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ABSTRACT. In this work, we give a presentation of the so-called Harthong-Reeb line. Only based
on integer numbers, this numerical system has the striking property to be roughly equivalent to the
continuous real line. Its definition requires the use of a natural number ω which is infinitely large in
the meaning of nonstandard analysis. Following the idea of G. Reeb, we show how to implement in
this framework the Euler scheme. Then we get an exact representation in the Harthong-Reeb line
of many real functions like the exponential. Since this representation is given with the help of an
explicit algorithm, it is natural to wonder about the global constructivity of this numerical system. In
the conclusion, we discuss this last point and we outline some new directions for getting analogous
systems which would be more constructive.

RÉSUMÉ. Dans ce travail, nous donnons une présentation de la droite dite d’Harthong-Reeb. Il s’agit
d’un système numérique uniquement basé sur les nombres entiers et dont la propriété frappante
est qu’il est à peu près équivalent à la droite réelle continue. Sa définition nécessite l’utilisation
d’un nombre naturel ω qui est infiniment grand au sens de l’analyse nonstandard. Suivant l’idée de
G. Reeb, nous montrons comment on peut implémenter le schéma d’Euler dans ce cadre. Alors, on
obtient une représentation exacte dans la droite d’Harthong-Reeb de nombreuses fonctions réelles
comme la fonction exponentielle. Puisque cette représentation est donnée au moyen d’un algorithme
explicite, il est naturel de s’interroger sur la constructivité globale de ce système numérique. Dans la
conclusion, nous discutons ce dernier point et nous esquissons de nouvelles directions pour obtenir
des systèmes analogues dotés d’une meilleure constructivité.

KEYWORDS : nonstandard analysis, arithmetization, Euler scheme, discrete line, constructive math-
ematics.
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1. Introduction

The first goal of this paper is to give an idea of some of the works which have been
done, mainly during the eighties and the first half of the nineties, in a part of the french
school of nonstandard analysis on the matter of computation in analysis with integers
numbers using the framework of the so called Harthong-Reeb line. The initiators of this
theme are undoubtedly G. Reeb and J. Harthong. These two leading figures wanted to
define and to experiment a new way of designing the mathematical continuum with the
strong feature of using only integer numbers [14, 15]. This project was partly based
on a philosophical analysis which is not fully developed here [16, 32, 22, 41]. In addi-
tion to G. Reeb and J. Harthong, the main protagonists were J.P. Reveillès, A. Troesch,
E. Urlacher, M. Diener and H. Holin [36, 37, 38, 34, 10, 17]. For the most part, our
presentation will follow the works of the preceding authors. However, we have added
some explanations, terminologies or developments in order to clarify certain points. On
the other hand, we do not claim to reflect all the works which have been done in this
direction.

The second goal of this study is to show that the scientific interest of this topic is still
relevant. Actually, the Harthong-Reeb line is a transition space between the discret line
Z and the continuous line R. Thus, this space is a kind of paradigm which occupies an
important place in the context of a general study of scaling transformations. Moreover, the
Harthong-Reeb line is also an alternative theory of the real line with the striking property
that the basic elements of this space are integers numbers. Since computations are easy
and sure with integers, an interesting question is to measure to what extent this concept is
really constructive. At the frontier of computer science and mathematics, a research team
composed of E. Andres, L. Fuchs and G. Largeteau from Poitiers University, A. Chollet
and the author from La Rochelle University is currently working on this issue [13]. The
present paper is also a consequence of this collective work.

The basic remark leading to the Harthong-Reeb line is that the discret space Z seen
from afar looks like the real line R. Forcefully expressed by J. Harthong 1, this point of
view gave birth during the eighties to a scientific program about a new representation of a
continuous line. The main idea is that it is sufficient to perform a strong metric contraction
on the arithmetic of integers to get a numerical system which is equivalent to the system of
real numbers. The expected benefits are: 1) safety and speed for computation on integers
without using uncontrolled floating numbers, 2) the meeting of discret and continuous
aspects in a single space.

Obviously, this program is based on the use of nonstandard analysis (NSA). Indeed,
it is well known2 that, when dealing with a problem involving real numbers, one of the
most significant contributions of NSA is the fruitful possibility of translating the contin-
uous initial problem into a discrete and finitely presented one. However, there is a high
specificity of the program of the Harthong-Reeb line relative to the usual practice of NSA:

– the purpose is not to use a finite discretization as an auxiliary tool for resolving a
continuous problem but to replace completely classical real numbers by integers;

– consequently, only a minimal form of nonstandard analysis is sufficient.

1. R, c’est Z vu de loin.
2. For those who have really tried to see what is nonstandard analysis.
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2. A Minimal Form of Nonstandard Analysis

Among the different presentations of nonstandard analysis, the people close to Reeb
has generally preferred the axiomatic version of Internal Set Theory due to E. Nelson [28].
One advantage of this approach is that it is possible to weaken the nonstandard addition
in order to get simple axioms perfectly suited to some purpose. That is what we do in
this study. In the spirit of some works of Nelson or Lutz [29, 23], we perform a syntactic
forcing of the theory of integer numbers by introducing a new predicate lim on elements
of N and Z: lim(X) reads "the number X is limited". This predicate is external to the
usual theory of integer numbers and its ultimate meaning derives from the following rules.

