes have the same median trajectory, we are able to prove this by
vertical induction, with the aid of the partial differential equation (2). Then a criterion on
near-equivalence of [3] permits to conclude that the two processes are nearly-equivalent.
As an application we show how to use the near-equivalence for the determination of ex-
pectations with respect to the original process. In this section we show also that the trend
of the recombining process and the discrete surface associated to it have more regularity
than already mentioned, for they have nonstandard properties of near-differentiability.

As already said, the relation between the trend and the conditional variance of the orig-
inal process X , given by the partial differential equation (2), is necessary for our proof
that the recombining process Y resulting from the construction in Section 4 is nearly
equivalent. In the last section we show that it is also sufficient: within the regularity con-
ditions of the Main Theorem, the (shadows of) the trend and the conditional variance of
a recombining process should satisfy (2). Indeed, the properties of near-differentiability
of the associated discrete surface lead to some individual approximate partial difference
equations for the trend and the conditional variance. Then their shadows satisfy the cor-
responding partial differential equations, and differentiating partially once again, together
with some simplifications, leads to (2). We end with a corollary, in fact a reformulation
of the Main Theorem, which relates the formulae in question to Ito’s Lemma.

This article uses the axiomatic approach of Nonstandard Analysis I.S.T. of Nelson
[21]. For an introduction and notations, we refer to [14] and [13], and for an introduction
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to stochastic processes in this setting to [22]. Some formulae contain the symbol ∅. This
is a symbol of approximation, and is used much as the symbol o(1) in asymptotic analysis.
For example x = ∅ is an abbreviation of "there exists an infinitesimal number ε such that
x = ε”, while the exact value of ε does not have much importance. The use of this and
similar symbols is formalized in [19].

We thank Marc and Francine Diener (University of Nice) and Eric Benoît (Univer-
sity of La Rochelle) for some useful discussions. We thank the referee for indicating an
inconsistency in the proof of the Main Theorem.

2. Notations and Definitions

We introduce some notations, definitions and basic properties that will be used in the
remaining sections.

2.1. Geometric notions

We let δt > 0, δt � 0 be an infinitesimal time-period. We write T = {kδt : k ∈ N}.
Let a, b ∈ T, a ≤ b. We define the discrete interval [a..b] ⊂ T by

[a..b] = {t ∈ T : a ≤ t ≤ b} .

We will also consider other discrete structures with points equally spaced at infinitesimal
distance, and extend the notion of discrete interval to such structures. In particular we
let δx = 2

√
δt. Then δx � 0, but δx/δt � +∞. We write X = {nδx : n ∈ Z}. Also,

if δy > 0, δy � 0, we write Y = {mδy : m ∈ Z}. To a discrete interval [a..b] may be
associated a standard, continuous interval through the notion of shadow [14]. Indeed, if t
is a limited real number its shadow is the (unique) standard number ◦t such that ◦t � t.
For instance, one shows that if a and b are both limited the shadow ◦ [a..b] of [a..b] is
the continuous interval [◦a,◦ b]; also ◦

T = [0,∞), ◦
X = R and ◦(X × Y) = R

2. The
notion of shadow serves also to associate to a discrete function with sufficient regularity
a standard continuous function, see Section 2.6.

We define m : T → R by

m(t) =
{

0 t/δt even√
δt t/δt odd

(see Figure 2).

Let T ∈ T. The binomial cone CT ⊂ R
+ × R is defined by

CT =
{

(t, x) : t ∈ [0..T ] , x ∈ m(t) + X, |x| ≤ t√
δt

}
.

See Figure 1; observe that ◦CT = [0,◦ T ] × R.

2.2. Stochastic processes

We consider discrete stochastic processes X in the sense of [22], indexed by [0..T ],
where T ∈ T. They may be seen as a sequence (Xt)t∈[0..T ] of stochastic variables
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Figure 1. The binomial cone CT

defined on the same finite probability space < Ω, pr >, i.e. every X t is a function of Ω
into R. Let ω ∈ Ω. Then the function ξ : [0..T ] → R, defined by

ξ(t) = Xt(ω),

is called a trajectory of X . It is thus possible (but not necessary) to identify Ω with the set
of trajectories of the process X . In this article we consider stochastic processes defined
inductively, as solutions of stochastic difference equations. This means that an initial
stochastic variable X0 is given and an equation for its increments δXt ≡ Xt+δt − Xt,
for t ∈ [0..T − δt]. An important particular case is given by the Wiener Walk W . This
process has constant initial condition W0 = 0 and its increments δWt satisfy

δWt =
{ √

δt probability 1
2

−√
δt probability 1

2 .

Then every trajectory λ is at every instant t given by the partial sum

λ (t) =
∑

0≤s<t

(−1)ε(s)
√

δt,

where ε (s) = 1 or ε (s) = 0. Note that m(t) =
∑

0≤s<t (−1)s/δt √
δt, so m is a

trajectory of the Wiener Walk. We call m the median trajectory.

Let ΛT be the set of the 2T/δt possible trajectories of the Wiener Walk. If we suppose
that its increments are independent, it may be shown that all trajectories λ are equiprob-

able with probability pr(λ) =
(

1
2

)T/δt
. Then < ΛT , pr > is a probability space. The

binomial cone CT is the union of all trajectories of the Wiener Walk.

2.3. Stochastic difference equations

Let T ∈ T, T > 0. We consider stochastic difference equations of the form{
δXt = μ (t, Xt) δt + σ (t, Xt) δWt t ∈ [0 · ·T − δt]
X0 = x0,

(3)
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Figure 2. The median trajectory m of the Wiener Walk.

with μ and σ > 0 real functions of two variables and x0 ∈ R. By (3) every trajectory λ
of the Wiener Walk defines a function ξ ≡ ξ (λ) : [0..T ] → R. Hence we may consider
the solution X of (3) to be the sequence of the partial sums X t = x0 +

∑
0≤s<t δXs, all

defined on the probability space < ΛT , pr >. We suppose that at every t ∈ [0..T − δt]
the functions μ (t, ·) and σ (t, ·) are defined at least on Xt(ΛT ). The function μ is called
the trend and the function σ2 the conditional variance of the process.

2.4. Recombining processes

Let X be a stochastic process satisfying the stochastic difference equation (3) and
t ∈ [0..T − δt]. The upward movement δX+

t is defined by

δX+
t = μ (t, Xt) + σ (t, Xt)

√
δt

and the downward movement δX−
t is defined by

δX−
t = μ (t, Xt) − σ (t, Xt)

√
δt.

We define X+
t = Xt + δX+

t and X−
t = Xt + δX−

t . For the stochastic variables resulting
from two successive movements one defines in an evident way the notation X + +

t , X+ −
t ,

X− +
t and X−−

t , where t < T − δt.

A process is said to be recombining if for every t < T − δt

X+ −
t = X− +

t .

Examples of recombining processes are the Wiener Walk and the Discrete Geometric
Brownian Motion S defined by S0 = 1 and

δSt = μStδt + σStδWt, (4)

with μ, σ ∈ R, σ 
= 0.

To a recombining process X one may associate a mapping, called discrete surface

X̃ : CT → R,
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defined by
X̃ (t, x) = Xt(λ)

for some λ ∈ Λ such that λ(t) = x. The mapping is well-defined because recombination
implies path-independence: if λ′ ∈ Λ is such that λ′(t) = x, one has Xt(λ′) = Xt(λ).
The discrete surface associated to the Wiener Walk is the plane

W̃ (t, x) = x,

and for the Geometric Brownian Motion with μ, σ standard one has the approximation

S̃ (t, x) � exp
((

μ − 1
2
σ2

)
t + σx

)
,

valid for limited t and x; see for instance [10][7]. In Section 5 we derive a general method
to determine approximations of discrete surfaces.

Let T ∈ T, T > 0. Let X be a recombining stochastic process indexed by [0 · ·T ]
and X̃ be its associated discrete surface. Then we may associate to a function f of t

and Xt a function f̃ : CT → R by defining f̃(t, x) = f(t, X̃(t, x)). For instance,
to the trend μ, respectively the conditional variance σ 2, of a recombining process we
associate functions μ̃, respectively σ̃, defined on CT , given by μ̃(t, x) = μ(t, X̃ (t, x))
and σ̃(t, x) = σ(t, X̃ (t, x)).

