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RÉSUMÉ. Dans ce papier, nous présentons deux modèles mathématiques du cancer. Le premier
s’intéresse aux interactions entre tumeur et système immunitaire, qui interviennent lors des premières
phases de développement des tumeurs cancéreuses. Celles-ci sont en compétition avec le système
immun. On étudie les deux cas conduisant soit à l’élimination des cellules tumorales, soit à la viabilité
d’une tumeur solide. Dans la seconde partie, on développe un modèle d’initiation d’angiogenèse dans
une tumeur solide. Ce processus, qui munit la tumeur d’un système circulatoire propre est modélisé
via la théorie des jeux, les joueurs étant les activateurs et les inhibiteurs du processus angiogénique.

ABSTRACT. This paper contains two short presentations related to the mathematical modeling of
Cancer. The first part intends to introduce a tumour-immune system interaction, which describes the
early dynamics of cancerous cells, competing with the immune system, potentially leading to either the
elimination of tumoral cells or to the viability of a solid tumor. The second part of the paper addresses
the case where a solid tumor has grown enough to initiate angiogenesis, a process which equips
the tumor with its own blood network. Nash game theory is used to model the interaction between
activators and inhibitors of the angiogenesis process.
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1. A model for tumor-immune system competition

This part is a summary of the results obtained in [13] [11] [12] and [14]. Those articles
derive and study a class of models for the early stage of tumordevelopment when tumor
cells are not yet aggregated into a solid form. They may also be applied when cells are
residually dispersed in the environment after the removal of a solid form.

The spatial distribution of tumor cells is, at this stage, not overly important and the
models are therefore homogeneous in space. However it is essential to take the activity or
progression of the tumor cells into account as it is affectedby the immune system and the
quantity of food available (which is in limited supply as angiogenesis did not occur yet).

The models also consider the activity of immune cells and consequently require the
introduction of the two densitiesf1(t, u) andf2(t, u). The functionf1 is the density of
tumor cells at timet with activity u ∈ R

+ whereasf2(t, u) is the density of immune cells.
The two biologically important quantities are the total numbersn1(t) andn2(t) of tumor
and immune cells, which are defined as

ni(t) =

∫

R+

fi(t, u) du, i = 1, 2.

However the important quantities for the evolution of the system are the total activities
A1(t) andA2(t) given by

Ai(t) =

∫

R+

u fi(t, u) du, i = 1, 2.

Notice that theAi are in general not accessible to measure (one can typically only count
the cells and not determine whether they are quiescent or not). The last important quantity
is the quantity of food available in the environment which wesimply denote byA3(t).

The interaction between cells are the following

– The interaction between a tumor cell and a immune cell decreases the activity of
both cells ;

– Immune cells may kill or destroy tumor cells ;

– The presence of tumor cells induces the proliferation of immune cells ;

– The quantity of food available is depleted by the tumor cells but that increases their
activity.
With these assumptions, the equation for the tumor cells simply reads

∂tf1 + ∂u((α13 A3 − α12 A2)u f1) = β13 u A3 f1 − β12 A2 f2, (1.1)

whereas the equation for the immmune system is

∂tf2 − ∂u(α21 A1 u f2) = β21 A1 u f2, (1.2)

and for the environment we simply have

d

dt
A3 = −γA1 A3. (1.3)

The system was derived in a more general framework in [13] andof course requires initial
conditions

fi(t = 0, u) = f0
i (u) ∈ L1((1 + u) du), A3(0) = A0

3 ∈ R+.
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The equations are weakly coupled through the total activities. This weak non linearity
does not pose problems to obtain solutions but the control onthe total activities is more
delicate. Indeed any bound on a moment of the form

∫
ukfi(t, u) du would require a

bound on the next moment
∫

uk+1fi(t, u) du. So existence of solutions was obtained
only in [11] under the conditions that

∫

R+

eλu f0
1 (u) du < ∞, ∀λ > 0;

∫

R+

eβ21 u/α21 f0
2 (u) du < ∞. (1.4)

They may appear rather strong but are in fact somewhat optimal as it was proved in the
same paper : No solution may exist, even for a short time, without some exponential decay
on the initial data.