LIM1. The numbers 1 is limited.

LIM2. The sum and the product of two limited numbers are limited.

LIM3. There are non limited integer numbers.

LIM4. For all (X,Y ) ∈ Z
2, if X is limited and |Y | ≤ |X |, then Y is limited.

For reading conveniences, we introduce the following notations:

– ∀limX F (X) is an abbreviation for ∀X (lim(X) ⇒ F (X) which can be read as
"for all limited X , we have F (x)".

– ∃limX F (X) is an abbreviation for ∃X (lim(X) ∧ F (X) which can be read as
"exists a limited X such that F (X)".

Here we have to insist on the fact that these rules are added to every classical property
(axioms or theorems) over integer numbers. Everything that was classically true remains
true. We simply improve the language by a syntactic enrichment. These rules imply that
N splits into two classes: the class Nlim := {0, 1, . . .} of natural limited numbers (stable
by arithmetical operations), and the class N+∞ of natural non limited numbers. Moreover,
a non limited natural number is bigger than every limited natural number. Thus, the non
limited natural numbers are said infinitely large. In the same way, the set Z splits into
three classes: the class Zlim of limited integers, the class Z+∞ := N+∞ and the class
Z−∞ := −N+∞. In the following figure, ω denotes an arbitrary infinitely large natural
number.

�
0

−1 1

−ω ω

Zlim Z+∞Z−∞

Figure 1. Different orders of magnitude on Z

Lets us add some technical but important remarks. A mathematical property or for-
mula which does not contains the new predicate lim is called an internal formula. For
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example, the formula X + 1 > X is internal. An internal formula is therefore a classi-
cal formula on numbers. In contrast, an external formula uses explicitly the new pred-
icate lim; for example, lim(X) or ∀limX, Y < X are external formulae. Since ev-
erything that was true remains true, for all internal formula P(X), we can build the set
P = {X ∈ N ; P(X)} which possesses the classical properties of subsets of N; for ex-
ample, if the set P is not empty and bounded above, then P has a maximal element. This
is no longer true for an external property; for instance, if we consider the external prop-
erty lim(X), the collection Nlim = {X ∈ N ; lim(X)} of limited natural numbers is a
non empty and bounded above; nevertheless, this collection cannot have a bigger element
since X + 1 is limited for all limited X . A collection of numbers defined by an external
property which cannot be a set of numbers in the classical meaning is called external set.
Hence, Nlim is an external part of N. The radical difference between internal and external
properties is not just a formal limitation because it gives birth to a new mathematical tool
called the overspill principle.

Proposition 1. (Overspill principle) Let P(x) be an internal formula such that P(n) is
true for all limited n ∈ N. Then, there exists an infinitely large ν ∈ N such that P(m) is
true for all natural numbersm such that 0 ≤ m ≤ ν.

Proof. The collectionA = {X ∈ N ; ∀Y ∈ [0, X ]P(Y )} is a internal set (i.e. a classical
set) containing Nlim. Since Nlim is an external set, the inclusion Nlim ⊂ A is strict and
leads to the result.

In the same way, the application of an inductive reasoning on an external formula can
be illegitimate. For instance, 0 is limited and X + 1 is limited for all limited X ∈ N.
Nevertheless, we see from (LIM3) that not all integers are limited. To improve the power
of our nonstandard tool, it is necessary to add a special principle for external induction.
Nevertheless, a feature of the works we are going to present is that we do not really need
this kind of new rule3. Accordingly, we will only use the four axioms LIM1, LIM2, LIM3
and LIM4. The last rule will be laid down in an appendix.

3. Exporting the different scales on R

Thanks to the predicate lim, we can define some new scale concepts on R.

Definition 1. Let x be real number. We say that:

1) x is limited in case ∃limn ∈ N |x| ≤ n;

2) x is infinitely large in case ∀limn ∈ N n ≤ |x|.
Notation: x 	 ∞ (x 	 +∞ if x > 0 and x 	 −∞ if x < 0);

3) x is infinitely small in case ∀limn ∈ N \ {0} |w| ≤ 1
n .

Notation: x 	 0;

4) x is appreciable in case x is neither infinitely small nor infinitely large.

As a consequence, 0 is infinitely small, 1 is appreciable and we have the following
immediate properties:

3. A rule on external induction is useful for convergence or completeness properties. For instance,
we need this tool in [13] in a proof about the constructive least uper-bound principle.
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– x appreciable ⇔ ∃limk ∈ N \ {0} 1
k ≤ x ≤ k;

– x 	 0 ⇔ x = 0 or x−1 	 ∞;

– x 	 0 and |x′| ≤ |x| ⇒ x′ 	 0;

– x 	 ∞ and |x| ≤ |x′| ⇒ x′ 	 ∞;

– x limited and |x′| ≤ |x| ⇒ x′ limited;

– x 	 0 and y appreciable and z 	 ∞ ⇒ |x| ≤ |y| ≤ |z|.
Moreover, if Ism denotes an arbitrary infinitely small number, App an arbitrary apprecia-
ble number, Lim an arbitrary limited number and I la an arbitrary infinitely large number,
we have the following symbolic algebra:

Ism + Ism = Ism Ism + App = App Ism + Ila = Ila
App + App = Lim App + Ila = Ila Ila + Ila = ?
Ism × Ism = Ism Ism ×App = Ism Ism × Ila = ?
App ×App = App App × Ila = Ila

Definition 2. Given x, y ∈ R, we say that they are infinitely close and we note x 	 y in
case x− y 	 0.