To a given discrete surface X̃ : CT → R it is possible to associate a recombining
stochastic process, satisfying a stochastic difference equation of the form (3), by defining⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ(t, X̃ (t, x)) =
eX(t+δt,x+

√
δt)+ eX(t+δt,x−√

δt)−2 eX(t,x)

2δt

σ(t, X̃ (t, x)) =
eX(t+δt,x+

√
δt)− eX(t+δt,x−√

δt)
2
√

δt{
δXt = μ (t, Xt) δt + σ (t, Xt) δWt

X0 = X̃ (0, 0) .

With abuse of language we identify sometimes a recombining process with its discrete
surface.

2.5. Binomial distributions

The probability distribution of a recombining process given by the stochastic differ-
ence equation (3) is binomial. Indeed, put for (t, x) ∈ CT

νt = t
δt

jt,x = t
2δt + x

δx
b(t, x) = 1

δx

(
νt

jt,x

) · 1
2t/δt .

Then

Pr
{
Xt = X̃ (t, x)

}
= Pr {Wt = x} =

(
νt

jt,x

)
· 1
2t/δt

= b(t, x)δx.

Clearly ∑
|x|≤ t√

δt

b (t, x) δx = 1.
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For appreciable t and limited x we have the Gaussian approximation

b (t, x) � e−
x2
2t√

2πt
.

For more details of this nonstandard version of the DeMoivre-Laplace central limit theo-
rem we refer to [7].

2.6. Near-continuity and near-differentiability

Let D ⊂ R and f : D → R be a function. The function f is said to be S-continuous
if for every x, y ∈ D

x � y ⇒ f(x) � f(y).

The function f is said to be of class S 0 if it is limited and S-continuous at least at the
limited elements of D [14]. Both continuous functions and discrete functions may be of
class S0. It may be shown that every standard everywhere defined continuous function is
limited and S-continuous on the external set of limited numbers, hence is of class S 0, and
also that to every discrete function f defined on a near-interval [a..b] may be associated
a standard continuous function ◦f , called shadow of f . If a and b are limited, one has
◦f : [◦a,◦ b] → R, with f(x) � ◦f(x) for all x ∈ [a..b]∩ [◦a,◦ b]. If a and b are unlimited,
its shadow ◦f is defined on R, and f(x) � ◦f(x) holds for all limited x ∈ [a..b].

One may extend these notions of near-continuity of discrete functions to higher order
and to functions of two variables. For instance, let δx > 0, δx � 0. A function f : X → R

is called of class S1 if f and δf/δx are of class S0, with δf defined by δf(x) = f(x +
δx)− f(x). The function f is called of class S2 if f is of class S1 and δ2f

δx2 is of class S0.
On may show that the shadow of a function of class S 1 is of class C1 and that the shadow
of a function of class S2 is of class C2 [6]. The following definition concerns discrete
functions of two variables.

Definition 2.1 Let δx, δy > 0, δx, δy � 0. Let f : X × Y → R and D ⊂ X × Y. We
write δ1f = f(x + δx, y) − f(x, y), δ2f = f(x, y + δy) − f(x, y) and δ2

ijf = δi(δjf)
for i, j ∈ {1, 2}. We say that

1) f is of class S0,0 on D if f is limited and S-continuous at every limited point
(x, y) ∈ D.

2) f is of class S1,0 on D if f and δ1f
δx are of class S0,0 on D.

3) f is of class S0,1 on D if f and δ2f
δy are of class S0,0 on D.

4) f is of class S2,0 on D if f is of class S1,0 and δ2
11f
δx2 is of class S0,0 on D. In an

analogous way we define functions of class S 0,2.

5) Let i, j ∈ {1, 2}. We say that f is of class S i,j on D if f is of class Si,0 and
S0,j on D.

For i, j ∈ {1, 2} the shadow of a function of class S i,j is a function of class C i,j . For
more details and proofs, see [6] and [15].

It is straightforward to extend the notion of class S 0 to discrete functions defined on
irregular sets of points. For instance, let f : X → R be of class S 0. Let g : f(X) → R.
We say that g is of class S0 if g(y) is limited for all limited y ∈ f(X) and g(y) � h(z)
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whenever y, z ∈ f(X) are limited with y � z. Then g ◦ f is of class S 0 and ◦g is defined
at least on the shadow of the image by f of the limited part of X. More care is needed
for near-differentiability. The function g is said to be of class S 1 if g is of class S0 and
there exists a function h : f(X) → R of class S0 such that g(z)−g(y)

z−y � h(y) whenever

y, z ∈ f(X) are limited with y � z. Then ◦g is of class C1[14][6] and ( ◦g)′ = ◦h. If f
is also of class S1, we have the following "Chain Rule" for limited x ∈ X :

◦
(

g(f(x + δx)) − g(f(x))
δx

)
=

(
(◦g)′ ◦ ◦f)(x) · ( ◦f

)′
(x).

Indeed,
δ(g ◦ f)(x)

δx
=

g(f(x + δx)) − g(f(x))
δx

=
g(f(x) + δf(x)) − g(f(x))

δf(x)
δf(x)

δx
� h(f(x))

δf(x)
δx

,

so δ(g◦f)
δx is of class S0. Hence g ◦ f is of class S1. Then ◦ (g ◦ f) is of class C1,

with ◦
(

g(f(x+δx))−g(f(x))
δx

)
= (◦h ◦ ◦f)(x) · ( ◦f)′ (x) =

(
(◦g)′ ◦ ◦f)(x) · ( ◦f

)′
(x)

of class C0.

We consider also near-continuity and near-differentiability of functions of two vari-
ables. In particular, let f : X × Y → R

2 be such that f(x, y) = (x, φ(y)), for some
function φ : Y → R of class S0. Let g : f(X × Y) → R. We say that g is of class S0,0 if
g(x, z) is limited for all limited (x, z) ∈ f(X × Y) and g(x1, z1) � g(x2, z2) whenever
(x1, z1), (x2, z2) ∈ f(X × Y) are limited with (x1, z1) � (x2, z2); then ◦g is of class
C0,0. The function g is said to be of class S 0,1 if g is of class S0,0 and there exists a
function h of class S0,0 such that g(x,w)−g(x,z)

w−z � h(x, z) whenever z, w ∈ φ(Y) are

limited with z � w. Then for limited (x, z) ∈ X × φ(Y) one has ◦
(

g(x,w)−g(x,z)
w−z

)
=(

∂ ◦g
∂ ◦φ

)
(x, z). If φ is also of class S1, the "Chain Rule" for limited (x, y) ∈ X × Y takes

the form

◦
(

g(x, φ(y + δy)) − g(x, φ(y))
δy

)
=

(
∂g

∂ ◦φ
◦ ◦φ

)
(x, y) ·

(
∂ ◦φ
∂y

)
(x, y).

for limited (x, y) ∈ X × Y.

In [22] Nelson defined a form of S-continuity also for real-valued functionals F de-
fined on sets of trajectories of stochastic processes, say, indexed by [0..T ], with T ∈ T.
Indeed, let Θ be such a set. Then F : Θ → R is uniformly S-continuous if F (α) � F (β)
for all trajectories α, β ∈ Θ such that α (t) � β (t) for all t ∈ [0..T ].

2.7. Expectations, nearly-equivalent processes

Let δt > 0 and T ∈ T. Let X be a discrete stochastic process indexed by [0..T ],
solution of the stochastic difference equation (3). Then X is defined on the probability
space < ΛT , pr >. Let Ξ be the set of all trajectories of X . Let F : Ξ → R. Then the
expectation of F is

EF =
∑

λ∈ΛT

F (ξ(λ))prλ. (5)
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Since there are 2T/δt trajectories, this formula is of exponential complexity. If F depends
only on the final value of the trajectory ξ(λ), and the process is recombining, one obtains
a significant simplification. Indeed, formula (5) may be reduced to a binomial sum, in
fact a Riemann-sum, i.e.

EF =
∑

|x|≤T/
√

δt

b(T, x)F̃ (X̃(T, x))δx, (6)

with F̃ : ImXT → R defined by F̃ (ξ(λ)(T )) = F (ξ(λ)). If T is limited and F is limited
and uniformly S-continuous, and also X̃(T, ·) is of class S0, the above Riemann-sum is
nearly-equal to the improper Riemann-integral

EF � 1√
2πT

∫ +∞

−∞
e−

x2
2T · ◦F̃ ( ◦X̃(T, x))dx, (7)

see [5].

Definition 2.2 Let δt > 0, δt � 0 and T ∈ T. Let X and Y be two discrete stochastic
processes defined on the same probability space, indexed by [0..T ]. Let Θ be the union
of all trajectories of X and Y . Then X and Y are said to be nearly-equivalent if for all
limited and uniformly S-continuous functionals F defined on Θ

EF (X) � EF (Y ) .