More interesting than the usual mathematical question of well-posedness is the study
of the asymptotic behaviour in time. For this first model, thebehaviour is very straightfor-
ward as either the tumor cells win, in which case the activities of the immune system and
environment eventually vanish ; Or the immune system wins, eliminating all tumor cells.
More precisely, define

n∗

2 =

∫

R+

eβ21 u/α21 f2(t, u) du,

Then this number is conserved in time (dn∗

2/dt = 0). It is therefore the maximal number
of immune cellsn2(t) and we have either of the two

(i) n1(t) −→ 0,
∫
∞

0
A1(t)dt < ∞, n2(t) −→ n2(∞) <

∫
∞

0
eβ21u/α21f0

2 (u)du,
butn3, A3, n2, A2 are bounded from below.

(ii)
∫
∞

0
A1(t)dt = ∞, n2(t) −→

∫
eβ21u/α21f0

2 (u)du, A2(t), n3(t), A3(t) −→ 0.
The model composed of (1.1), (1.2) and (1.3) is valid only fora short period of time

during which no extra amount of food may be produced by the organism. If one wants to
consider it for longer times, then some modifications have tobe introduced, which is the
object of [14]. For example (1.3) can be replaced by

d

dt
A3 = −γA1 A3 + δ(A∗

3 − A3)A3, (1.5)

whereA∗

3 can represent the normal amount of nutriments and oxygen which are found in
healthy tissues. The new term simply allows for the environment to recover to its normal
healthy state in the absence of tumor cells.

The new system made of (1.1), (1.2) and (1.5) has the same asymptotic behaviour than
the previous one. However it is also possible to allow for theimmune system to recover,
changing (1.2) into

∂tf2 − ∂u(α21 A1 u f2) = β21 A1 u f2 + β22(f
∗

2 (u)A3(t) − A∗

3 f2(t, u)). (1.6)

The behaviour in large time is now much more complicated as the disease may become
chronical (tumor cells lay low most of time but resurface again and again).

The biological interpretation of this mathematical analysis is already interesting as it
predicts that the end of the disease will always be simple (death/tumor in solid form vs
elimination of the tumor) only if it evolves fast enough withrespect to the recovery time
of the immune system.

Finally two therapeutical actions were introduced and studied in [12]. The first one
acts on the environment to decrease the amount of available food for the tumor cells.
Mathematically speaking we introduce a new quantityA4(t) satisfying

d

dt
A4(t) = −γ4A4 A3, (1.7)



22 A R I M A – Volume 10 – 2008/2009

and suitably modify the equation onA3

d

dt
A3(t) = −γA1 A3 − γ3A4 A3. (1.8)

The second one directly helps the immune system and, mathematically speaking, leads to
the new equations

d

dt
A5(t) = −γ5A4 A2, (1.9)

and

∂tf2 + ∂u(α25 A5 uf2 − α21 A1 u f2) = β21 A1 u f2 + β22(f
∗

2 (u)A3(t) − A∗

3 f2(t, u)).
(1.10)

In both casesA4 andA5 represent the treatment which is given to the patient all in once
at time0.

The two treatments do not have the same effect. Whereas ifA5(0) is large enough
then the system always evolve toward the elimination of the tumor cells, this is not the
case for the first treatment. There are initial values forf0

1 andf0
2 such that, no matter how

highA0
4 is, the tumor cells always win.

However this does not mean that either of the treatments is without risk. Namely, it
was not possible to prove that their effect is never damageable : There could be initial
dataf0

1 , f0
2 andA0

3 for which the normal evolution is the elimination of the tumor cells
whereas if we add a treatment (with smallA0

4 or A0
5) the opposite happens.

This implies that the treatments should always be strong enough, which is a problem
in real situations as they typically have side effects. Moreover, even though the second
treatment is better according to the analysis, numerical simulations indicate that a combi-
nation of the two is much more effective : A positive outcome can be ensured with much
lower values ofA0

4 andA0
5.