It is clear that this binary relation 	 is an equivalence relation on R. For x ∈ R, its
equivalence class for 	 is the external set Hal(x) := {y ∈ R ; x 	 y} also called the
halo of x.

We also introduce the external set of limited real numbers

Rlim := {x ∈ R ; x limited}
and the numerical system of limited real numbers (Rlim,	,�,+,×, 0, 1) where the rela-
tion � is defined by

x � y ⇐⇒ x ≤ y or x 	 y.

4. The Harthong-Reeb line as a numerical system

For x ∈ R, let x� be the integer part of x defined by

x� ∈ Z and x� ≤ x < x� + 1

and let {x} := x− x� be the non integer part of x, so that

0 ≤ {x} < 1 and x = x� + {x}.

Once and for all in this section, we choose an element ω ∈ N such that ω 	 +∞.
Now, our purpose is to define a new numerical sytem equivalent to the preceding one
(Rlim,	,≤,+,×, 0, 1) but such that all the elements are integers and in which ω is the
new unit: the Harthong-Reeb line. Firstly, we will introduce the underlying set HR ω,
secondly we will define the equality =ω, the order relation ≤ω and finally the algebraic
structure (+ω,×ω). We have chosen a relatively formal presentation of the Harthong-
Reeb line 4 which is close to the one given by M. Diener [10].

4. Much more formal that the usual style of Reeb and Harthong.
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Definition 3. The set of integers limited at the scale ω is

HRω := {X ∈ Z ; ∃limn ∈ N |X | ≤ nω}.

It is clear that HRω is an external subset of Z.

Definition 4. On the set HRω, we introduce the two following binary relations:

– the equality at the scale ω defined by

∀X,Y ∈ HRω X =ω Y ⇐⇒ ∀limn ∈ N n|X − Y | ≤ ω;

– the order relation at the scale ω defined by

∀X,Y ∈ HRω X ≤ω Y ⇐⇒ X ≤ Y or X =ω Y.

Proposition 2. The relation =ω is an equivalence relation on HRω.

Proof. We just show that =ω is transitive. Let X , Y and Z ∈ HRω such that X =ω Y
and Y =ω Z . Then, for every limited n ∈ N

n|X − Y | ≤ ω and n|Y − Z| ≤ ω

thus n|X − Z| ≤ 2ω. Taking n = 2m, we get

∀limm ∈ N m|X − Z| ≤ ω.

Proposition 3. For all X,Y ∈ HRω, we have X ≤ω Y if and only if

∀limn ∈ N n(X − Y ) ≤ ω

Proof. Suppose that X ≤ω Y , that is to say X ≤ Y or X =ω Y . If X ≤ Y , then for all
limited n ∈ N we have n(X − Y ) ≤ 0 ≤ ω and if X =ω Y , then for all limited n ∈ N

we have n(X − Y ) ≤ n|X − Y | ≤ ω.

Suppose now that n(X − Y ) ≤ ω for all limited n ∈ N. Then, we have X ≤ Y or
X > Y and this last case, X − Y = |X − Y | and thus n|X − Y | ≤ ω for each limited
n ∈ N.

Proposition 4. The relation ≤ω is an order relation relatively to the equality =ω at the
scale ω, that is to say:

(1) ∀X ∈ HRω X ≤ω X;

(2) ∀X,Y ∈ HRω X ≤ω Y and Y ≤ω X ⇒ X =ω Y ;

(3) ∀X,Y, Z ∈ HRω X ≤ω Y and Y ≤ω Z ⇒ X ≤ω Y .

Proof. We just give the proof of (3). From the hypothesis, we know that, for every limited
n ∈ N, we have n(X − Y ) ≤ ω and n(Y − Z) ≤ ω, thus n(X − Z) ≤ 2ω. Taking
n = 2m, we get m(X − Z) ≤ ω for every limited m ∈ N.
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Remark Usually, when we have an equivalence relation such as =ω on HRω or 	 on
Rlim, we consider the associated quotient set in order to replace the initial equivalence
relation by the absolute equality on the equivalence classes. It turns out that this usage
is not so good and that it is technically simpler to keep the initial equivalence relation.
Common in constructive mathematics and theoretical computer sciences, this point of
view avoids to create too much new objects. Moreover, in our situation, we are dealing
with external sets and the meaning of the associated quotient sets is not clear.

We are now going to introduce the pertinent algebraic operations on HR ω.

Definition 5. The sum at the scale ω is the operation +ω on HRω identical to the restric-
tion of the usual sum in Z

∀X,Y ∈ HRω X +ω Y := X + Y.

The multiplication at the scale ω is the operation ×ω on HRω such that

∀X,Y ∈ HRω X ×ω Y :=
⌊
XY

ω

⌋
.

Let us also introduce the following notations:

– 0ω := 0 and 1ω := ω (both belonging to HRω);

– For each X ∈ HRω −ω X := −X ;

– For each X ∈ HRω such that X �=ω 0ω X(−1)ω :=
⌊
ω2

X

⌋
.

