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ABSTRACT. This article deals with a theme to which Claude Lobry has been interested for a long
time: what is the nature of mathematics motivated by biological sciences? It starts by presenting the
subjective opinions of its author, illustrated by the simplest application one can think of: demonstrating
that it is possible to produce cyclic evolutions on the simple basis of viability and inertia constraints,
without using periodic differential equations. It is not impossible that this approach is foreign to an
explanation of biological clocks (or economic cycles in another field).

RÉSUMÉ. Cet article traite d’un thème auquel Claude Lobry s’est longtemps intéressé : quelle est
la nature des mathématiques motivées par les sciences biologiques ? Il commence par exposer les
opinions subjectives de l’auteur, illustrées pas une application des plus simples démontrant qu’il est
possible de produire des évolutions cycliques à partir de simples hypothèses (contraintes de viabilité
et d’inertie) pour produire des évolutions cycliques, sans faire appel aux équations différentielles pé-
riodiques. Il n’est pas impossible que ce point de vue soit étranger à une explication du fonctionnement
des horloges biologiques (ou des cycles économiques dans un autre domaine).
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À Claude Lobry,
que j’imagine bougonnant,

grommelant, ronchonnant, maugréant, grognant, pestant
à la lecture de ces pages,

cherchant quels pourraient être les points de désaccord
sur un sujet longtemps débattu entre nous,

en lui souhaitant, en toute amitié,
d’apprécier la liberté tant attendue

d’être enfin son propre esclave.

1. Introduction

What are the mathematical tools most useful for understanding “living” systems? I
do not know how to answer this question, far too ambitious, but except by saying that,

1) even if some of these tools do exist, they have been mostly motivated by the
observation of the inert (physical) systems,

2) these tools and methods have to be analyzed to check whether their use may
change the formulation of the question,

3) and not the other way around, except when aware of the dangers and assessing
them,

4) new tools must be forged and emerge to be selected by “cognitive evolution”,
with a ... Darwinian flavor, minimizing religion wars on such or such approach.

I can at least bring a personal definitively subjective negative answer to the the sub-
sidiary question whether living systems are sufficiently similar to systems currently stud-
ied in mathematics, physics, or engineering. Eugene Wigner’s considerations on the un-
reasonable effectiveness of mathematics in the natural sciences [22, Wigner] are even
more relevant in living sciences.

Whenever I am asked to define what are mathematics, I am tempted to cite Saint
Augustine’s confession: ‘If no one asks me, I know: if I wish to explain it to one that
asketh, I know not: yet I say boldly that I know, ...” he wrote (about time) in the book XI
(11.14.17) of his Confessions.

For at least one good reason, since “mathematics” mean both collections of mathe-
matical results at a given time and mathematical “cognitive processes”. Mathematics as
end-results are as many as mathematicians, whereas one may find some regularities in
mathematical cognitive processes.

For many centuries, human minds used their potential “mathematical capabilities” to
describe and share their “mathematical perceptions” of the world. This mathematical ca-
pability of human brains is assumed to be analogous to the language capability. Each child
coming to this world uses this specific capability in social interaction with other people
to reach (evolving) consensus on the perception of their world by learning their mother
tongue (and few others before this capability fades away with age). I suggest the same
happens with mathematics. They play the “mathematical role” of metaphors that language
uses for allowing us to understand a new phenomenon by metaphors comparing it with
previously “understood phenomena”. Before it exploded recently in a Babel skyscraper,
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this “mathematical father tongue” was quite consensual and perceived as universal . This
is this very universality which makes mathematics so fascinating, deriving mathematical
theories or tools motivated by one field to apply them to several other ones. However,
apparently, because up to now, the mathematical “father tongue” was mainly shaped by
“simple” physical problems of the inert part of the environment, letting aside, with few
exceptions, the living world. For good reasons. Basic simple principles, such as the Pierre
de Fermat’s “variational principle”, including Isaac Newton’s law thanks to Maupertuis’s
least action principle, derived explanations of complex phenomena from simple princi-
ples, as Ockham’s razor prescribes: This “law of parsimony" states that an explanation
of any phenomenon should make as few assumptions as possible, and to choose among
competing theories the one that postulates the fewest concepts. This is the result of an
“abstraction process”, which is the (poor) capability of human brains that selects among
the perceptions of the world the few ones from which they may derive logically or mathe-
matically many other ones. Simplifying complexity should be the purpose of an emerging
science of complexity, if such a science will emerge beyond its present fashionable status.
“If people do not believe that mathematics is simple, it is only because they do not realize
how complicated life is”, said John von Neumann.

Biology, for instance, offers to our investigations myriads of biological clocks or os-
cillators, producing periodic evolutions, or, rather, cyclic evolutions (see [ 23, Winfree],
[13, Lobry], for instance, and more recently, [12, Francoise]). This modification of the
terminology is justified by the fact that nowadays, periodic evolutions are understood as
produced by a system of differential equations. The search of these equations is a very
difficult undertaking, so that the question arises to look for other ways to produce periodic
solutions, that we suggest to call cyclic to underlie the fact that they are not periodic so-
lutions of a given system of differential equations. As often in biology or in life sciences,
we face the following dilemma:

1 [Simple Dynamics and Complex Constraints] Are the examples of biological clocks
produced by complex systems of differential equations with complex coefficients or pro-
duced by very simple dynamics, confronted to a complex maze of constraints?

This may be how Ockham’s razor can apply in this domain, and this paper attempts
to prove this point, because, in my subjective view, the right hand sides of these complex
systems are actually unknown or poorly known to us. Cyclic evolutions can alternatively
be derived from non periodic control systems, subjected to “viability constraints” and
“inertia thresholds”, as we shall see.