2. Tumoral Angiogenesis and anti-angiogenesis

The results presented in this section are excerpt from the paper [19]. The reader is
invited to refer toop. cit.for more details.

At their early stage of growth, solid tumors are avascular. They do not need a blood
network, being small enough to get nutrients mainly by tissue diffusion.
However, their needs are proportional to their -growing- volume, while the feeding is pro-
portional to the surface in contact with the host tissue. So,they rapidly reach a critical
size for which the supply by diffusion is no more enough to continue developing. Then,
avascular tumors sometimes turn into a dormant phase duringwhich the growth stops, as
a result of balance between proliferation and apoptosis -death- of cancer cells.
Tumors which do not enter dormancy need ways alternative to diffusion. It is now well
known that solid tumors use vascular supply. Tumor-associated neovascularization allows
the tumor cells to express their critical growth advantage as reported by Saaristoet al.[25].
The process by which solid tumors develop a vascular networkis calledangiogenesis. An-
giogenesis is a complex process, a complete description of which is outside the scope of
the present paper. Readers interested in fundamental basics, particularly in view of mathe-
matical modeling could refer to the well documented review paper by Mantzaris, Webb
and Othmer [22].
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2.1. Mathematical modeling

It is likely that the first mathematical modeling of solid tumor growth amounts to the
paper by Collins et al. [10] in 1956. A few papers were then dedicated to cancer related
mathematics, less than one per year, until the early 1970s with the introduction of a diffu-
sion model by Greenspan in 1972 [18]. Mathematical models based on diffusion gained
then a large audience, with an increasing number of publications, about four or five per
year, see the review by J. Adam in 1989 [1]. The computationaleffort was minimal, and
consisted in producing curves of temporal or one dimensional spatial response, until the
contribution by Duchting with 3D computations in 1989 [15].Specific targetting of angio-
genesis modeling as a part of tumor growth was first addressedby Chaplain and Sleeman
in 1990 [8]. Since then, an important contribution to mathematical and 4D-computational
tumoral angiogenesis was made by Chaplain, Sleeman, Anderson [2] [3]. For a more
complete review, see Othmer [22] where an exhaustive bibliography is presented.

Most if not all of the above contributions use mathematical models of nonlinear para-
bolic reaction-diffusion type. These models are based on equations which express balance
or conservation laws of physical relevant quantities like as blood cells or extracellular ma-
trix densities. The full dynamics of the tumor growth are determined starting from given
initial conditions. An illustrative presentation excerptfrom Chaplain [2] is as follows :

nt =

random motility
︷ ︸︸ ︷

∇.dn∇n −

chemotaxis
︷ ︸︸ ︷

χ∇.

(
n

k + c
∇c

)

−

haptotaxis
︷ ︸︸ ︷

ρ∇.n∇f

ft =

production
︷︸︸︷
ωn −

degradation
︷ ︸︸ ︷

µnf

ct = −

uptake
︷ ︸︸ ︷

λnc

(2.11)

where
n : density of the blood vessels
f :density of the matrix tissue
c : concentration of angiogenic factors

Obviously, solid tumor growth is not only a question of diffusion ; it should and in
fact it does include key factors from structural mechanics.Indeed, there are only a very
few and quite recent contributions to this area. In Chaplainand Sleeman [9], elasticity
theory is used to describe tumor invasion. Jones et al. in [21] introduce a constitutive law
that combines the stress-strain relation of linear elasticity with a growth term derived by
analogy with thermal expansion. Tumor spheroid growth is also studied with poroelas-
ticity modeling in [23] [26]. A more recent study by Araujo and McElwain addressing
growth-induced stresses in tumors can be found in [4], the model presented highlights the
role of various tissue properties in inducing vascular collapse phenomena observed inside
tumors.