Then, we get the following algebraic properties.

Proposition 5. For every X,Y, Z ∈ HRω, we have:

(1) X +ω Y ∈ HRω andX ×ω Y ∈ HRω;

(2) −ωX ∈ HRω andX (−1)ω ∈ HRω if X �=ω 0ω;

(3) X +ω Y = Y +ω X andX ×ω Y = Y ×ω X;

(4) (X +ω Y ) +ω Z = X +ω (Y +ω Z) and (X ×ω Y ) ×ω Z =ω X ×ω (Y ×ω Z);

(5) X +ω 0ω = X and X × 1ω = X;

(6) X +ω −ωX = 0ω andX ×ω X
(−1)ω =ω 1ω.

Proof. Regarding the sum operation, these properties are trivial. For the product opera-
tion, we just have to use systematically the decomposition of any rational number into the
sum of its integer part and its fractional part. For instance, let us consider the justification
of the point (4) for the multiplication.

From the definition, we get (X ×ω Y ) ×ω Z =
⌊⌊

X.Y
ω

⌋
Z
ω

⌋
. Using several times the

decomposition U = U� − {U} with 0 ≤ U� < 1, we obtain

(X ×ω Y ) ×ω Z =
⌊
XY Z

ω2

⌋
+
{
XY Z

ω2

}
−
{
XY

ω

}
Z

ω
−
{⌊

X.Y

ω

⌋
Z

ω

}
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Since Z ∈ HRω, there is a limited n ∈ N such that |Z| ≤ nω. Hence, we have∣∣∣∣{XY Zω2

}
−
{
XY

ω

}
Z

ω
−
{⌊

X.Y

ω

⌋
Z

ω

}∣∣∣∣ ≤ n+ 2.

Since n + 2 =ω 0, we obtain (X ×ω Y ) ×ω Z) =ω

⌊
XYZ

ω2

⌋
. It is clear that a similar

treatment would give X ×ω (Y ×ω Z) =ω

⌊
XY Z

ω2

⌋
.

It is easy to see that the relation ≤ω, the operations +ω, ×ω and the applications
X �→ −ωX and X �→ X (−1)ω (for X �=ω 0ω) are extensional relatively to the equality
=ω. That means that, for X,X ′, Y, Y ′ ∈ HRω such that X =ω X ′ and Y =ω Y ′, we
have

– X ≤ω Y ⇒ X ′ ≤ω Y ′;
– X +ω Y =ω X

′ +ω Y
′ and X ×ω Y =ω X

′ ×ω Y ′;
– −ωX =ω X

′ and X (−1)ω =ω X
′(−1)ω (for X �=ω 0ω).

It is now the time to give our formal definition of the Harthong-Reeb line.

Definition 6. The numerical system (HRω,=ω,≤ω,+ω,×ω) is called the Harthong-
Reeb line.

�

�

�

X X + 1
Z��

1

X X + 1 HRω��
1/ω

X/ω 	 (X + 1)/ω
Rlim

Figure 2. Z, HRω and Rlim

That concept explicitly depends on a parameter ω ∈ N such that ω 	 +∞. Although
the elements of HRω are integers, we are going to see that the Harthong-Reeb line is
equivalent to the system of limited real numbers (R lim,	,�,+,×) where x � y means
(x ≤ y) or (x 	 y).

Since, for every X ∈ HRω and x ∈ Rlim we have X/ω ∈ Rlim and ωx� ∈ HRω,
we consider the two maps{

ϕω : HRω → Rlim

X �→ X/ω

}
and

{
ψω : Rlim → HRω

x �→ ωx�
}

While ϕω is clearly additive (Z-linear), it is not the case for ψω. This is the source of
some technical difficulties not always well treated in the litterature.

Then, for every X,Y ∈ HRω and x ∈ Rlim, we have the following properties:
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– X ≤ω Y ⇒ ϕω(X) � ϕω(Y );
– ϕω(X +ω Y ) 	 ϕω(X) + ϕω(Y );
– ϕω(X ×ω Y ) 	 ϕω(X) × ϕω(Y );
– ϕω(0ω) 	 0 and ϕω(1ω) 	 1;

– X =ω Y ⇔ ϕω(X) 	 ϕω(Y );
– ∀y ∈ Rlim ∃X ∈ HRω ϕω(X) 	 y;

– ψω ◦ ϕω(X) =ω X and ϕω ◦ ψω(x) 	 x.

These properties are summarized by saying that ϕω is an isomorphism from the system
(HRω,=ω,≤ω,+ω,×ω) to the system (Rlim,	,�,+,×) and that ψω is the inverse iso-
morphism.

5. The arithmetization of Euler scheme

Since the two preceding systems are equivalent, it is theoretically possible to define on
the Harthong-Reeb line an equivalent discrete notion for any continuous concept defined
on Rlim. For instance, each limited real number a is represented by ψω(a) = ωa� in
HRω. Similarly, a map f : x �→ f(x) defined on a part of R lim and with values in Rlim

is represented by the map F : X �→ F (X) := ωf(X/ω)� defined on a part of HRω and
with values in HRω.