In [3] (see also [4]) a sufficient condition on the trend and conditional variance is given
for two stochastic difference equations to have nearly-equivalent solutions. We present a
version of this result, which is adapted to our setting. First we recall the nonstandard
probabilistic notion of nearly everywhere.

Let < Ω, pr > be a finite probability space. An (internal or external) property P
is said to hold nearly everywhere if for all standard a > 0 there exists an internal set
I ⊂ {P (x)} such that Pr I ≥ 1 − a; it is not difficult to show that an internal property
P holds nearly everywhere if and only if Pr{P (x)} � 1. In [22] it is shown that, when
the Wiener Walk is indexed by a discrete time-interval [0 · ·T ], with limited T , nearly all
trajectories are everywhere S-continuous.

Theorem 2.3 Let δt > 0, δt � 0 and T ∈ T be appreciable. Let X and Y be two discrete
stochastic processes indexed on [0 · ·T ]. Suppose that X satisfies the stochastic difference
equation (3), where ◦μ is standard of class C0,1 and ◦σ > 0 is standard of class C1,2,
with ∂ ◦μ/∂X bounded, and that Y satisfies the stochastic difference equation{

δYt = ν (t, Yt) δt + ρ (t, Yt) δWt

Y0 = y0,

where ◦ν = ◦μ and ◦ρ = ◦σ. If nearly all trajectories of one of the processes are every-
where limited, the processes X and Y are nearly-equivalent.

We note that although Benoît supposed ◦μ and ◦σ to be of class C∞,∞, in his proof
he uses only that ◦μ is of class C0,1 and ◦σ is of class C1,2. We will show in Section
5.3 that, if ∂ ◦σ/∂X is also bounded, nearly all trajectories of the recombining process Y
associated to the process X are everywhere limited (hence also nearly all trajectories of
the process X , by near-equivalence [22]).
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3. The Main Theorem

For convenience we consider stochastic processes indexed by a discrete interval [0··T ],
with T > 0 standard. I.e., we might suppose the final time T as given, and assume then
that the interval [0, T ] is divided into an unlimited number of infinitesimal time-steps of
equal length δt.

Theorem 3.1 Let T > 0, x0 ∈ R be standard. Let δt > 0, δt � 0 be such that T/δt ∈ N.
Let σ : [0, T ]× R → R be standard of class C1,2, with σ > 0 and ∂σ

∂X bounded.

1) Let μ : [0, T ] × R → R be standard of class C0,1. Let X satisfy the stochastic
difference equation (3). Assume ∂μ

∂X is bounded, and

σ
∂μ

∂X
−

(
∂

∂t
+ μ

∂

∂X
+

σ2

2
∂2

∂X2

)
σ = 0. (8)

Then there exists a recombining process Y , which is nearly equivalent to X on [0 · ·T ]
and satisfies a stochastic difference equation{

δYt = ν (t, Yt) δt + σ (t, Yt) δWt t ∈ [0 · ·T − δt]
Y0 = x0,

(9)

with ν : {(t, Ỹ (t, x)) |(t, x) ∈ CT } → R of class S0,1.

2) Let Y be a recombining process, satisfying the stochastic difference equa-
tion (9), where ν : {(t, Ỹ (t, x)) |(t, x) ∈ CT } → R is of class S0,1 and
ν(t,eY (t,x+δx))−ν(t,eY (t,x))

δ2 eY (t,x)
is limited for (t, x) ∈ CT−δt, with x < t/

√
δt. Let μ = ◦ν. Then

(i) X = ◦Ỹ is well-defined as a function of [0, T ]×R into R, (ii) μ : X ([0, T ]× R)→ R

is of class C0,1 with ∂μ
∂X bounded and (iii) μ and σ satisfy (8).

The proof of the first part of the theorem involves the following steps. Firstly, we
construct a recombining stochastic process Y corresponding to the process X with the
same conditional variance, but with possibly modified trend ν, that we will call the as-
sociated recombining process (Section 4). Secondly, we determine the discrete surface
corresponding to the associated recombining process up to an infinitesimal, by solving
two ordinary differential equations; we prove also that the surface is at least of class S 0,0

and obtain as a consequence that nearly all trajectories of the recombining process are of
class S0 (Section 5). Thirdly, we show that the shadow of the trend ν of the recombining
process is equal to the trend μ of the original process, being even of class S 0,1. The two
latter properties enable to apply Benoît’s theorem on the near-equivalence of processes
(Section 6).

The near-equality of the trend of the original process and the trend of the associated
recombining process relies heavily on the partial differential equation (8). Indeed, one
may show that the original process is in a sense "nearly recombining": all the terms of the
Taylor expansion of X+−

t − X−+
t , i.e. the discrepancy between the result of an upward

movement followed by a downward movement and the result of a downward movement
followed by an upward movement, cancel up to order δt 3/2, the coefficient of the latter

term being 2
(
σ ∂μ

∂X − ∂σ
∂t − μ ∂σ

∂X − σ2

2
∂2σ
∂X2

)
. This will also imply that the difference

between X and Y is sufficiently small for near-equivalence; see the remark following the
proof of the first part of the Main Theorem in Section 6.
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The proof of the second part of the theorem is contained in Section 7. Theorem 7.1.1,
7.1.2, 7.1.4 and 7.1.6 state that the functions involved have appropriate regularity. The-
orem 7.1.3 states some partial difference equations for the discrete surface Ỹ associated
to the process Y and Theorem 7.1.5 some partial differential equations for its shadow
X ≡ ◦Ỹ . Appropriate partial differentiation of these partial differential equations (Theo-
rem 7.1.7) and a change of variables lead to the partial differential equation (8). We will
also show that some of the equations in question have an interpretation in terms of Ito’s
formula.

We end this section with some examples.

Examples.

1) The trend and the conditional standard deviation of the Wiener Walk and the
Discrete Geometric Brownian Motion (4) satisfy the partial differential equation (8). In-
deed, in the case of the Wiener Walk δWt = 1 · δWt all partial derivatives are zero, and
in the case of the Discrete Geometric Brownian Motion δS t = μStδt + σStδWt we have

σSt
∂μS

∂S
− ∂σS

∂t
− μS

∂σS

∂S
− σ2S2

2
∂2σS

∂S2
= σμS − μσS = 0.

2) It is easily verified that the Geometric Brownian Motion with time-dependent
"drift", i.e. a process originating from equations of the form

δSt = μ(t)Stδt + σStδWt S0 = s0

satisfies the conditions of Part 1 of the Main Theorem, if μ is a standard and continu-
ous real function and σ and s0 are standard positive real numbers. This is also true for
processes satisfying a stochastic diference equation of the form

δXt =
σ′(t)
σ(t)

Xtδt + σ(t)δWt X0 = x0,

where σ is standard, positive and continuously differentiable, and x 0 ∈ R is standard.

3) Let x0, a and C be standard positive numbers with a 
= 1. The trend and the
conditional variance of the processes given by

δXt =
{ (

a
2X2a−1

t + CXa
t

)
δt + Xa

t δWt

X0 = x0

satisfy (8). The shadow of the associated discrete surface Ỹ may be given in closed form.
Indeed, with the aid of Theorem 5.3 below, it may be seen that ◦Ỹ (t, x) = Vt(x), where
Vt is solution of the differential equation{

d Vt

dx = (Vt(x))a

V (0) = U(t),

with U(t) given by {
d U
ds = CUa(s)
U(0) = x0.

Then ◦Ỹ (t, x) =
(
x1−a

0 + (1 − a)(x + Ct)
) 1

1−a . Notice however that it may very well
not be defined everywhere, depending on the value of a, while also the growth and/or the
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differentiability conditions for the trend and the conditional variance of the Main Theorem
are not satisfied in general. Such problems could be overcome by introducing appropriate
reflecting barriers (which should respect a property of "near-recombination") or stopping
times (then the process would be "nearly recombining" only until stopped). Still, the
process obtained by these restrictions would not satisfy the conditions of differentiability
of the Main Theorem, so it needs further investigation to conclude that they are nearly-
equivalent to a recombining process.

4. The associated recombining process

Let X be a process satisfying the stochastic difference equation (3) for t ∈ [0 · ·T −δt],
with T ∈ T, T > 0.

We construct a recombining stochastic process Y corresponding to the process X
with the same conditional variance, but with possibly modified trend ν. In fact we define
Y through its associated discrete surface Ỹ . We start by defining Ỹ along the median
trajectory m of the Wiener Walk, and continue the construction by induction in x.