Our aim is to define a framework well adapted to the formulation of angiogenesis and
anti-angiogenesis as a theoretical Nash game.
We shall deal with rather classical linear elliptic partialdifferential equations, within a
framework for which existence and uniqueness of solutions is well known, [17]. So, for
the sake of clarity of the exposure, we do not detail standardfunctional spaces, weak
formulations and regularity assumptions on the data, unless if necessary.
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2.1.1. A porous media model for the tumor

The extracellular matrix as well as the tumoral vasculatureare seen as a porous me-
dium, which occupies a volumeΩ ⊂ R

N (N = 2 or 3), with a variable permeability
denoted byρ , which lies between the matrix permeabilityρM and blood vessel permea-
bility ρV :

0 ≤ ρM ≤ ρ ≤ ρV

The simplesteffective(or homogenized) model for porous media is the following, also
known as the Darcy Law, where the physical unknown variable is pressurep :







−div (ρ∇p) = Q in Ω

ρ
∂p

∂n
= ρg over ΓV

∂p

∂n
= 0 over ΓN

p = 0 over ΓT

(2.12)

The right-hand sideQ represents a residual source of nutrients by diffusion through
the host tissue, it is assumed to be negligible compared to the inward blood flowg. It
should be noticed that we do not take into account what happens inside the tumor itself,
considering only its boundaryΓT as an outlet.

Obviously, the pressure field depends on the permeability distribution.

We postulate that angiogenesis provides the tumor with an optimal drainage mecha-
nism, i.e. with a permeability such that the tumor optimal blood network minimizes the
averaged pressure drop.

The pressure drop denoted byL1(ρ; p) is given by the formula :

L1(ρ; p) =

∫

Ω

Qp dx +

∫

ΓV

ρgp ds

2.1.2. A structural model for the extracellular matrix

Now, one may also consider the host surrounding tissue as a continuum medium, let us
say a linear isotropic, nonhomogeneous, elastic material.This model is of course a coarse
approximation of the actual mechanical behavior of the living tissues, which is rather of
visco-elastic nature [16]. This medium is composed of healthy and degraded tissues. The
degradation could be due to established vascularization orto an early enzyme’s action,
like as the MMPs family.The elasticity tensorE lies then (in a certain sense) between the
degraded material tensorED, and the original -sane- extracellular matrix tensorEM.

Conforming to the linear elasticity classical equilibriumequations, the displacement
vectoru = (uj) solves







−div (Eǫ(u)) = b in Ω
u = 0 over ΓV

Eǫ(u).n = 0 over ΓN

Eǫ(u).n = t over ΓT

(2.13)
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The strain tensor denoted byǫ(u) is defined with obvious notations as

ǫ(u)ij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

The mechanical stress tensor is given byσ(u) = Eǫ(u).

The body forces -such as selfweight- are denoted byb, and the normal tension which
models the stress induced by the tumor growth is denoted byt. The tissue is assumed
to be clamped to the mother vesselΓV . A related model can be found in [21] where the
authors study the stress induced during avascular tumor growth.

The displacement vectoru depends on the Elasticity tensorE. The latter itself de-
pends on the interaction between activators and inhibitorsof tissue degradation.

We assume that the host tissue is willing to keep its integrity, by using all available
factors it could control (one example is inhibitors of MMPs).
In continuum mechanics, it is usual to consider that such goal is achieved by maximizing
the stiffness, or equivalently, minimizing the compliance:

L2(E;u) =

∫

Ω

b.u dx +

∫

ΓT

t.u ds

2.2. Mathematical formulation of the game

It turns out that our approach naturally fits into thetopology designframework, amongst
a large literature, one could refer to [6] and to the references therein. Multidisciplinary to-
pology design solved as Nash game can be found in [20].

We consider a two-players static game of complete information. The two players are
the Tumoral Angiogenic Factors (TAF) which control activators distribution, denoted by
µ, and anti-Angiogenic Factors (aAF) which control inhibitors distribution, denoted byk.

Strategy spaces are defined as follows :

– (TAF) is equipped with a strategy space

S1 = {µ ∈ L∞(Ω), 0 ≤ µ ≤ 1,

∫

Ω

µdx ≤ γ1|Ω|}

– (aAF) is equipped with a strategy space

S2 = {k ∈ L∞(Ω), 0 ≤ k ≤ 1,

∫

Ω

kdx ≤ γ2|Ω|}

The constraints on the relative volume fractions express the fact that there is only a
limited available amount of activators and inhibitors.