HRω
F−−−−→ HRω

ϕω

⏐⏐
 �⏐⏐ψω

Rlim
f−−−−→ Rlim

For a two variables map g : (x, y) �→ g(x, y) the same process gives the discrete equiva-
lent G : (X,Y ) �→ ωg(X/ω, Y/ω)�.

The main disadvantage of this direct arithmetization method is that it is based on the
real numbers on which the calculations are made before coming back to HR ω. On the
contrary, our purpose is to stay in the discrete world of HRω without using any real
numbers. A better idea for defining a discrete equivalent of a continuous object is to find
an arithmetization of a construction method of this object. That is what we are going to do
with the Euler scheme as a process for constructing a solution of a differential equation.
This is a typical idea of Reeb who, at this time, was simply trying to make simulations of
the moiré sensing on a personal computer.

5.1. Arithmetization at the scale ω

We consider a function x : t �→ x(t) which is a solution of a Cauchy problem{
x′ = f(t, x)
x(a) = b

where f : U → R is a map C1 defined on an open set U of R
2. We suppose that

a, b ∈ Rlim, U ⊂ R
2
lim and f(U) ⊂ Rlim, and that x is defined on an interval [a, a+ T ]
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with T ∈ Rlim and T �	 0. We know that we can get a good approximation of the function
x by using the following Euler scheme with step 1/β⎧⎨⎩

t0 = a ; x0 = b
tn+1 = tn + 1/β
xn+1 = xn + 1/β f(tn, xn)

(1)

The real variables tn and xn are such that xn is an approximation of x(tn) and the error
|x(tn) − xn| is getting smaller when the step 1/β of the method decreases to 0. Thus,
in our context, it is interesting to take 1/β 	 0. Moreover, since our goal is to find an
equivalent scheme in HRω with integer variables, it is advantageous to assume that β is
a divisor of ω. Finally, we suppose that

∃α, β ∈ N ω = αβ and β 	 +∞. (2)

Definition 7. An arithmetization of the initial Euler scheme (1) is a new iterative scheme
with integer variables in HRω⎧⎨⎩

T0 = A ; X0 = B
Tn+1 = Tn + C
Xn+1 = Xn + Φ(β, Tn, Xn)

(3)

with A,B,C ∈ HRω and a function Φ such that, if we go back to R lim using the real
variables tn := Tn/ω and xn := Xn/ω, we get a scheme infinitely close to (1), that is to
say, an algorithm of the form⎧⎨⎩

t0 = a′ ; x0 = b′

tn+1 = tn + 1/β
xn+1 = xn + 1/β f ′(tn, xn)

where a′ 	 a, b′ 	 b and f ′(t, x) 	 f(t, x) for t, x ∈ Rlim.

This definition establishes a strong link between the initial scheme (1) and its arith-
metization (3). Let us now show how we can choose the components A, B, C and Φ of
(3). It is easy for the first three: A := ωa�, B := ωb� 5 and C := α. As an arithmetical
translation of the term 1/β f(tn, xn), it is quite natural to take

Φ(β, Tn, Xn) := (1/β)ωf(Tn/ω,Xn/ω)�� = F (Tn, Xn) ÷ β

where F (Tn, Xn) := ω f(Tn/ω,Xn/ω)� is an arithmetization of f(tn, xn) and ÷ de-
notes the arithmetic operation which gives the euclidian quotient. Of course, we suppose
that the function f is sufficiently simple so that its arithmetizationF is directly accessible
in HRω without any calculus on R. Thus, we consider the following scheme⎧⎨⎩

T0 = A ; X0 = B
Tn+1 = Tn + α
Xn+1 = Xn + F (Tn, Xn) ÷ β

(4)

where A := ωa�, B := ωb� and F (Tn, Xn) := ω f(Tn/ω,Xn/ω)�.

5. Of course, we suppose that these two elements are already known without any calculus in R. This
knowledge may be the result of a preceding arithmetization process.
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Proposition 6. If we add the condition α 	 +∞ to the hypothesis (2), the scheme (4) is
an arithmetization of the initial Euler scheme (1).

Proof. Since ϕω is additive, it is sufficient to show that ϕω(F (Tn, Xn) ÷ β) may be
written 1/β f ′(tn, xn) with the condition f ′(tn, xn) 	 f(tn, xn). Since

ϕω(F (Tn, Xn) ÷ β) =
1
ω

(⌊ω f(tn, xn)�
β

⌋)
we get

ϕω(F (Tn, Xn) ÷ β) =
1
ω

(ω f(tn, xn)�
β

−
{ω f(tn, xn)�

β

})
then

ϕω(F (Tn, Xn) ÷ β) =
1
ω

(
ω f(tn, xn)

β
− {ω f(tn, xn)}

β
−
{ω f(tn, xn)�

β

})
that is to say

ϕω(F (Tn, Xn) ÷ β) =
1
β

(
f(tn, xn) − {ω f(tn, xn)}

ω
− 1
α

{ω f(tn, xn)�
β

})
Since ω and α are infinitely large, we get the result.

From now on, it is assumed that

∃α, β ∈ N ω = αβ, α 	 +∞ and β 	 +∞ (5)

Under this hypothesis, we say that (4) is the arithmetization of (1) at the scale ω.