Remark — For example, the history of the mathematical modeling of the propa-
gation of the nervous influx started in 1903 with very simple impulse models by Louis
Lapicque. At the time, a mathematical theory of impulse systems did not exist yet. This
triggered the search of systems of differential equations reproducing evolutions “looking
like” or reminiscent of the propagation or the nervous influx by the ingenious works of
Alan Hodgkin and Andrew Huxley (nephew of the writer Aldous Huxley and grandson of
Thomas Huxley). These equations reproduce evolutions looking like nervous influxes, but
without producing explanations, whereas the Lapicque model, very simple indeed, but
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involving constraints and impulse evolutions when they reach those constraints, provides
both a simple explanation and evolutions looking like the propagation of the nervous in-
flux. �

So physics, which could be defined as the part of the cultural environment which
is understandable by mathematical metaphors, has not yet, in my opinion, encapsulated
the mathematical metaphors of living systems, from organic molecules to social systems
made of human brains. The reason seems to be that the adequate mathematical tongue
does not yet exist. And the challenge is that before creating it, the present one has to be
forgotten, de-constructed. This is quite impossible because mathematicians have been ed-
ucated in the same way all over the world, depriving mathematics from the Darwinian evo-
lution which has operated on languages. This uniformity is the strength and the weakness
of present day mathematics: Its universality is partial. The only possibility to perceive
mathematically living systems will remain a dream: To gather in secluded convents young
children with good mathematical capability, but little training in the present mathemat-
ics, under the supervision or guidance of economists or biologists without mathematical
training. They possibly could come up with new mathematical languages unknown to us
providing the long expected unreasonable effectiveness of mathematics in the economic
and biological sciences.

Even the concept of natural number is oversimplifying, by putting in a same equiv-
alence class so several different sets, erasing their qualitative properties or hiding them
behind their quantitative ones. Numbers, next measurements, and then, statistics, how
helpful they are for understanding and controlling the physical part of the environment,
may be a drawback to address the qualitative aspects of our world, left to plain language
for the quest of elucidation. We may have to return to the origins and explore new “qual-
itative” routes, without overusing the mathematics that our ancestors accumulated so far
and bequeathed to us.

Meanwhile, we are left with this paradox: “simple” physical phenomena are explained
by more and more sophisticated and abstract mathematics, whereas “complex” phenom-
ena of living systems use, most of the time, relatively rudimentary mathematical tools.

For instance, in economics, the mathematical tools used so far did not answer the facts
that, for instance,

1) economic evolution is never at equilibrium (stationary state),

2) and thus, there were no need that it converges to it, in a stable or unstable way,

3) that elementary cognitive sciences cannot accept the rationality assumption of
human brains,

4) and even more that they can be reduced to utility functions, the existence of
which was already questioned by Henri Poincaré when he wrote to Léon Walras that
“Satisfaction is thus a magnitude, but not a measurable magnitude” (numbers are not
sufficient to grasp satisfaction),

5) that uncertainty can be mathematically captured only by probabilities (numbers,
again),

6) that chaos, defined as a property of deterministic system, is not fit to represent a
nondeterministic behavior of living systems which struggle to remain as stable (and thus,
“non chaotic”) as possible,
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7) that intertemporal optimality, a creation of the human brain to explain some
physical phenomena, is not the only creation of Nature, (in the sense that “Nature” created
it only through human brains!),

8) that those human brains should complement it by another and more recent prin-
ciple, adaptation of transient evolutions to environments,

9) and so on (see for instance [3, Aubin]).

These considerations are developed in [6, Aubin]. The purpose of viability “theory”
(in the sense of a sequence [theôria, procession] of mathematical tools sharing a common
background, and not necessarily an explanation of something [theôrein, to observe]), is
to attempt to answer directly the question of dynamic adaptation of uncertain evolution-
ary systems to environments defined by constraints, that we called viability constraints
for obvious reasons. Hence the name of this body of mathematical results developed
since the end of the 1970’s that needed to forge a differential calculus of set-valued maps
(set-valued analysis, see [9, Aubin& Frankowska]), differential inclusions and differen-
tial calculus in metric spaces (mutational analysis and morphogenesis, see [10, Aubin
& Lesne] and [4, Aubin]). These results, how imperfect they might be to answer this
challenge, have at least been motivated by social and biological sciences, even though
constrained by the mathematical training of their authors. See details in [ 1, Aubin] and
[7, Aubin, Bayen, Bonneuil & Saint-Pierre].

2. Chance and Necessity

It is by now a consensus that the evolution of many variables describing systems,
organizations, networks arising in biology and human and social sciences do not evolve
in a deterministic way, and in many instances, not even in a stochastic way as it is usually
understood, but with a Darwinian flavor.

Viability theory started in 1976 by translating mathematically the title

Chance and Necessity
� �

x(t) ∈ S(x) & x(t) ∈ K

of the famous 1973 book by [19, Jacques Monod], taken from an (apocryphical?) quo-
tation of Democritus who held that “the whole universe is but the fruit of two qualities,
chance and necessity”.

2 The mathematical transla-
tion of “chance”. The math-
ematical translation of “chance”
is a kind of evolutionary engine,
called an evolutionary system, as-
sociating with any initial state
x the subset S(x) of evolutions
starting at x.

The figure displays evolutions starting from a given initial state, which are func-
tions from time (in abscissas) to the state space (ordinates).
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The system is said to be deterministic if for any initial state x, S(x) is made of one and
only one evolution, whereas “contingent uncertainty” happens when the subset S(x) of
evolutions contains more than one evolution for at least one initial state.

Note that the present evolves, too, so that initial conditions do evolve in accordance.
Therefore, this definition of evolutionary systems should depend upon a flow of past initial
conditions and on the (history of the) evolutions.

“Contingence is a non-necessity, it is a characteristic attribute of freedom”, wrote
Gottfried Leibniz.

3 The mathematical transla-
tion of “necessity”. The mathe-
matical translation of “necessity”
is the requirement that for all t ≥
0, x(t) ∈ K , meaning that at each
instant, “viability constraints” are
satisfied by the state of the sys-
tem.

The figure represents the state space as the plane, and the environment defined
as a subset. It shows two initial states, one from which all evolutions violate the
constraints in finite time, the other one from which starts one viable evolution
and another one which is not viable.

In summary, the environment is described by viability constraints of various kinds, a
word encompassing polysemous concepts as stability, confinement, homeostasis, adapta-
tion, etc., expressing the idea that some variables must obey some constraints (represent-
ing physical, social, biological and economic constraints, etc.) that can never be violated.
So, viability theory started as the confrontation of evolutionary systems governing evolu-
tions and viability constraints that such evolutions must obey.