A simultaneous (or blind) choice of(µ; k) prompts an interaction between TAF and
aAF, which is modeled as follows :

– Interaction Law :θ = µ(1 − k)

– Permeability :ρ = ρ (µ; k) = ρM + (ρV − ρM )P (θ)
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– Elasticity tensor :E = E (µ; k) = EM + (ED − EM )P (θ)

whereP (θ) is the identity, an exact homogenization operator, or an interpolated SIMP-
like (Solid Isotropic Material Penalization) operator, see Rozvany et al. [24].

The interaction law is a very simple, arbitrary choice. It states for example that the
inhibitor action is completely and immediately efficient. Actual biological situations are
of course much more complex.

>From other part, even if we content ourselves with linear porous media and elasticity
models, there is a need for a more accurate effective fluid andstructural equations, taking
into account at least microscopic progressive degradationof the medium.

To end with the definition of the game, objective or loss functions are defined respec-
tively as :

Pressure Drop j1(µ; k) = L1(ρ; p) for player (TAF) (2.14)

Mechanical Compliance j2(µ; k) = L2(E;u) for player (aAF) (2.15)

wherep is the pressure solution to the Darcy equation (2.12), andu is the displacement
vector solution to the elasticity equation (2.13).

Let us finally remark that even if the original game considered here is a noncooperative
static game, computational requirements lead us to consider iterative solving methods.
The algorithmic version mimics then a repeated,partially cooperativegame since the two
players exchange information about their respective partial optima during the iterative
process.

Existence of a Nash equilibrium

We consider the cases where eitherP (θ) = θ or P (θ) is a restriction operator,
i.e.P (θ) = g ◦ SR(θ), with g being a convex function andSR a linear compact filter,
cf [7] for details. We have the

Theorem 2.1 There exists a Nash equilibrium(µ⋆, k⋆) ∈ S1 × S2 such that

µ⋆ solves min
µ∈S1

j1(µ, k⋆) (2.16)

k⋆ solves min
k∈S2

j2(µ
⋆, k) (2.17)

Proof. Let us first notice that the strategy spacesS1 andS2 are convex and compact
for the weak-starL∞ topology.

>From one part, in case ofP (θ) = θ and since the functionsj1 andj2 are the respec-
tive compliances of Darcy and Elasticity equations, it is well known that these functions
can be expressed as supremum envelops of continuousaffinefunctions with respect to res-
pectivelyµ and tok (using a variational formulation of the equations (2.12) and (2.13)),
so these functions are convex and weak-star lower semicontinuous.

>From other part, ifP (θ) is a restriction operator,j1 andj2 can still be expressed
as supremum envelops of continuous convex (but not necessarily affine) functions with
respect to respectivelyµ andk. Convexity is preserved thanks to linearity of the filter, and
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to convexity ofg. Compactness of the filter implies the weak-star lower semicontinuity of
the objectives.

The assumptions are fulfilled in order to apply the Nash existence theorem,which
yields the existence of a Nash equilibrium, see Aubin [5].

A Numerical Experiment

We use a classical finite element method in order to solve equations (2.12) and (2.13).
First, density distributionsµ and k are approximated by means of piecewise-constant
interpolation, over triangular three-nodes elements. Then, the pressure and the displace-
ments are approximated byP1-triangular elements. We use a gradient-based optimization
method in order to solve, iteratively, each of the player’s programs. The gradients with
respect to the strategies of the respective players were computed by means of the adjoint
method.

We present a case where the tumour is a circular hole located inside a trapezoid. The
initial vessel is located on the upper side of the trapezoid.The game is a zero-sum variant,
where activators aim to maximise the tumour drainage while the inhibitors play with
exactly the opposite objective.

The numerical results presented in figures 1-2-3 illustratehow during the iterative
solving of the Nash game activators try to optimally connectthe vessel to the tumour,
while inhibitors try to find an optimal location to prevent vessel-tumour connections.

Figure 1. Activators. Figure 2. Inhibitors. Figure 3. Final Network.
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