5.2. Interpretation at an intermediary scale

We are now looking at the solution (Tn, Xn) of (4). We would like to get an arithme-
tization of the initial function t �→ x(t) as a discrete function T �→ X(T ) defined on an
interval [0, N ] of N. It appears that this solution (Tn, Xn) is a sequence of points very
distant from each other because Tn+1 − Tn = α 	 +∞. To get closer the points of this
sequence, we can observe the solution at an intermediate scale.

A general principle of Reeb is that it is useful to work with two non trivial scales: the
(strong) scale ω for computing the solution and a (lowest) scale ω ′ with 1 � ω′ � ω for
the graphical representation of the same solution.

Thus, we have to explain more formally what does it mean to go from the scale ω to
another scale ω′. The natural idea is to perform an homothety followed by a truncation,
i.e X �→  ωω′X�. This maps turns out to be equal to ψω′ ◦ ϕω : HRω → HRω′ , so that
we get the commutative diagram

HRω −−−−→ HRω′

ϕω

⏐⏐
 �⏐⏐ψω′

Rlim
id−−−−→ Rlim
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If ω′ is a divisor of ω, that is to say if there is ω ′′ ∈ N such that ω = ω′ ω′′, we get the
following nice form

∀X ∈ HRω ψω′ ◦ ϕω(X) =
⌊
X

ω′′

⌋
= X ÷ ω′′

The question is to choose an interesting intermediate scale. Actually, we have already two
intermediate scales: α and β such that ω = αβ. What is the best? If we choose β, then
the second line in (4) is becoming better but the effect on the third line is not so good.
If we choose α, the third line is becoming better but not the second one. It appears that
it is our interest to suppose that α = β. Thus, we make a further assumption which is
compatible with the previous (2) and (5)

∃β ∈ N ω = β2 and β 	 +∞ (6)

Hence, our intermediate scale is β and going from the scale ω to the scale β is just the
map

ψβ ◦ ϕω : HRω −→ HRβ

X �−→ X ÷ β

In order to get the interpretation of the scheme (4) at the intermediate scale β we introduce
the following notation: for every Z ∈ HRω, Z̃ := Z ÷β and Ẑ := Z modβ respectively
denotes the quotient and the remainder in the euclidean division of Z by β. From the
preceding explanation, we know that Z = Z̃β + Ẑ with Z̃ ∈ HRβ and Ẑ ∈ {0, . . . , β −
1}. Thus, for each k, Tk = T̃k β + T̂k, Xk = X̃k β + X̂k and F (Tk, Xk) = F̃k β + F̂k
with T̃k, X̃k, F̃k ∈ HRβ et T̂k, X̂k, F̂k ∈ {0, 1, . . . , β − 1}.

From the relation Tn+1 = Tn + β we deduce that Tn+1 ÷ β = Tn ÷ β + 1, that is to
say T̃n+1 = T̃n + 1. The equation Xn+1 = Xn + F (Tn, Xn) ÷ β becomes

X̃n+1β + X̂n+1 = X̃nβ + X̂n + F̃n

which is equivalent to the system{
X̃n+1 = X̃n + (X̂n + F̃n) ÷ β

X̂n+1 = (X̂n + F̃n) modβ

Finally, we get the arithmetisation of Euler scheme (1) computed at the scale ω = β 2 and
interpreted at the intermediary scale β:⎧⎪⎪⎪⎨⎪⎪⎪⎩

T̃0 = A÷ β, X̃0 = B ÷ β and X̂0 = Bmodβ
T̃n+1 = T̃n + 1
X̃n+1 = X̃n + (X̂n + F̃n) ÷ β

X̂n+1 = (X̂n + F̃n) modβ

(7)

where A = β2a�, B = β2b� and

F̃n = F (T̃nβ +Amodβ, X̃nβ + X̂n) ÷ β

=

⌊
ω f

(
T̃nβ +Amodβ

ω
,
X̃nβ + X̂n

ω

)⌋
÷ β.
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In the scheme (7), we have to understand that the X̂k are some auxiliary variables and
that the T̃k and the X̃k are the relevant variables. Now, the set of pairs (T̃k, X̃k) is the
graph of a discrete function T �→ X(T ) defined on an interval I of Z. We will say that
this function is the arithmetisation of the initial function t �→ x(t), computed at the scale
β2 and interpreted at the scale β.

6. Examples of arithmetisation

6.1. The arithmetisation of the exponential function

One of the first functions to which Reeb applied the previous arithmetization process
was the exponential function.

Figure 3. The arithmetisation of t �→ γe t computed at the scale β2 and interpreted at the
scale β for β = 50 and γ = 0.2 , 0.4 , 0.6 , 0.8 , 1.