Presented in such an evolutionary perspective, this approach of (complex) evolution-
ary systems departs from main stream modeling by a direct approach:

4 [Direct Approach.] It consists in studying properties of evolutions governed by an
evolutionary system: Gather the larger number of properties of evolutions starting from
each initial state. It may be an information both costly and useless, since our brains cannot
handle simultaneously too many observations and concepts.

Moreover, it may happen that

1) evolutions starting from a given initial state satisfy properties which are lost by
evolutions starting from another initial state, even close to it (sensitivity analysis),

2) or that, even if all evolutions share a given set of properties, they fade away for
neighboring systems (stability analysis).
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Viability theory rather uses instead an inverse approach:

5 [Inverse Approach.] A set of prescribed properties of evolutions being given, study
the (possibly empty) subsets of initial states from which

1) starts at least one evolution governed by the evolutionary system satisfying the
prescribed properties,

2) all evolutions starting from it satisfy these prescribed properties.

These two subsets coincide whenever the evolutionary system is deterministic.

Stationarity, periodicity and asymptotic behavior are examples of classical properties
motivated by physical sciences. They are studied in terms of such parameters, as in bifur-
cation theory, catastrophe theory, chaotic behavior, etc., as Stephen Wiggins observed in
section 3.3 “On the Interpretation and Application of Bifurcation Diagrams: A Word of
Caution” of his book Introduction to nonlinear systems and chaos by : . “At this point,
we have seen enough examples so that it should be clear that the term bifurcation refers
to the phenomenon of a system exhibiting qualitatively new dynamical behavior as pa-
rameters are varied. However, the phrase “as parameters are varied" deserves careful
consideration... ln all of our analyses thus far the parameters have been constant. The
point is that we cannot think of the parameter as varying in time, even though this is what
happens in practice. Dynamical systems having parameters that change in time (no mat-
ter how slowly!) and that pass through bifurcation values often exhibit behavior that is
very different from the analogous situation where the parameters are constant.”

The point raised by Wiggins is revisited extensively in both contexts, mathematics and
interpretation, in two papers of this volume : [11, Fruchard & Schäfke], [14, Lobry]. For
applications of this type of techniques, I refer to [20, Murray] and [12, Françoise] among
a multitude of books and papers on this topic.

As far as chaos, a polysemous word, is concerned, it was already announced in 1750,
in connection with connectionism, by Henri Thiry, baron d’Holbach (1694-1778) in his
Système de la nature: “Finally, if everything in nature is linked to everything, if all motions
are born from each other although they communicate secretely to each other unseen from
us, we must hold for certain that there is no cause small enough or remote enough which
sometimes does not bring about the largest and the closest effects on us. The first elements
of a thunderstorm may gather in the arid plains of Lybia, then will come to us with the
winds, make our weather heavier, alter the moods and the passions of a man of influence,
deciding the fate of several nations.”

The use of chaos is reminescent, mimicking but not explaining the fact that some non-
linear differential equations produce chaotic behavior, quite sensitive to initial conditions.

Was chance rooted in deterministic system? Is uncertainty observed in living systems
consistent with differential equations?

However, for many problems arising in biological, cognitive, social and economic
sciences, I believe we face a completely orthogonal situation, governed by differential
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inclusions, but producing evolutions as regular or stable (in a very loose sense) as possible
for the sake of adaptation and viability required for life.

Are attractors (again, defined in several ways) relevant for living systems? Do we
have to restrict evolution to stationarity (at equilibrium) and to asymptotic behavior (at
attractors)? Living systems provide transient evolutions, doomed to dye in finite time
as soon as the are born, long before infinity. “In the long term, we are all dead” wrote
Keynes.

Why not keep the underlying concept of “viability” (which coincides with invariance
for deterministic systems) without its asymptotic component which is not relevant for
living organisms which are doomed to die or to be transformed as soon as they are born.
Furthermore, evolutions starting outside never reach the attractor in finite time!

The situation when coefficients are kept constant is familiar in physics, but, in engi-
neering as well as in economic and biological sciences, they may have to vary with time,
playing the roles of controls in engineering, of regulons in social and biological sciences,
or tyches, when they play the role of random variables whenever uncertainty does not
obey statistical regularity, or is subject to “extreme events”.

We thus have to add to this list of classical properties other ones, such as concepts of
viability of an environment, of capturability of a target in finite time, and of other concepts
combining properties of this kind.

3. Regulated Systems

The main examples of evolutionary systems are provided by

6 Regulated Systems. Let
U := R

c be a space of pa-
rameters. A regulated system
is made of two “boxes”:

1 - The “input-output box" associating with any evolution u(·) of the parameter
(input) the evolution governed by differential equation x ′(t) = f(x(t), u(t))
starting from an initial state (open loop),
2 - The non deterministic “output-input box", associating with any state a subset
U(x) of parameters (output).
The associated evolutionary system S maps any initial state x to the set S(x) of
evolutions x(·) starting from x (x(0) = x) and governed by

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t)) (1)

The parameters range over a state-dependent contingent map U : x � U(x), provid-
ing the system opportunities to adapt at each state to viability constraints.

The nature of the parameter differs according to the problems and to questions asked:
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They can be

– “controls”, whenever a controller or a decision maker “pilots” the system by choos-
ing the controls, as in engineering,

– “regulons” or regulatory parameters in those living systems where no identified or
consensual agent acts on parameters of the system,

– “tyches” or disturbances, perturbations under which nobody has any control or in-
fluence.

To be more explicit, we have to introduce some formal definitions describing the con-
cepts of viability kernel of an environment:

Definition 3.1 [Viability Kernel] If a subset K ⊂ R
d is regarded as an environment

(defined by viability constraints), an evolution x(·) is said to be viable in the environment
K ⊂ R

d if for every time t ≥ 0, x(t) belongs to K . The viability kernel of K under the
evolutionary system S is the set Viab(1)(K) of initial states x ∈ K from which starts at
least one evolution x(·) ∈ S(x) viable in K :

Viab(1)(K) := {x0 ∈ K | ∃x(·) ∈ S(x0) such that ∀t ≥ 0, x(t) ∈ K}
Two extreme situations deserve to be singled out: The environment is said to be

1) viable under (1) if it is equal to its viability kernel: Viab(1)(K) = K ,

2) a repeller under (1) if it is empty: Viab(1)(K) = ∅.