Definition 4.1 Let δt > 0 and T ∈ T, T > 0. Let the process X satisfy the stochastic
difference equation (3) for t ∈ [0 · ·T − δt]. The associated recombining process Y is
defined by

1) (Initial values) We define⎧⎨⎩ Ỹ (t, m(t)) = Xt(m) t ∈ [0 · ·T ]
σ̃(t, m(t)) = σ(t, Xt(m)) t ∈ [0 · ·T − δt]
ν̃(t, m(t)) = μ(t, Xt(m)) t ∈ [0 · ·T − δt].

2) (Induction step)

a) (Positive x) Let x > 0 be a multiple of
√

δt and suppose Ỹ (t, y), σ̃(t, y) and μ̃(t, y)
are defined for all (t, y) ∈ CT such that 0 ≤ y ≤ x and y

√
δt ≤ t ≤ T (in the case of Ỹ )

and y
√

δt ≤ t < T (in the case of σ̃ and ν̃). We define for (t, x +
√

δt) ∈ CT

Ỹ (t, x +
√

δt) = Ỹ (t − δt, x) + ν̃(t − δt, x)δt + σ̃(t − δt, x)
√

δt.

and for (t, x +
√

δt) ∈ CT such that t < T{
σ̃(t, x +

√
δt) = σ(t, Ỹ (t, x +

√
δt)).

ν̃(t, x +
√

δt) = ν̃(t, x −√
δt) + eσ(t,x+

√
δt)−2eσ(t−δt,x)+eσ(t,x−√

δt)√
δt

.

b) (Negative x) Let x < 0 be a multiple of
√

δt and suppose Ỹ (t, y), σ̃(t, y) and
ν̃(t, y)are defined for all (t, y) ∈ CT such that x ≤ y ≤ 0 and y

√
δt ≤ t ≤ T (in the case

of Ỹ ) and y
√

δt ≤ t < T (in the case of σ̃ and ν̃). We define for (t, x − √
δt) ∈ CT

Ỹ (t, x −
√

δt) = Ỹ (t − δt, x) + ν̃(t − δt, x)δt − σ̃(t − δt, x)
√

δt.

and for (t, x −√
δt) ∈ CT such that t < T{

σ̃(t, x −√
δt) = σ(t, Ỹ (t, x −√

δt)).
ν̃(t, x −√

δt) = ν̃(t, x +
√

δt) − eσ(t,x−√
δt)−2eσ(t−δt,x)+eσ(t,x−√

δt)√
δt

.
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Observe that in the induction step both the positive and the negative case reduce to the
same formula of ν̃(t, x +

√
δt) in terms of ν̃(t, x − √

δt), i.e.

ν̃(t, x+
√

δt) = ν̃(t, x−
√

δt)+
σ̃(t, x +

√
δt) − 2σ̃(t − δt, x) + σ̃(t, x −√

δt)√
δt

. (11)

Next proposition verifies that the process Y is recombining indeed.

Proposition 4.2 Let δt > 0 and T ∈ T, T > 0. Let X be a process satisfying the
stochastic difference equation (3) for t ∈ [0 · ·T − δt]. The process Y given by Definition
4.1 is recombining.

Proof. Let (t − δt, x) ∈ CT such that still (t + δt, x) ∈ CT . Then, applying (11),

Ỹ (t − δt, x)+− − Ỹ (t − δt, x)−+ =
= ν̃(t − δt, x)δt + σ̃(t − δt, x)

√
δt + ν̃(t, x +

√
δt)δt − σ̃(t, x +

√
δt)

√
δt+

−
(
ν̃(t − δt, x)δt − σ̃(t − δt, x)

√
δt + ν̃(t, x −√

δt)δt + σ̃(t, x −√
δt)

√
δt

)
=

(
ν̃(t, x +

√
δt) − ν̃(t, x −√

δt)
)

δt+

−
(
σ̃(t, x +

√
δt)

√
δt − 2σ̃(t − δt, x)

√
δt + σ̃(t, x −√

δt)
)√

δt

= eσ(t,x+
√

δt)−2eσ(t−δt,x)+eσ(t,x−√
δt)√

δt
δt+

−
(
σ̃(t, x +

√
δt)

√
δt − 2σ̃(t − δt, x)

√
δt + σ̃(t, x −√

δt)
)√

δt

= 0.

5. Properties of the discrete surface

On rather mild conditions on μ and σ the discrete surface Ỹ has a shadow, which can
be determined by solving successively two ordinary differential equations.

We start, in the general context of processes X which are solutions of stochastic dif-
ference equations, by deriving approximations of X +−

t − Xt and X+ − X−.

Proposition 5.1 Let δt > 0 and T ∈ T, T > 0. Let X be a process satisfying the
stochastic difference equation (3), where μ is of class S 0,0 and σ is standard of class
C1,1. Let t ≤ T − 2δt and ξ be a trajectory such that ξ(t) is limited and which has an
upward movement at time t and a downward movement at time t + δt. Then

ξ (t + 2δt) − ξ (t)
2δt

� μ (t, ξ (t)) − 1
2
σ (t, ξ (t))

∂σ (t, ξ (t))
∂X

. (12)

Proof. One has
ξ (t + 2δt) − ξ (t)

2δt
=

μ (t, ξ (t)) + μ (t + δt, ξ (t + δt))
2

− σ (t + δt, ξ (t + δt)) − σ (t, ξ (t))
2
√

δt
.
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Because μ (t, ξ (t)) and σ (t, ξ (t)) are limited, ξ (t + δt) is also limited. So

μ (t + δt, ξ (t + δt)) � μ (t, ξ (t)) ,

because μ is S-continuous. Hence (μ (t, ξ (t)) + μ (t + δt, ξ (t + δt))) /2 � μ (t, ξ (t)).
Also,

σ (t + δt, ξ (t + δt)) − σ (t, ξ (t))
2
√

δt
=

1
2
√

δt
·
[
σ

(
t + δt, ξ (t) + μ (t, ξ (t)) δt + σ(t, ξ (t)

√
δt

)
+

−σ
(
t, ξ (t) + μ (t, ξ (t)) δt + σ (t, ξ (t))

√
δt

)]
+

+
σ

(
t, ξ (t) + μ (t, ξ (t)) δt + σ (t, ξ (t))

√
δt

)
− σ (t, ξ (t))

μ (t, ξ (t)) δt + σ (t, ξ (t))
√

δt
×

× μ (t, ξ (t)) δt + σ (t, ξ (t))
√

δt

2
√

δt

=
∂σ
∂t (t, ξ (t)) δt + ∅δt

2
√

δt
+

(
∂σ

∂X
(t, ξ (t)) + ∅

(
μ (t, ξ (t)) δt + σ (t, ξ (t))

√
δt

))
×

× σ (t, ξ (t))
√

δt + ∅
√

δt

2
√

δt

=
1
2
σ (t, ξ (t))

∂σ

∂X
(t, ξ (t)) + ∅.

Combining, we derive (12).

Proposition 5.2 Let δt > 0 and T ∈ T, T > 0. Let X be a process satisfying the
stochastic difference equation (3). Let t < T and ξ be a trajectory. Then

ξ (t) + μ (t, ξ (t)) δt + σ (t, ξ (t))
√

δt − (ξ (t) + μ (t, ξ (t)) δt − σ (t, ξ (t))
√

δt)
δx

= σ(t, ξ(t)).

If in addition σ is of class C0,0 and t and ξ(t) are limited,

ξ (t) + μ (t, ξ (t)) δt + σ (t, ξ (t))
√

δt − (ξ (t) + μ (t, ξ (t)) δt − σ (t, ξ (t))
√

δt)
δx

� σ(t + δt, ξ (t) + μ (t, ξ (t)) δt − σ (t, ξ (t))
√

δt).

We omit the obvious proof.

Theorem 5.3 Let δt > 0 and T ∈ T, T > 0 be appreciable. Let X be a process satisfying
the stochastic difference equation (3), where μ is standard of class C 0,1 and σ is standard
of class C1,2. Assume ∂ μ

∂ X and ∂ σ
∂ X are bounded. Let (t, x) ∈ CT be such that x is limited.

Van den Berg - Amaro - 404

Numéro spécial Claude Lobry



Let Y be the associated recombining process. Let U be the solution of the differential
equation {

d U
ds = μ (s, U) − 1

2 σ (s, U) ∂ σ(s,U)
∂ U

U(0) = x0.
(13)

Then Ỹ (t, x) � Vt(x), where Vt is the solution of the differential equation{
d Vt

dx = σ(t, Vt(x))
V (0) = U(t).