The exponential function x �→ ex is the solution of the following Cauchy problem

{
x′ = x
x(0) = 1

The function f of the general theory is now the projection (t, x) �→ x. Thus, we get

F (T̃nβ +Amodβ, X̃nβ + X̂n) = X̃nβ + X̂n and F̃n = X̃n.
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Since the initial condition is x(0) = 1, we have A = 0 et B = β2. Consequently, the
arithmetisation of the corresponding Euler scheme computed at the scale β 2 and inter-
preted at the scale β is the following⎧⎪⎪⎪⎨⎪⎪⎪⎩

T̃0 = 0, X̃0 = β et X̂0 = 0
T̃n+1 = T̃n + 1
X̃n+1 = X̃n + (X̃n + X̂n) ÷ β

X̂n+1 = (X̃n + X̂n) modβ

(8)

This is precisely the kind of algorithm proposed by G. Reeb. This algorithm defines
a discrete function T �→ E(T ) for T ≥ 0 in HRβ which is an arithmetisation of the
exponential function: E(T )/β 	 eT/β for T ∈ HRβ and et 	 E(βt�)/β for t ∈ Rlim.

6.2. The arithmetisation of a straight line

It may seem a strange idea to implement the previous aritmetization process on a
function as elementary as t �→ ct+d. Yet, that was done by J.P. Reveillès with a surprising
and intersecting result: a new approach to the notion of discrete line [35, 36, 37, 38, 42,
43].

We consider now a straight line Δ in the plane R
2 with the equation x = ct + d

where c and d are two given elements of R lim. This line is the graph of the function
t �→ x(t) := ct+ d which is the solution of the trivial Cauchy problem{

x′ = c
x(0) = d

The corresponding Euler scheme is⎧⎨⎩
t0 = 0 and x0 = d
tn+1 = tn + 1/β
xn+1 = xn + c/β

(9)

and the arithmetisation of this last scheme, computed at the scale β 2 and interpreted at
the scale β, is ⎧⎪⎪⎪⎨⎪⎪⎪⎩

T̃0 = 0, X̃0 = β2 d� ÷ β and X̂0 = β2 d�modβ
T̃n+1 = T̃n + 1
X̃n+1 = X̃n + (X̂n +K) ÷ β

X̂n+1 = (X̂n +K) modβ

(10)

where K is the integer β2 c� ÷ β ∈ HRβ . The set of pairs (T̃k, X̃k) is the graph of a
discrete function T �→ X(T ) defined on an interval I of Z. This function is called the
arithmetisation of the straight line Δ, computed at the scale β 2 and interpreted at the
scale β.

Proposition 7. For all T ∈ I, we have X(T ) = CβT +Dβ� where Cβ :=

⌊
β2c
⌋÷ β

β

andDβ :=

⌊
β2d
⌋

β
.
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Proof. We introduce the variable Xn := X̃nβ + X̂n with values in HRω where ω = β2.
Then, we have X̃n = Xn ÷ β and we get the inductive relation Xn+1 = Xn +K . Thus,
for each n we have Xn = X0 + nK . Since K = ω c� ÷ β and

X0 = X̃0β + X̂0 = (ω d� ÷ β)β + ω d�modβ = ω d�

we get the expression Xn =�n(ω c� ÷ β) + ω d� and finally

X̃n =
⌊
n(ω c� ÷ β) + ω d�

β

⌋
.

Since T̃n = n, the proof is done.

The elements of the graph of the function T �→ X(T ) are the points with integer
coordinates which are on or just below the continuous straight line Δβ with equation

x = Cβ t + Dβ . The slope of Δβ is Cβ =
(β2 c� ÷ β)

β
	 c and for t = 0 we have

x = Dβ =
β2 d�
β

	 β d. Thus, for d = 0 the line Δβ is infinitely close to the initial line

Δ.

Moreover, the algorithm given by (10) is a variant of the famous Bresenham algorithm
which is used for drawing a line in a discret plane like a computer screen. This fact shows
that the algorithm provided by our arithmetization process is a good one. This property is
interesting because this algorithm is given by a general and conceptual analysis while the
Bresenham algorithm results of a specific work on a straight line.

Figure 4. The arithmetisation of the line 15y = ax computed at the scale β 2 and inter-
preted at the scale β for β = 50 and a = 4, 7, 11, 14.
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Finally, it is easy to check that the graph of the function T �→ CβT +Dβ� is the set
of (T,X) ∈ Z

2 such that
0 ≤ KT − βX + βDβ ≤ β

This kind of inequalities is at the origin of the concept of analytic discrete line introduced
by Reveillès:

Given a, b, γ, τ ∈ Z such that 0 ≤ a ≤ b, b �= 0 and τ > 0, the discrete analytic line
with slope (a, b), with thickness τ and origin γ is the set of points (X,Y ) ∈ Z

2 such that

γ ≤ aX − bY < γ + τ

This definition is at the beginning of a new scientific field of discrete geometry and
graphical computer usually called discrete analytical geometry. It should be noted that, in
these latest developments, nonstandard analysis is no longer used and the main theoretical
tool seems to be arithmetic.

7. Elements on the constructive content of the Harthong-Reeb
line

In the preceding sections, we have introduced a weak axiomatic version of nonstan-
dard analysis which is enough to work on integer numbers. Then, we have defined the
numerical system of the Harthong-Reeb line and the arithmetization process of the Euler
scheme which allows us to construct an arithmetical analogous of a solution of some dif-
ferential equations with variables in R. Let us remark that the philosophy and the concept
of the Harthong-Reeb line gave also rise to other kind of scientific developments, mainly
around the works of Harthong [14, 15], developments which are not covered in the present
paper.