It is equivalent to say that all evolutions starting from a state belonging to the comple-
ment of viability kernel in K leave the environment in finite time.

7 Schema of a Viability Kernel. From a
point x0 in the viability kernel of the en-
vironment K starts at least one evolution
viable in K forever. All evolutions starting
from x0 ∈ K outside the viability kernel
leave K in finite time.

Hence, the viability kernel plays the role of a viabilimeter, the “size” of which measur-
ing the degree of viability of an environment, so to speak. There are many other concepts
or viability constraints as Hofbauer and Sigmund concept or permanence, close to the
concept of persistence (see [15, Lobry & Sari] for instance).

The main results of viability theory characterize and study, under adequate assump-
tions, the mathematical and algorithmic properties of the viability kernel (as well as soft-
wares computing it), and above all, provides the regulation map regulating the viable
evolutions. On the viability kernel, the regulation map associates a nonempty subset
R(x) ⊂ U(x) of regulons such that the new regulated systems

x′(t) = f(x(t), u(t)) where u(t) ∈ R(x(t)) (2)
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governs viable evolutions.

Arises next the question: How can we choose the controls or the regulons? It triggers
another question: For what purpose?

The most natural one for our brains is for choosing the best one. This is the approach
initiated by Fermat in optics, the prototype of variational principles in physics and by
Maupertuis in celestial mechanics, which became optimal control problems in engineer-
ing.

4. Intertemporal Optimization

In a dynamical perspective, the main mathematical tool commonly used is optimal
control theory, which deals with minimization problem of an intertemporal criterion by
evolutions governed by a regulated system. This approach makes implicit requirements
that deserve to be made explicit:

8 [Implicit Prerequisites for Intertemporal Optimization] Intertemporal optimization
demands

1) the existence of an actor (agent, decision-maker, controller, etc.),

2) an optimality criterion,

3) that decisions are taken once and for all at the initial time,

4) a knowledge of the future (or of its anticipation).

For systems involving living beings, there is not necessarily an actor governing the
evolution of regulons according to the above prerequisites. The choice of criteria is open
to question even in static models, even when multicriteria or several decision makers are
involved in the model. Furthermore, the choice (even conditional) of the optimal controls
is made once and for all at some initial time, and thus cannot be changed at each instant
so as to take into account possible modifications of the environment of the system, thus
forbidding adaptation to viability constraints.

The intertemporal criterion involving the knowledge of the state at future times re-
quires some knowledge of the future. Most living systems display a myopic behavior.
Instead of taking into account the future, their evolutions are certainly constrained by
their history. The knowledge of the future needs to assume some regularity (for instance,
periodicity, cyclicity) of the phenomena (as in mechanics), or to make anticipations, or
demands experimentation. Experimentation, by assuming that the evolution of the state
of the system starting from a given initial state for a same period of time will be the same
whatever the initial time, allows one to “translate” the time interval back and forth, and,
thus, to “know” the future evolutions governed by the system. But in life sciences as well
as in economics, the systems are irreversible, their dynamics may disappear and cannot
be recreated, forbidding any insight into the future.
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Hence, we are left to forecast, predict or anticipate the future, i.e., extrapolate past
evolutions and to constrain in the last analysis the evolution of the system as a function
of its history. However, to quote Paul Valéry, “Forecasting is a dream from which reality
wakes us up”. After all, in biological evolution, intertemporal optimization can be traced
back to Sumerian mythology which is at the origin of Genesis: one Decision-Maker, de-
ciding what is good and bad and choosing the best (fortunately, on an intertemporal basis
with infinite horizon, thus wisely postponing to eternity the verification of optimality),
knowing the future, and having taken the optimal decisions, well, during one week...

We had to wait for Alfred Wallace to question this view in 1858 in his essay On the
Tendency of Varieties to Depart Indefinitely from Original Type which he sent to Darwin
who had been working on his celebrated Origin of Species (1859) since 1844. Selection
by viability and not by intertemporal optimization motivated viability theory.

5. Punctuated Equilibria and the Inertia Principle

In the absence of an actor piloting the regulons, or by assuming that this actor is my-
opic, lazy, opportunistic and conservative, we cannot assume any longer that the regulons
are chosen to minimize an intertemporal criterion. We may assume instead that regulons
evolve as “slowly” as possible because the change of regulons (or controls in engineering)
is costly, even very costly.

Evolutions under constant coefficients, which do not evolve at all, may not satisfy
required properties, such as viability, capturability or optimality. Then the question arises
to study when, where and how coefficients must cease to be constant and start to “evolve”
in order to guarantee the viability property, for instance. In this case, their status of
“coefficients” is modified, and they become controls or regulons, according to the context
(engineering or life sciences where the problem is set).

Whenever the viability property is concerned, we shall give a name to this phe-
nomenon which seems to be shared by so many systems dealing with living beings: In a
loose way, the inertia principle states that the “regulons” of the system are kept constant
as long as possible and changed only when viability or inertia is at stake.

The inertia principle provides a mathematical explanation of the emergence of the con-
cept of punctuated equilibrium introduced in paleontology by Nils Eldredge and Stephen
J. Gould in 1972.

However, they were anticipated by Darwin himself, who added in the sixth edition
of is celebrated book the sentence “and lastly, although each species must have passed
through numerous transitional stages, it is probable that the periods, during which each
underwent modification, though many and long as measured by years, have been short
in comparison with the periods during which each remained in an unchanged condition”
(personal communication by Jim Murray).

For instance, this has been documented in paleontology:
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9 Excavations at Lake Turkana Excavations at Kenya’s Lake Turkana have provided
clear evidence of evolution from one species to another. The rock strata there contain
a series of fossils that show every small step of an evolution journey that seems to have
proceeded in fits and starts. Examination of more than 3,000 fossils by Peter Williamson
showed how 13 species evolved. The record indicated that the animals stayed much the
same for immensely long stretches of time. But twice, about two million years ago
and then, 700,000 years ago, the pool of life seemed to explode — set off, apparently,
by a drop in the lake’s water level. Intermediate forms appeared very quickly, new
species evolving in 5,000 to 50,000 years, after millions of years of constancy, leading
paleontologists to challenge the accepted idea of continuous evolution.