(14)

Moreover, the discrete surface Ỹ is of class S0,0, with shadow of class C0,0.

Proof. Let (t, x) ∈ CT be such that x is limited. As a consequence of path-independence
of the process Y , we may determine Ỹ (t, x), by first following a horizontal path on CT ,
and then a vertical path. More precisely, we calculate

Ỹ (t, x) = Ỹ (t, x) − Ỹ (t, 0) + Ỹ (t, 0) − Ỹ (0, 0) + Ỹ (0, 0) (15)

if t/δt is even and

Ỹ (t, x) = Ỹ (t, x) − Ỹ (t,
√

δt) + Ỹ (t,
√

δt) − Ỹ (
√

δt,
√

δt) + Ỹ (
√

δt,
√

δt)

if t/δt is odd. The calculations are very similar and we treat only the first case.

We consider first differences in horizontal direction. Let s ≤ T − 2δt. By Proposition
5.1

Ỹ (s + 2δt, 0) − Ỹ (s, 0)
2δt

� μ(s, Ỹ (s, 0)) − 1
2
σ(s, Ỹ (s, 0))

∂σ

∂Ỹ
(s, Ỹ (s, 0)). (16)

The second member of this difference equation is of class S 0,1. The second member of
the differential equation d U

ds = μ (s, U)− 1
2 σ (s, U) ∂ σ(s,U)

∂ U is of class C0,1, and because
∂ μ(s,U)

∂ U and ∂ σ(s,U)
∂ U are bounded, it has existence and uniqueness of solutions. By the

Stroboscopy Theorem [26] and the Strong Short Shadow Lemma of [14], the solutions of
(16) with initial condition Ỹ (0, 0) = x0 and of (13) are limited and infinitely close on
[0 · ·T ].

Second, we consider differences in vertical direction. Let x be such that (t, x) ∈ C T .
We will suppose that x > 0, the case x < 0 is analogous. By Proposition 5.2

Ỹ (t, x + δx) − Ỹ (t, x)
δx

= σ(t − δt, Ỹ (t − δt, x +
√

δt)). (17)

The second member of this difference equation is of class S 1,2. The second member
of the differential equation dV◦t

dx = σ (◦t, V◦t) is of class C1,2, hence it has existence
and uniqueness of solutions. By the Stroboscopy Theorem [26] and the Strong Short
Shadow Lemma of [14] the solutions of (16) with initial condition Ỹ (t, 0) = U(t) and of
dV◦t

dx = σ(◦t, V◦t(x)), V◦t(0) = U(◦t) are limited and infinitely close on [0 · ·x]. Again

by the Strong Short Shadow Lemma the solutions of (14) and of dV◦t

dx = σ(◦t, V◦t(x)),
V◦t(0) = U(◦t) are limited and infinitely close on [0 · ·x]. We conclude from (15) that
Ỹ (t, x) � Vt(x).
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To prove the remaining part of the theorem, let (t, x), (τ, ξ) ∈ CT with τ � t and
ξ � x. Because U is of class S0, one has U(τ) � U(t). It follows from the Strong Short
Shadow Lemma that the solutions of dVτ

dx = σ(τ, Vτ (x)), Vτ (0) = U(τ) and of (14) are

limited and infinitely close on [0 · ·x]. Because Vτ is of class S0, one has Ỹ (τ, ξ) �
Vτ (ξ) � Vt(x) � Ỹ (t, x). We conclude that the function Ỹ is of class S0,0. Then ◦Ỹ is
of class C0,0.

Note that one uses the trend and conditional variance of the original process X in
determining the infinitesimal approximation of the discrete surface corresponding to the
associated recombining process. In fact, one uses the trend of the process X only along
the trajectory corresponding to the median trajectory of the Wiener walk, in the differen-
tial equation (13), since the differential equation (14) is defined in terms of the time and
the conditional variance.

For recombining processes satisfying the conditions of the second part of the Main
Theorem one has a theorem similar to Theorem 5.3.

Theorem 5.4 Let T > 0 be standard. Let δt > 0, δt � 0 be such that T/δt ∈ N. Let
Y be a recombining process satisfying the stochastic difference equation (9), where ν :
{(t, Ỹ (t, x))
|(t, x) ∈ CT } → R is of class S0,1 and is such that ν(t,eY (t,x+δx))−ν(t,eY (t,x))

eY (t,x+δx)−eY (t,x)
is limited

for (t, x) ∈ CT−δt, x < t/
√

δt, and where σ is standard of class C1,2, with ∂ σ
∂ Y bounded.

Let μ : [0, T ]× R → R be the shadow of ν. Let (t, x) ∈ CT , with x limited. Let U be the
solution of the differential equation{

d U
ds = μ (s, U) − 1

2 σ (s, U) ∂ σ(s,U)
∂ U

U(0) = x0.

Then Ỹ (t, x) � Vt(x), where Vt is the solution of the differential equation{
d Vt

dx = σ(t, Vt(x))
V (0) = U(t).

Moreover, the discrete surface Ỹ is of class S0,0, with shadow of class C0,0.

Proof. We note that μ is of class C0,1, with ∂ μ
∂ Y bounded. Then the proof is entirely

similar to the proof of the previous theorem.

Under the conditions of Theorem 5.3 we obtain as a corollary that nearly all trajecto-
ries of the recombining process associated to a solution of (3) are of class S 0.

Corollary 5.5 Let T > 0 be standard. Let δt > 0, δt � 0 be such that T/δt ∈ N. Let X
be a process satisfying the stochastic difference equation (3), where μ is standard of class
C0,1 and σ is standard of class C1,2. Assume ∂ μ

∂ X and ∂ σ
∂ X are bounded. Let Y be the

associated recombining process.

1) Let λ be a S-continuous trajectory of Wiener Walk. Let η (λ) be the correspond-
ing trajectory of Y . Then η (λ) is S-continuous.

2) Nearly all trajectories of Y are of class S0.

3) Nearly all trajectories of X are of class S0.
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Proof. 1. Let λ be a S-continuous trajectory, and t1, t2 ≤ T be limited with t1 � t2.
Then λ (t1) � λ (t2). As Ỹ is of class S00, one has

η (λ) (t1) = Ỹ (t1, λ (t1)) � Ỹ (t2, λ (t2)) = η (λ) (t2) .

2. The property is a consequence of Part 1, and the fact that nearly all trajectories
of the Wiener Walk indexed by a discrete time-interval of limited length are everywhere
S-continuous.

3. Clearly, if a trajectory ξ is everywhere limited, all trajectories η with η(t) � ξ(t)
for all t ∈ [0 · ·T ] are everywhere limited. Then it follows from [22] that, if some process
has the property that nearly all trajectories are everywhere limited, it is shared by every
nearly-equivalent process. Hence by Part 2 nearly all trajectories of X are everywhere
limited.

6. Near-equivalence of a process and the associated
recombining process

Let X be a stochastic process and Y be the associated recombining process. In this
section we prove that under the conditions of the Main Theorem they are nearly equiv-
alent. As a consequence we obtain an approximation method for stochastic variables
related to the original process.

In the lemma below and in its proof, whenever a function is defined at (t, Ỹ (t, x)), we
omit the argument.

Lemma 6.1 Let δt > 0 and T ∈ T, T > 0 be appreciable. Let X be a process satisfying
the stochastic difference equation (3), where μ is standard of class C 0,1 and σ is standard
of class C1,2. Let Y be the associated recombining process. Let (t, x) ∈ CT such that
t < T and x is limited.

1) One has

μ̃(t + δt, x +
√

δt) − μ̃(t + δt, x −√
δt)

2
√

δt
� σ

∂μ

∂X
.

2) Assume that ν(t, Ỹ (t, x)) limited. Then

ν̃(t + δt, x +
√

δt) − ν̃(t + δt, x −√
δt)

2
√

δt
� ∂σ

∂t
+ ν

∂σ

∂X
+

σ2

2
∂2σ

∂X2
.

3) Assume that ν(t, Ỹ (t, x)) limited and (8) holds. Then

ν̃(t + δt, x +
√

δt) − μ̃(t + δt, x +
√

δt) − (ν̃(t + δt, x −√
δt) − μ̃(t + δt, x −√

δt))
2
√

δt

� (ν̃(t, x) − μ̃(t, x))
∂σ

∂X
.
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Proof. By Theorem 5.3 one has that Ỹ (t, x) is limited and S-continuous in both of its
variables.