A natural remark about what we have related is the constructive aspect of these system.
In fact, once admitted the nonstandard language and the infinitely large natural number ω
or β, we get a theory and a practice which seems relatively constructive: we can see that
we only perform explicit calculus and reasoning without the use of any new transcendent
principle. Furthermore, the nonstandard axiomatic we have chosen is as little transcendent
as possible. Indeed, we only need the existence of some infinitely large number and we
just did what is required for this purpose.

Of course, for the moment it is only an impression of constructivity and it may be
noted at least two points which weaken this feeling:

– from the constructive point of view, the axiomatic introduction of infinitely large
numbers is not completely satisfactory since the computational meaning of such entities
is not given;

– there is no chance that the underlying logic used in the considered developments is
completely conform to the strict constraints of intuitionnistic principles which are one of
the ultimate criteria for the constructive mathematics.

More generally, this is the old debate about the constructivity of nonstandard analysis
which arise again. On the one hand, the main criticism made against NSA is that this
theory is highly non-constructive. According to this view, NSA and constructive math-
ematics occupies opposite positions in the geography of mathematics. For instance, the
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reaction of E. Bishop [3] (the master of constructive analysis) was to consider that NSA
was the ultimate senseless mark of the non-constructive framework of classical analysis.
One can also mention the judgement made by A. Connes on NSA [8]. The idea behind
this type of criticism is that the typical nonstandard entities (like nonstandard numbers)
are basically non-constructive, as fictitious as non-measurable set of Lebesgue theory or
as the axiom of choice of set theory. Accordingly, theses entities would be nothing else
that some non-essential artefacts of our formalism. On the other hand, Harthong and
Reeb explains in [16] that, far from being an artefact, nonstandard analysis necessarily re-
sults of an intuitionnistic interpretation of the classical mathematical formalism (see also
[41]). In a more concrete way, it is a common remark that the practice of NSA has a rela-
tively constructive appearence. Moreover, some strange structural similarities have been
noted between nonstandard and constructive proofs [44]. Finally, thanks to the works of
P. Martin-Löf [26], I. Moerdijk [27] and E. Palmgren [30, 31], there are now new presen-
tations of nonstandard analysis which completely fit with the constructive constraints (see
also [5]).

Thus, it is now time for us to move beyond a sterile polemic and to begin the con-
ceptual analysis of the question of the constructivity of the Harthong-Reeb line HR ω.
In a recent work [13], we have shown that HRω, just slightly modified, satisfies in a
non-trivial way the Bridges axioms of a constructive line. These axioms defined a kind of
abstract structure which may be called a Bridges-Heyting field and which concentrates the
essential characteristics of the continuous line from the constructive point of view; then,
using only intuitionnistic logic, all the known constructive properties of this line may be
derived. In our work on HRω, starting with accurate definitions of =ω and >ω and us-
ing a special logical framework closed to the intuitionnistic one, we prove that HRω is
a Bridges-Heyting field. We believe that the constructive content of this version of HR ω

is measured by the quality of our logical framework. This last one can be summed up
in three rules: 1) the usual relation = and > are decidable on integers (limited or non-
limited), 2) the usual constructive integers are identified to the limited one and 3) we use
only intuitionnistic logic. Conversely, the lack of constructivity of HRω should also be
read in this logical context: it is clear that the combination of rules 1) and 2) is not to-
tally satisfactory because it is only for the usual integers that the relations = and > are
unquestionably decidable.

This last restriction on the constructivity of HRω is clearly linked to the axiomatic
way we chose for the introduction of infinitely large numbers. More generally, it is now
well known that the axioms are a real obstacle in computational mathematics. From this
viewpoint, it is always better to replace a problematic axiom by a roughly equivalent com-
putational rule [11, 12]. This is the direction in which we are currently working with the
hope to get a more constructive version of the Harthong-Reeb line. For this purpose, we
are partly using the idea of Laugwitz and Schmieden on infinitely large natural numbers
[19, 21, 20] and the framework of Martin-Löf type theory [24, 25, 26]. We believe that, for
a system like the Harthong-Reeb, it would be possible to obtain a sufficiently constructive
structure so that the proofs written in it may be translated into exacts programs.

Appendix on external induction

We now supplement our minimal form of nonstandard analysis by the introduction of
a special induction that fits with external formulae. This inductive defining principle is
our last axiom:
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LIM5. (External inductive defining principle): Let p a limited natural number
and P(U) be an internal or an external formula for which U denotes an arbitrary finite
sequence in Z

p. We suppose that:

1) there exists an element X0 ∈ Z
p such that P((X0));

2) for every limited n ∈ N and for every sequence (Xk)0≤k≤n in Z
p such that

P((Xk)0≤k≤n), there exists Xn+1 ∈ Z
p such that we have P((Xk)0≤k≤n+1).

Therefore, there exists an internal infinite sequence (Xk)k∈N
in Zp such that, for all

standard n ∈ N , P((Xk)0≤k≤n).

This principle means that the sequence of valuesXk for k limited can be extended in a
complete sequence (Xk)k∈N defined for all naturel numbers k. Saying that this sequence
is internal means that it has all the properties of the classical sequences in usual number
theory. Particularly, if Q(X) is an internal formula, then the collection {k ∈ N ; Q(X k)}
is an internal subset of N.
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