We can translate these biological concepts into precise mathematical definitions. A
viability niche of a regulon u is the viability kernel of the system x ′(t) = f(x(t), u)
regulated by the constant regulon u. A regulon u is a punctuated equilibrium if and only
if its viability niche is non empty. We can prove the existence of “heavy evolutions locking
in the viability niche of a punctuated equilibrium” whenever the evolution of the regulon
reaches such a punctuated equilibrium on its way, in the sense that it may remain viable
in the viability niche forever. The concept of “locking-in” had been introduced in the
different field of economics (of innovation), and with other mathematical techniques, for
explaining why, once adopted, some technologies, which may look non-optimal in regard
of some criterion, are still adopted, whereas some better solutions are not adopted. The
same phenomenon appears in biological evolution, and may be explained mathematically
by the inertia principle in the paradigm of adaptation to an environment. These are the
very considerations which triggered the investigations of what became viability theory at
the end of the 1970’s.

10 Punctuated Evolution. Starting from x0 with the constant regulon u0, the solution
evolves in K until time t1, (first punctuated equilibrium phase) when the state x1 := x(t1)
is about to leave the environment K and when the constant regulon u 0 must start to evolve.
Then a critical phase happens during which velocities also evolve (as slowly as possible)
to maintain viability, until time t1 when the regulon u1 := u(t1) can remain constant
during a nonempty time interval: second punctuated equilibrium phase, after which a
second critical phase.
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6. Illustration: Inertia Function

This is not the place to provide the mathematical details. We rather illustrate these
concepts with the simplest possible one dimensional example.

Assume that we have to model a system, the dynamics of which are unknown to us.
Hence, we describe our ignorance by an “open” right hand side

x′(t) = u(t) where u(t) ∈ R (3)

where the right hand side can be regarded as a regulon or a control. It is tempting to try
guessing right hand sides by selecting feedbacks x 	→ ũ(x) and solving

x′(t) := ũ(x(t))

For instance, the simple examples, besides constant right hands side ũ(x) ≡ u, are
provided byaffine feedbacks defined by ũ(x) := r(b − x). The solution starting from
x ∈ [a, b] is equal to x(t) = e−rtx + b (1 − e−rt). It remains viable in the interval
[a, b], increases with time with negative acceleration with the norm smaller than or equal
to r2(b − a) and converges to the equilibrium b when t 	→ +∞. Many other examples
of right hand sides have been produced, but, for economic or biological systems, we re-
ally don’t know them, and, in particular, right hand sides producing periodic or cyclic
evolutions.

6.1. The Simplest Example of Inertia Function

Instead, we can replace our ignorance of the dynamics by some more accessible
knowledge, for instance,

⎧⎨
⎩

(i) viability constraints: x(t) ∈ K := [a, b], 0 < a < b < +∞

(ii) inertia threshhold c ∈ R+: ‖x′′(t)‖ ≤ c
(4)

The above dynamical inequality can be written in the form of the regulated “metasystem”⎧⎨
⎩

(i) x′(t) = u(t)
(ii) u′(t) = v(t)

where ‖v(t)‖ ≤ y(t)
(5)

(where the controls are the accelerations), the equilibria of which are of the form (x, 0)
where x ∈ [a, b].

These simple constraints are enough to deduce many properties of the evolutions
governed by the regulated system (3), p.29. We denote by P(x, u) the set of solu-
tions to differential equation (3) viable in the interval [a, b] such that x(0) = x and
u(0) = x′(0) = u. We introduce the important notion of inertia function defined by

α(x, u) := inf
x(·)∈P(x,u)

sup
t≥0

‖u′(t)‖ = inf
x(·)∈P(x,u)

sup
t≥0

‖x′′(t)‖
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It happens that we can characterize it thanks to the concept of viability kernel. Let us
introduce for that purpose the auxiliary system (6)⎧⎪⎪⎨

⎪⎪⎩
(i) x′(t) = u(t)
(ii) u′(t) = v(t)
(iii) y′(t) = 0

where ‖v(t)‖ ≤ y(t)

(6)

One can prove that the inertia function is characterized by formula

α(x, u) = inf
(x,u,y)∈Viab

(6)
(K×R×R+)

y

Figure 6.1 Newtonian Inertia Function. [Left.] The Saint-Pierre Viability Kernel
Algorithm computes the graph of the inertia function. [Right.] A lower lever set
(or section) of the inertia function: Its boundary is the critical zone, over which
the state evolves with constant acceleration. The trajectory of an heavy evolution
minimizing the velocity of the controls and which stops at equilibrium b is shown.

Therefore, the inertia function inherits all the properties of viability kernel and can be
computed thanks to the viability kernel algorithm. In this simple example, we can even
provide explicit formulas. One can check for instance the analytical formula of the inertia
function:

Lemma 6.2 [Newtonian Inertia Function] The Newtonian inertia function α defined on
]a, b[×R is equal to:

α(x, u) :=
u2

2(b − x)
if u ≥ 0 and

u2

2(x − a)
if u ≤ 0 (7)

Its domain is ({a}×R+)∪(]a, b[×R+)∪({b}×R−). Hence, from each state-regulon
pair (x, u) ∈ Dom(α) starts at least one evolution with bounded acceleration, actually,
bounded by α(x, u).
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We can also check that the inertia function is the (smallest positive lower semicontin-
uous) solution to the Hamilton-Jacobi partial differential equation

∀ (x, u) ∈]a, b[×R,
∂α(x, u)

∂x
u − α(x, u)

∣∣∣∣∂α(x, u)
∂u

∣∣∣∣ = 0

We do not need to use this partial differential equation to deduce the properties of the
inertia functions which are obtained directly through the viability characterization of the
inertial function. Actually, this type of viability characterization holds true for a class of
first-order nonlinear partial differential equations.

We associate with the inertia function the inert regulation map Rc defined by Rc(x) :=
{u ∈ R such that α(x, u) = u} and the critical map Ξc defined by Ξc(u) := {x ∈
[a, b] such that α(x, u) = c}. When c > 0, the subset Ξc(u) is called the critical zone of
the control u bounded by inertia threshold c > 0. When c = 0, the subset Ξ 0(u) is called
the viability niche of the control u. A regulon is a punctuated equilibrium (or, actually,
punctuated regulon) if its viability niche Ξ0(u) is not empty.