1) Because μ is standard and of class C0,1 and Ỹ (t+ δt, x+
√

δt)− Ỹ (t+ δt, x−√
δt) = 2σ

√
δt, one has

μ̃(t + δt, x +
√

δt) − μ̃(t + δt, x −√
δt)

2
√

δt
=

μ(t + δt, Ỹ (t + δt, x +
√

δt)) − μ(t + δt, Ỹ (t + δt, x −√
δt))

Ỹ (t + δt, x +
√

δt) − Ỹ (t + δt, x −√
δt)

σ �

σ
∂μ

∂X
(t + δt, Ỹ (t + δt, x −

√
δt)) � σ

∂μ

∂X
.

2) We apply a Taylor-expansion up to order δt to σ. Noting that the terms of order
0 and

√
δt in the enumerator of the fraction below cancel, we obtain

ν̃(t + δt, x +
√

δt) − ν̃(t + δt, x −√
δt)

2
√

δt
=

σ(t + δt, Ỹ (t + δt, x +
√

δt)) − 2σ + σ(t + δt, Ỹ (t + δt, x −√
δt))

2δt
=

σ(t + δt, Ỹ (t, x) + νδt + σ
√

δt) − 2σ + σ(t + δt, Ỹ (t, x) + νδt − σ
√

δt)
2δt

�

∂σ

∂t
+ ν

∂σ

∂X
+

σ2

2
∂2σ

∂X2
.

3) By Parts 1 and 2, one has

ν̃(t + δt, x +
√

δt) − μ̃(t + δt, x +
√

δt) − (ν̃(t + δt, x −√
δt) − μ̃(t + δt, x −√

δt))
2
√

δt
=

ν̃(t + δt, x +
√

δt) − ν̃(t + δt, x −√
δt)

2
√

δt
− μ̃(t + δt, x +

√
δt) − μ̃(t + δt, x −√

δt)
2
√

δt
�

∂σ

∂t
+ ν

∂σ

∂X
+

σ2

2
∂2σ

∂X2
− σ

∂μ

∂X
.

Now it follows from (8) that

∂σ

∂t
+

σ2

2
∂2σ

∂X2
− σ

∂μ

∂X
= −μ

∂σ

∂X
.

Combining, we derive Lemma 6.1.3.

Next proposition states that the shadow of the modified trend ν is the original trend
μ of the process X . Lemma 6.1.3 suggests a proof by stroboscopy (see also the remark
on the role of equation (8) after the proof of the first part of the Main Theorem), but
complications arise from the fact that the functions of the difference equation are defined
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at different points. Instead we apply the principle of nested induction from [6], which
implies that a sequence which has a infinitesimal initial condition, and is such that from
the hypothesis that at some step it has a limited value, one derives that at the next step it
has in fact an infinitesimal value, remains infinitesimal for all limited arguments.

Proposition 6.2 Under the conditions of Theorem 3.1.1 one has ◦ν = μ.

Proof. Let (t, x) ∈ CT be such that t < T and x is limited. We prove the proposition
for x ≥ √

δt. The case x ≤ 0 is analogous.

Put {
d̃(t, x) = ν̃(t, x) − μ̃(t, x)

ε̃(t, x) =
ed(t+δt,x+

√
δt)−ed(t+δt,x−√

δt)

2
√

δt
− d̃(t, x) ∂σ

∂X (t, Ỹ (t, x)),

and {
D(x) = max

{∣∣∣d̃(t, y)
∣∣∣ |(t, y) ∈ CT , 0 ≤ y ≤ x

}
ε(x) = max {|ε̃(t, y)| |(t, y) ∈ CT , 0 ≤ y ≤ x} .

Further, let

S = max
{∣∣∣∣ ∂σ

∂X
(t, Ỹ (t, x))

∣∣∣∣ (t, x) ∈ CT−δt

}
.

Assume D(x) is limited. Then ν̃(t, Ỹ (t, y)) − μ̃(t, Ỹ (t, y)) is limited for all (t, y) ∈ CT ,
with 0 ≤ y ≤ x. Now Ỹ (t, y) is limited for all (t, y) ∈ CT with 0 ≤ y ≤ x, hence also
μ̃(t, Ỹ (t, y)), and a fortiori ν̃(t, Ỹ (t, y). Then Lemma 6.1.3 implies that ε̃(t, y) � 0 for
all (t, y) ∈ CT with 0 ≤ y ≤ x, hence also ε(x) � 0. It follows from the identity

d̃(t + δt, x +
√

δt) = d̃(t + δt, x −
√

δt) + 2d̃(t, x)
∂σ

∂X
(t, Ỹ (t, x))

√
δt + 2ε̃(t, x)

√
δt

that ∣∣∣d̃(t + δt, x +
√

δt))
∣∣∣ ≤ D(x −

√
δt) + 2D(x)S

√
δt + 2ε(x)

√
δt

≤ D(x)(1 + 2S
√

δt) + 2ε(x)
√

δt.

Because D(x) ≤ D(x)(1 + 2S
√

δt) + 2ε(x)
√

δt and

D(x +
√

δt) =
(
maxD(x), max

{∣∣∣d̃(t, y)
∣∣∣ ∣∣∣(t, y)) ∈ CT , y = x +

√
δt

})
,

also
D(x +

√
δt) ≤ D(x)(1 + 2S

√
δt) + 2ε(x)

√
δt.

Note that D(
√

δt) = 0, and that D(x +
√

δt) ≤ Δ(x +
√

δt), where Δ is the solution of
the linear difference equation with constant coefficients{

Δ(y +
√

δt) = Δ(y)(1 + 2S
√

δt) + 2ε(x)
√

δt

Δ(
√

δt) = 0.

By the Stroboscopy Theorem and the Strong Short Shadow Lemma, the solution of this
equation is infinitely close to the solution of{

dZ
dy = 2SZ

Z(0) = 0,
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which is Z ≡ 0. Hence

0 ≤ D(x +
√

δt) ≤ Δ(x +
√

δt) � Z(x +
√

δt) = 0.

So the hypothesis that D(x) is limited implies that D(x+
√

δt) � 0. By nested induction
we conclude that D(x) is limited for all limited x ≥ 0. This implies that ν̃(t, x) �
μ̃(t, x) for all (t, x) ∈ CT such that x ≥ √

δt is limited. As already said, one obtains the
analogous result for x ≤ 0. We conclude that ◦ν = μ.

Proposition 6.3 Under the conditions of Theorem 3.1.1 the function ν : {(t, Ỹ (t, x))
|(t, x) ∈ CT } → R is of class S0,1.

Proof. Because ◦ν = μ, the function ν is of class S0,0. Let (t, x) ∈ CT be such that x
is limited. We show that

ν(t, Ỹ (t, x + δx)) − ν(t, Ỹ (t, x))

Ỹ (t, x + δx) − Ỹ (t, x)
� ∂μ

∂X
(t, Ỹ (t, x)). (18)

Noting that Ỹ , ν, μ, ∂σ
∂X and ∂μ

∂X are all of class S0,0, it follows from Lemma 6.1.2 that

ν(t, Ỹ (t, x + δx)) − ν(t, Ỹ (t, x))
δx

�(
ν(t, Ỹ (t, x)) − μ(t, Ỹ (t, x)

) ∂σ

∂X
(t, Ỹ (t, x)) + σ(t, Ỹ (t, x))

∂μ

∂X
(t, Ỹ (t, x)).

Because ◦ν = μ, and ∂σ
∂X (t, Ỹ (t, x)) is limited, it follows that

ν(t, Ỹ (t, x + δx)) − ν(t, Ỹ (t, x))

Ỹ (t, x + δx) − Ỹ (t, x)

Ỹ (t, x + δx) − Ỹ (t, x)
δx

� σ(t, Ỹ (t, x))
∂μ

∂X
(t, Ỹ (t, x)).

Then the fact that (Ỹ (t, x + δx) − Ỹ (t, x))/δx � σ(t, Ỹ (t, x)) and σ(t, Ỹ (t, x)) is ap-
preciable implies (18). Because ∂μ

∂X is of class S0,0, also

(ν(t, Ỹ (t, x + δx)) − ν(t, Ỹ (t, x)))/(Ỹ (t, x + δx) − Ỹ (t, x))

is of class S0,0. Hence ν is of class S0,1.