Lemma 6.3 [Inert Regulation and Critical Maps] We set

r�(x) :=
√

2(b − x), r�(x) :=
√

2 (x − a) and R(x) :=
[
−r�(x), +r�(x)

]
(8)

The regulation map is equal to

Rc(x) :=
√

c
[
−r�(x), +r�(x)

]
=

√
c R(x)

The critical map Ξc (c > 0) is defined by

Ξc(u) = b − u2

2c
if u > 0 and Ξc(−|u|) = a +

u2

2c
if u < 0

The viability niche Ξ0(u) of the regulon u is empty when u �= 0 and equal to Ξ0(0) =
[a, b] when u = 0.

The graph of the regulation map Rc associated to the inertia function is limited by the

union
√

c
{
−r�(x), +r�(x)

}
of the two graphs of −√

c r� below and
√

c r� above.

6.2. Heavy Evolutions

Heavy evolutions with an inertia threshold c are the ones which are viable, satisfy
the inertia threshold and which minimize at each instant the norm of the velocity of the
regulon. In our case, they minimize at each instant the norm of the acceleration.

We start with regulons with inertia α(x, u) < c strictly smaller than an imposed inertia
threshold c. We can choose the heavy evolution which is governed by the regulon constant

Ockham's razor  - 31

Revue ARIMA - volume 9 - 2008



equal to u until it reaches the critical zone Ξc(u) and, next, we shall have to switch the
regulon to pilot an evolution until it reaches the equilibrium (a, 0) or (b, 0).

The warning time σc(x, u) ∈ R ∪ {+∞} is the first instant when evolutions xu(·)
starting from x when xu(σc(x, u)) ∈ Ξc(u) reaches the critical zone Ξc(u) of the regulon
u.

11 [Warning Time or “Kairos”.] The con-
cept of warning time is a mathematical
translation of the anglo-saxon concept of
timing, or the Italian concept of tempismo,
modernizing the concept of kairos of clas-
sical Greece, meaning propitious or oppor-
tune moment.

The ancient Greeks used this qualitative concept of time by opposition to chronos,
the quantitative ... chronological time, which can be measured by clocks.
The search of kairos translates the search of decisions taken at the right moment
(warning time) rather than static optimal decisions.
Lysippos sculptured a wonderful concrete representation of this very abstract con-
cept (in the museum of Torino).

Lemma 6.3, p.31 implies that solutions x ± |u|t regulated by constant regulons ±|u|
reach the critical zone at warning time equal to

σc(x, u) :=
(b − x)
|u| − |u|

2c
if u > 0 and σc(x, u) :=

(x − a)
|u| − |u|

2c
if u < 0 (9)

because x + uσc(x, u) = Ξc(u) = b − u2

2c
(when u > 0).

The inertia function α increases over the evolution under constant regulon u according

∀t ∈
[
0,

(b − x)
u

− |u|
2c

]
,

⎧⎨
⎩

uc(t) = u
xc(t) := x + tu

α(xc(t), u) = u2

2((b−x)−ut)

until warning time σc(x, u) when the state reaches Ξc(u) and the regulon αc(Ξc(u), u) =
c.

This is the last moment when we have to change the regulon u because, otherwise,

either it the regulon remains constant and leaves the environment [a, b] in finite time
b − x

|u|
(u > 0), or, in order to remain viable, it has to violate the inertia threshold strictly before
reaching the part {b} × R+ of the boundary {a, b} × R of the environment [a, b] × R,
when it has to leave immediately the environment [a, b] × R.

When it reaches the critical zone, then the regulon must change with a velocity smaller
than or equal to c. A general theorem by Marc Quicampoix on the semi-permeable barrier
property of the viability kernel implies that actually, the norm of this velocity has to be
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equal to the inertia threshold until it reaches the boundary {a, b}×R of the environment
[a, b] × R.

In our case, the state-regulon pair evolves according (when u > 0):

∀t ∈
[
(b − x)

u
− |u|

2c
,
(b − x)

u
+

|u|
2c

]
,

⎧⎪⎪⎨
⎪⎪⎩

uc(t) = u − tc

xc(t) := x + u

(
t − (b − x)

u
+

|u|
2c

)
− c

2

(
t − (b − x)

u
+

|u|
2c

)2

α(xc(t), u) = c

until warning time
(b − x)

u
+

|u|
2c

(when u > 0).

Heavy evolution display a behavior which is reminiscent of the concept of Tychonov
slow and fast evolutions, where the the regulon would play the role of the slow variable
and the state the role of the fast variable (see for instance [17, 18, Lobry, Sari & Touhami]
among a huge literature). However the slowness is not dictated by an a priori coefficient
ε converging to 0, but is either very slow, indeed, constant, or as slow as possible with
a velocity imposed by the inertia threshold. The state evolves according to the heavy
control, with no other limit on its velocity. The paper [16, Lobry & Sari] comes back to
this question by using nonstandard analysis.

6.3. Heavy Viability Cycles and Hysterons

Let us choose an inertia threshold c and assume that |u| ≤√
c
√

b − a.

Instead of choosing the heavy evolution which remains at one of the equilibria (a, 0)
or (b, 0) forever by switching the acceleration (velocity of the regulon) to 0, we continue
the evolution by keeping the acceleration −c or +c as long as possible, and then, switch
again to 0, again, as long as it is possible to obey viability and inertia constraints.

Recall that the critical map is equal to

Ξc(u) = b − u2

2c
if u > 0 and Ξc(−|u|) = a +

u2

2c
if u < 0

We set

x� :=
b − a

2
and u� :=

√
b − a

The two values are equal if u =
√

c u� where we set u� :=
√

b − a. We observe that

x� := Ξc(
√

c u�) =
b − a

2
does not depend on c.

Hence, by (9), p.32, the warning time being equal to

σc(x, u) :=
(b − x)
|u| − |u|

2c
if u > 0 and σc(x, u) :=

(x − a)
|u| − |u|

2c
if u < 0

we deduce that

σc(a, u) =
(b − a)
|u| − |u|

2c
and σc

(
a +

u2

2c

)
=

(b − a)
|u| − |u|

c
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Recall that
|u|
c

is the time needed to reach

(b, 0) from (Ξc(u), u) or (a, 0) from (Ξc(−|u|),−|u|).

If u :=
√

cu�, then

√
c|u�|
c

=
√

b − a√
c

.

We define the heavy hysteresis cycle (xh(·), uh(·)) of cycle 2
(

b − a

|u| +
|u|
c

)
starting

at (Ξc(−|u|), u) with u > 0 where Ξc(−|u|) := a +
u2

2c
in the following way:

1) The state-regulon pair (xh(·), uh(·)) starts from (Ξc(−|u|), u) by taking the ve-

locity of the regulon equal to 0. It remains viable on the time interval

[
0,

b − a

|u| − |u|
c

]

until it reaches the state-regulon pair (Ξc(u), u) where Ξc(u) := b − u2

2c
because

σc

(
a +

u2

2c

)
=

(b − a)
|u| − |u|

c
.

2) The state-regulon pair (xh(·), uh(·)) starts from (Ξc(u), u) at time
b − a

|u| − |u|
c

by taking the velocity of the regulon (acceleration) equal to −c.

- It ranges over the graph of
√

c r�(x) on the time interval

[
b − a

|u| − |u|
c

,
b − a

|u|
]

until

it reaches the state-regulon pair (b, 0). The heavy evolution would remain at this equilib-
rium forever with an acceleration equal to 0.

- However, for defining the heavy hysteresis cycle, we assume that we keep the ac-
celeration equal to −c. Hence the state-regulon pair (xh(·), uh(·)) ranges over the graph

of −√c r�(x) on the time interval

[
b − a

|u| ,
b − a

|u| +
|u|
c

]
until it reaches the state-regulon

pair (Ξc(u),−|u|).
3) The state-regulon pair (xh(·), uh(·)) starts from (Ξc(u),−|u|) at time

b − a

|u| +
|u|
c

by taking the velocity of the regulon equal to 0. It remains viable on the time

interval

[
b − a

|u| +
|u|
c

, 2
b − a

|u|
]

until it reaches the state-regulon pair (Ξc(−|u|),−u).

4) The state-regulon pair (xh(·), uh(·)) starts from (Ξc(−|u|),−u) at time 2
b − a

|u|
by taking the velocity of the regulon equal to +c.

- It ranges over the graph of −√c r�(x) on the time interval

[
2
b − a

|u| , 2
b − a

|u| +
|u|
c

]
until it reaches the state-regulon pair (a, 0). The heavy evolution would remain at this
equilibrium forever with an acceleration equal to 0.

- However, for defining the heavy hysteresis cycle, we assume that we keep the accel-
eration equal to +c. Hence the state-regulon pair (xh(·), uh(·)) ranges over the graph of

+
√

c r�(x) on the time interval

[
2
b − a

|u| c +
|u|
c

, 2
(

b − a

|u| +
|u|
c

)]
until it reaches the

state-regulon pair (Ξc(−|u|), u).
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This ends the heavy hysteresis cycle.

Heavy hysteresis cycles are governed by three velocities of regulons only, −c, 0 and
c, which can be regarded as “meta-regulons”. They provide an example of “quantized”
evolutions, governed by a combination (called amalgam) of a finite number of (meta) reg-
ulons only. Quantization is a recent issue in control theory, where, instead of computing
the complicated feedback regulating viable evolutions, the question arises to achieve the
regulation of viable evolutions with a finite number of controls or feedbacks.

This number can be reduced to two (meta) regulons in the limiting case u :=
√

c u�

and when Ξc(
√

c u�) = Ξc(−
√

c u�) =: x�. In this case, heavy hysteresis cycles are
called inert hysteresis cycle xh(·) (of cycle 4u�√

c
) in the following way:

1) The state-regulon pair (xh(·), uh(·)) starts from (x�,
√

c u�) at time 0 by taking
the velocity of the regulon equal to −c. It ranges over the graph of

√
c r� on the time

interval [0,
u�

√
c
] until it reaches the equilibrium (b, 0) and next, keeping the velocity of the

regulon equal to −c, it ranges over the graph of −√c r� on the time interval

[
u�

√
c
,
2u�

√
c

]
until it reaches the state-regulon pair (x�,−√

c u�).

2) The state-regulon pair (xh(·), uh(·)) starts from (x�,−√
c u�) at time

2u�

√
c

by

taking the velocity of the regulon equal to +c. It ranges over the graph of −√c r� on

the time interval

[
2u�

√
c

,
3u�

√
c

]
until it reaches the equilibrium (a, 0) and next, keeping the

velocity of the regulon equal to +c, it ranges over the graph of +
√

c r� on the time interval
[3u�√

c
, 4u�√

c
] until it reaches the state-regulon pair (x�,

√
c u�).

12 Evolutions of Inert Evolutions and their Controls. The Viability Kernel Algo-
rithm computes both the graphs of the smooth inert evolution (in blue) and of its regulon
(in red) are plotted. The velocity of the regulon oscillates from +u � to −u�. The evolution
is then cyclic, alternatively increasing and decreasing from a to b.

The trajectories of the inert evolutions can be computed with the viability kernel algo-
rithm (without using the analytical formulas specific to this example):

Ockham's razor  - 35

Revue ARIMA - volume 9 - 2008



The Inert Hysteresis Loop. The Viability Kernel Algo-
rithm computes the the graph of the regulation map Rc

(which is a viability kernel) and the inert hysteresis loop
when u :=

√
c(b − a), where the Inert Hysteresis Loop is

governed by two metacontrols +c and −c.
The evolutions goes from a to b by one route and from b to
a by another route.

Observe that the state oscillates from a to b back and forth, but by two different paths.
This is a hysteresis loop:

13 [Hysteresis Loops and Hysterons] James Ewin, a Scottish physicist discovered and
coined the word hysteresis meaning lagging behind in classical Greek. This polysemous
word is used in many different fields, including in mathematics, where several mathemat-
ical translations have been observed (among which [21, Visintin]’one, related to subsets
invariant with respect to affine time scaling). We use it here as an engine, called hys-
teron, producing hysteresis loops or hysteresis cycles: When the evolution of the state of
a system with hysteresis is plotted on a graph against the applied force (in our case, the
regulon), the resulting curve has the shape of a loop.