Proof of the first part of the Main Theorem: By Proposition 6.2 one has ◦ν = μ.
By Theorem 2.3 the processes X and Y are nearly-equivalent. By Proposition 6.3 the
function ν : {(t, Ỹ (t, x)) |(t, x) ∈ CT } → R is of class S0,1.

We comment here the role of the partial differential equation σ ∂μ
∂X − ∂σ

∂t − μ ∂σ
∂X −

σ2

2
∂2σ
∂X2 = 0 in the proof of the first part of the Main Theorem. Notice that it is only

used in the proof of Lemma 6.1.3. The equation ensures that, when approximating the
original process X by the recombining process Y , the accumulation of the error in the
difference ν − μ of their respective trends by the inductive procedure of Definition 4.1 is
infinitesimal. This follows from the fact that the trends are equal on the median trajectory
m, and that their difference quotients in vertical direction are nearly equal. Indeed, now
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we know that ν is limited, if we suppose that ◦ν = μ up to x, we infer from Lemma 6.1.2
that

ν̃(t + δt, x +
√

δt) − ν̃(t + δt, x −√
δt)

2
√

δt
� ∂σ

∂t
+ μ

∂σ

∂X
+

σ2

2
∂2σ

∂X2
.

Together with the near-equality

μ̃(t + δt, x +
√

δt) − μ̃(t + δt, x −√
δt)

2
√

δt
� σ

∂μ

∂X

of Lemma 6.1.1, one obtains that

ν̃(t + δt, x +
√

δt) − ν̃(t + δt, x −√
δt)

2
√

δt
− μ̃(t + δt, x +

√
δt) − μ̃(t + δt, x −√

δt)
2
√

δt

� ∂σ

∂t
+ μ

∂σ

∂X
+

σ2

2
∂2σ

∂X2
− σ

∂μ

∂X
= 0.

Next theorem states how the first part of the Main Theorem can be used to obtain an
infinitesimal approximation of the expectations of functions F of the stochastic variables
of a process X , when it is nearly-equivalent to a recombining process.

Theorem 6.4 Let X be a process with trend μ and conditional variance σ 2, solution
of the stochastic difference equation (3) and satisfying the conditions of the first part
of the Main Theorem. Let F : R → R be of class S0 and bounded by some standard
number. Assume X is indexed by [0..T ], where T ∈ T, T > 0 is appreciable. Then for all
appreciable t ∈ [0 · ·T ]

EF (Xt) � 1√
2πt

∫ +∞

−∞
exp

(
−x2

2t

)
◦F (Z(t, x))dx,

with Z(t, x) = Vt(x), where Vt is the solution of the initial value problem (14) with the
initial condition U(t) given by the initial value problem (13).

Proof. Let Y be the recombining process given by Definition 4.1. Let Γ be set of
trajectories of X and Δ be the set of trajectories of Y . Define Φ : Γ ∪ Δ → R by

Φ (ξ) = F (ξ (t)) .

Let ξ1, ξ2 ∈ Γ ∪ Δ be two S-continuous trajectories such that ξ1 (t) � ξ2 (t) for all
t ∈ [0..T ]. Then

Φ (ξ1) = F (ξ1 (t)) � F (ξ2 (t)) = Φ (ξ2) .

Now Φ is clearly limited. Also, it is uniformly S-continuous for nearly all elements of
Γ ∪ Δ. Indeed, firstly, nearly all trajectories of Y are S-continuous by Corollary 5.5.2,
and nearly all trajectories of X are S-continuous by Corollary 5.5.3. By [22], this suffices
to conclude that EF (Xt) = EΦ(X) � EΦ(Y ) = EF (Yt). Then by formula (7)

EF (Xt) � 1√
2πt

∫ +∞

−∞
exp

(
−x2

2t

)
◦F

(
◦Ỹ (t, x)

)
dx.
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Put Z = ◦Ỹ . It follows from Theorem 5.3 and the Transfer Principle that Z(t, ·) =
◦Ỹ (t, ·) = Vt(·), where Vt is the solution of the initial value problem (14), and initial
condition U(t) given by (13).

The final proposition of this section states that the discrete surface associated to the
recombining process has more regularity than already stated in Theorem 5.3.

Proposition 6.5 Under the conditions of Theorem 3.1.1 the function Ỹ : CT → R is of
class S1,2.

Proof. The function Ỹ : CT → R is of class S0,0 by Theorem 5.3. Let (t, x) ∈ CT be
such that x is limited and also (t + 2δt, x) ∈ CT . By Proposition 5.1 we have

Ỹ (t + 2δt, x) − Ỹ (t, x)
2δt

� ν(t, Ỹ (t, x)) − 1
2
σ(t, Ỹ (t, x))

∂σ(t, Ỹ (t, x))
∂X

.

Because ν (t, Ỹ (t, x))− 1
2σ (t, Ỹ (t, x))∂σ(t,eY (t,x))

∂X is of class S0,0 (as a function of t and

x), the function Ỹ is of class S1,0. Furthermore, by Proposition 5.2 we have

Ỹ (t, x + δx) − Ỹ (t, x)
δx

= σ(t − δt, Ỹ (t − δt, x +
√

δt)).

Then the fact that σ is of class S0,0 implies that Ỹ is of class S0,1. Further

δ2 eY (t,x+δx)
δx − δ2 eY (t,x)

δx

δx
=

σ(t − δt, Ỹ (t − δt, x + 3
√

δt)) − σ(t − δt, Ỹ (t − δt, x +
√

δt))

Ỹ (t − δt, x + 3
√

δt) − Ỹ (t − δt, x +
√

δt)
×

Ỹ (t − δt, x + 3
√

δt) − Ỹ (t − δt, x +
√

δt)
δx

� ∂σ(t, Ỹ (t, x))
∂X

· σ(t, Ỹ (t, x)).

Then the fact that ∂σ
∂X ·σ is of class S0,0 implies that δ2 eY (t,x)

δx is of class S0,1. This means

that Ỹ is of class S0,2 [15]. Combining, we conclude that Ỹ is of class S1,2.

7. Partial differential equations associated to recombining
processes.

This final section contains the proof of the second part of the Main Theorem. The main
task is to derive the macroscopic characterization of recombining processes, given by the
partial differential equation (8), from the microscopic characterization of recombination,
defined in terms of two successive increments. As already shown, a recombining process
defines a discrete surface. The conditions of Theorem 3.1.2 imply that its trend and its
conditional standard deviation have sufficient regularity to obtain equation (8) through a
process of transforming partial difference-quotients of this discrete surface into the corre-
sponding partial differential quotients. As a corollary we obtain a discrete version of Ito’s
formula [23][3].

Van den Berg - Amaro - 412

Numéro spécial Claude Lobry



Let T ∈ T, T > 0 be standard and let δt > 0, δt � 0 be such that T/δt ∈ N. Let
Y be a recombining process indexed by [0 · ·T ] and Ỹ be the associated discrete surface.
Assume Ỹ is of class S0,0, so its shadow X ≡ ◦Ỹ is well-defined. Let f be a function
of two variables. For (t, x) ∈ CT we write as usual f̃(t, x) = f(t, Ỹ (t, x)). For (t, x) ∈
◦CT = [0, T ]× R we write f̂(t, x) = f(t, X(t, x)).

Theorem 7.1 Let T > 0 be standard. Let δt > 0, δt � 0 be such that T/δt ∈ N.
Let Y be a recombining process satisfying the conditions of the second part of the Main
Theorem. Let Ỹ be the associated discrete surface. We put X = ◦Ỹ and μ = ◦ν.

1) The discrete surface Ỹ is of class S1,2.

2) The discrete functions σ̃ and ν̃ are of class S 0,1.

3) The function Ỹ : [0 · ·T ] × R → R satisfies

a) δ1 eY
2δt � ν̃ (t, x) − 1

2
δ2eσ
δx (t, x).

b) δ2 eY
δx � σ̃ (t, x).

c) δ2
2

eY
δx2 � δ2eσ

δx (t, x).

d) δ1 eY
2δt + 1

2
δ2
2

eY
δx2 � ν̃ (t, x).

4) One has μ̂ = ◦ν̃, and μ̂ is defined and of class C 0,1 on [0, T ]× R → R.

5) The function X : [0, T ]× R → R satisfies

a) ∂X
∂t = μ̂(t, x) − 1

2
∂bσ(t,x)

∂x .

b) ∂X
∂x = σ̂(t, x).

c) ∂2X
∂x2 = ∂bσ(t,x)

∂x .

d) ∂X
∂t + 1

2
∂X
∂x2 = μ̂(t, x).

6) The function X is of class C1,3.