So, the heavy viability oscillator produces the following hysteron:

Lemma 6.4 [The Heavy Hysteron] Let us assume that |u| ≤ √
c
√

b − a. The heavy
hysteron is the set-valued map ΦHeavy defined by

Φ(x) = {−min(u,
√

cr�(x),
√

c r�(x)), min(u,
√

cr�(x),
√

c r�(x))} (10)

Its graph is the heavy hysteresis loop in the state-regulon space (actually, the phase

space). Its cycle is equal to 2
(

b − a

|u| +
|u|
c

)
.

When regulated by positive regulons, the state goes from a to b and the state-regulon
pair ranges over the graph of x 	→ min(u,

√
cr�(x),

√
c r�(x)) whereas, when regulated

by negative regulons, the state goes from b to a, and the state-regulon pair ranges over the
graph of x 	→ −min(u,

√
cr�(x),

√
c r�(x)). The evolution t 	→ (xh(t), uh(t)) is cyclic

of cycle 2
(

b − a

|u| +
|u|
c

)
.

In the case when u :=
√

c u�, figure (6.3), p.36 provides the hysteresis loop of the
heavy hysteron computed by the viability kernel algorithm.
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14 This very simple mathematical metaphor implies that two excitatory/inhibitory sim-
ple mechanism of a DNA site with bounds on the quantities and their accelerations are
sufficient to explain the production of an isolated protein increasing up to a given via-
bility bound and then, decreasing to disappear and being produced again according to a
clock, the cyclicity of which is concealed in this very simple viability oscillator, triggering
a biological clock.

7. Conclusion

We presented a quite long answer to the question of the relevance of present day
mathematical and illustrated it by the concepts of inertia principe, heavy evolutions and
heavy cycles and hysterons based only on viability constraints and inertia threshold in the
simplest situation.

Needless to say, the results illustrated by this example are quite general, and apply to
a large class of nonlinear regulated systems (see [5, Aubin & Saint-Pierre] for instance).
Curiously, and unexpectedly, the very concept of viability kernel describing the basic
viability problem played also a crucial role to characterize the inertia function. This
function helped us to give a precise statement of the concept of inertia principle as well
as the simplest evolutions satisfying it, the heavy evolutions. Starting with any regulated
system (and not only the simple system x′(t) = u(t)), viability constraints and inertia
threshold, the same story remains true and we can associate heavy viability cycles driven
by the regulated system. Heavy evolutions lock-in the viability niche of a regulon in the
sense that whenever it enters this viability niche, the evolution may (and not must if the
system is not deterministic) remain in it forever. We do not need to assume that the system
governing the evolution of the state is periodic for providing cyclic evolutions.

This is an illustration of the viability tools which are meant to enrich the panoply of
those diverse and ingenious techniques set out by the study of dynamical systems since
the pioneering works of Alexander Lyapunov and Henri Poincaré more than one century
ago. Most of them were motivated by physics and mechanics, not necessarily designed
to adaptation problems to environmental or viability constraints. Viability theory incor-
porates some mathematical features of uncertainty without statistical regularity, deals not
only with intertemporal optimality but also with viability and decisions taken at warn-
ing time (kairos) instead of “optimal” ones. Viability techniques are also geometric in
nature, but they do not require smoothness properties usually assumed in differential ge-
ometry. They not only deal with asymptotic behavior, but also and mainly with transient
evolutions and capturability of targets in finite or prescribed time. They are global instead
of local, and really nonlinear since they bypass linearization techniques of the dynamics
around equilibria, for instance. They bring other lights to the decipherability of complex,
paradoxical and strange dynamical behaviors by providing other types of mathematical
results and algorithms. And above all, they have been motivated by dynamical systems
arising in issues involving living beings, as well as networks of systems (or organizations,
organisms).
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In a nutshell, and for the time, viability theory investigates evolutions

1) in continuous time, discrete time, or an “hybrid" of the two when impulses are
involved,

2) constrained to adapt to an environment,

3) evolving under contingent, stochastic or tychastic uncertainty (where “tyches”
replace probabilistic “events”),

4) using for this purpose regulons (regulation regulons), subsets of regulons, and
in the case of networks, connectionnist matrices,

5) regulated by feedback laws (static or dynamic) that are then “computed" accord-
ing to given principles, such as the inertia principle, intertemporal optimization, etc.,

6) co-evolving with their environment (mutational and morphological viability),

7) and corrected by introducing adequate regulons (viability multipliers) when vi-
ability or capturability is at stakes.

Although viability theory has been designed and developed for studying the evolutions
of uncertain systems confronted to viability constraints arising in socio-economic and bi-
ological sciences, as well as in control theory, it had also been used as a mathematical
tool for analyzing the local and asymptotic behavior of control systems, either in continu-
ous or discrete time, even as “wild” yet deterministic systems such as the famous Lorenz
system or the complex quadratic map, as well as an efficient tool for solving systems of
first-order partial differential equations.

After years of study of various problems of different kinds, motivated from robotics
(and animat theory), game theory, economics, neuro-sciences (see for instance [ 2, Aubin]),
biological evolution and, unexpectedly, from financial mathematics, these few relevant
traits common to all these problems were uncovered, after noticing the common fea-
tures of the proofs and algorithms. This history is a kind of mathematical striptease, the
modern version of what Parmenides and the pre-Socratic Greeks called a-letheia, the dis-
covering, un-veiling of the world that surrounds us. This is nothing else than the drive to
“abstraction”, isolating, in a given perspective, the relevant information in each concept
and investigate the interplay between them. Indeed, one by one, slowly and very shyly,
the required properties of the regulated system were taken away. If there is one domain
where mankind made some progress, it is this long march to abstraction:

f = mγ
...

15 The Long March (Chángzheng) towards Abstraction. From meditative con-
templation of the celestial vault to Ptolemy nested spheres, to Kepler ellipses to the
revolutionary Newton evolutionary, edicting simply that f = mγ, to...
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