7) ∂bμ(t,x)
∂x − ∂bσ(t,x)

∂t − 1
2

∂2
bσ(t,x)
∂x2 = 0.

Proof.

1) The proof is entirely analogous to the proof of Proposition 6.5, applying Theo-
rem 5.4 instead of Theorem 5.3.

2) We show first that σ̃ is of class S0,1. The fact that σ̃ is of class S0,0 follows
from the formula σ̃(t, x) = σ (t, Ỹ (t, x)) and the fact that Ỹ is of class S0,0. Moreover,
using that σ is of class S0,1,

δ2σ̃

δx
(t, x) =

σ(t, Ỹ (t, x + δx)) − σ(t, Ỹ (t, x))

Ỹ (t, x + δx) − Ỹ (t, x)

Ỹ (t, x + δx) − Ỹ (t, x)
δx

� ∂σ(t, Ỹ (t, x))
∂X

σ̃(t, x).

Hence σ̃ is also of class S0,1. In analogous way one shows that ν̃ is of class S 0,1.

3) a) It follows from Proposition 5.1 and Part 2 that

δ1Ỹ (t, x)
2δt

� ν(t, Ỹ (t, x)) − 1
2
σ(t, Ỹ (t, x))

∂σ(t, Ỹ (t, x))
∂X

= ν̃ (t, x) − 1
2

δ2σ̃

δx
(t, x) .
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b) It follows from Proposition 5.2 and the fact that σ is of class S 0,0 that

δ2Ỹ (t, x)
δx

= σ(t − δt, Ỹ (t − δt, x +
√

δt)) � σ(t, Ỹ (t, x)) = σ̃(t, x).

c) The near-equality follows from Part 3b and the fact that δ2 eY
∂x and σ̃ are both of class

S0,1.

d) The near-equality follows from Part 3a and Part 3c.

4) Note that for (t, x) ∈ CT−δt, with limited x,

μ̂(t, x) = μ(t, X(t, x)) � μ(t, Ỹ (t, x)) � ν(t, Ỹ (t, x)) = ν̃(t, x).

So μ̂ = ◦ν̃. By Part 2 the function ν̃ is of class S0,1. Hence μ̂ : [0, T ]×R → R is of class
C0,1.

5) Since Ỹ is of class S1,2 its shadow X is at least of class C1,2 and satisfies ∂X
∂t =

◦ δ1Y
δt , ∂X

∂x = ◦ δ2Y
δx and ∂2X

∂x2 = ◦ δ2
2

eY
δx2 . Then the formulae follow from Part 3, using the

equality ∂bσ(t,x)
∂x = ◦

(
δ2eσ(t,x)

δx

)
.

6) Because ∂X
∂x = σ̂(t, x) = σ (t, X(t, x)) and σ is of class C0,2, and X is already

known to be of class C0,2, the function X is in fact of class C0,3. Hence X is of class
C1,3.

7) The formula will be obtained by differentiating the equality of Part 5a with
respect to x. Observe that all terms of the formula are at least of class C 0,1. Indeed, ∂X

∂t

is of class C0,3, ∂bσ(t,x)
∂x is of class C1,1 and μ̂ is of class C0,1. Using Part 5b we derive

that ∂2X
∂x∂t = ∂2X

∂t∂x = ∂bσ(t,x)
∂t . Then we have

∂
(
μ̂(t, x) − ∂X

∂t − 1
2

∂bσ(t,x)
∂x

)
∂x

=
∂μ̂(t, x)

∂x
− ∂σ̂(t, x)

∂t
− 1

2
∂2σ̂(t, x)

∂x2
= 0.

Proof of the second part of the Main Theorem: Let Y be a recombining process,
satisfying for t ∈ [0 · ·T − δt] the stochastic difference equation{

δYt = ν (t, Yt) δt + σ (t, Yt) δWt

Y0 = x0,

where ν : {(t, Ỹ (t, x)) |(t, x) ∈ CT } → R is of class S0,1 and

ν(t, Ỹ (t, x + δx)) − ν(t, Ỹ (t, x))

δ2Ỹ (t, x)

is limited for (t, x) ∈ CT−δt, with x < t/
√

δt. Let X = ◦Ỹ and μ = ◦ν. By Theorem
7.1.6 the function X : [0, T ] × R → R is of class C 1,3. Also, by Theorem 7.1.4 the
function μ̂ : [0, T ]×R → R is of class C0,1. By Theorem 7.1.7 we have ∂bμ

∂x−∂bσ
∂t − 1

2
∂2

bσ
∂x2 =

0. Now
∂μ̂

∂x
=

∂μ

∂X

∂X

∂x
= σ

∂μ

∂X
.
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Also ∂bσ
∂x = σ ∂σ

∂X , hence

∂σ̂

∂t
=

∂σ

∂t
+

∂σ

∂X

∂X

∂t

=
∂σ

∂t
+

∂σ

∂X

(
μ̂ − 1

2
∂σ̂

∂x

)

=
∂σ

∂t
+ μ

∂σ

∂X
− σ

2

(
∂σ

∂X

)2

and
∂2σ̂

∂x2
=

∂

∂x

(
σ

∂σ

∂X

)
=

∂

∂X

(
σ

∂σ

∂X

)
∂X

∂x
= σ

(
∂σ

∂X

)2

+ σ2 ∂2σ

∂X2
.

Substituting these equalities in the formula ∂bμ
∂x − ∂bσ

∂t − 1
2

∂bσ
∂x2 = 0 we obtain (8).

Comment. Theorem 7.1.3d and 7.1.3b are a sort of Ito’s Lemma for the recombining
process Y : its stochastic variables Yt, trend ν(t, Yt) and conditional standard deviation
σ(t, Yt) are in fact functions of the values taken by the stochastic variables of the Wiener
Walk W . Indeed,

ν(t, Yt) = ν̃(t, Wt) � δ1Ỹ (t, Wt)
2δt

+
1
2

δ2
2Ỹ (t, Wt)

δx2
(19)

σ(t, Yt) = σ̃(t, Wt) � δ2Ỹ (t, Wt)
δx

,

where δx = x + δx − x = W̃ (t, x + δx) − W̃ (t, x) = δ2W̃ (t, x).

Conversely, if the trend and the conditional standard deviation of a recombining pro-
cess Y satisfy (19), by Theorem 7.1.7 its shadows satisfy ∂bμ

∂x − ∂bσ
∂t − 1

2
∂2

bσ
∂x2 = 0, hence

σ ∂μ
∂X −

(
∂
∂t + μ ∂

∂X + σ2

2
∂2

∂X2

)
σ = 0 by change of variable.

As a consequence the Main Theorem has the following corollary.

Corollary 7.2 Assume that T ∈ T and x0 ∈ R are standard. Let δt > 0, δt � 0 be such
that T/δt ∈ N. Let σ : [0, T ]× R → R be standard of class C1,2, with σ > 0.

1) Let μ : [0, T ]×R → R be standard of class C0,1 and let Xt satisfy the stochastic
difference equation{

δXt = μ (t, Xt) δt + σ (t, Xt) δWt t ∈ [0 · ·T − δt]
X0 = x0.

Assume ∂μ
∂X and ∂σ

∂X are bounded and

σ
∂μ

∂X
−

(
∂

∂t
+ μ

∂

∂X
+

σ2

2
∂2

∂X2

)
σ = 0.

Then there exist functions Ỹ : CT→ R of class S1,2 and ν̃ : CT→ R of class S0,1 such
that X is nearly equivalent to the process given by the difference equation{

δỸ (t, Wt) = ν̃(t, Wt)δt + σ̃(t, Wt)δWt t ∈ [0 · ·T − δt]
Ỹ (0, 0) = x0,

(20)
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with ν̃(t, Wt) � δ1 eY (t,Wt)
2δt + 1

2
δ2
2

eY (t,Wt)
δx2 and σ̃(t, Wt) � δ2 eY (t,Wt)

δx .

2) Assume there exist functions Ỹ : CT→ R of class S1,2 and ν̃ : CT→ R of class

S0,1 such that ν̃(t, Wt) � δ1 eY (t,Wt)
2δt + 1

2
δ2
2

eY (t,Wt)
δx2 and σ̃(t, Wt) � δ2 eY (t,Wt)

δx . Let Y

be the stochastic process defined by the difference equation (20). Put X = ◦Ỹ , μ = ◦ν.
Then X : [0, T ] × R → R is of class C1,3, μ : X ([0, T ]× R)→ R is of class C0,1, and
μ and σ satisfy (8).
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