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RESUME. Dans ce papier, nous présentons deux modéles mathématiques du cancer. Le premier
s’intéresse aux interactions entre tumeur et systéme immunitaire, qui interviennent lors des premiéres
phases de développement des tumeurs cancéreuses. Celles-ci sont en compétition avec le systeme
immun. On étudie les deux cas conduisant soit & I'élimination des cellules tumorales, soit a la viabilité
d’une tumeur solide. Dans la seconde partie, on développe un modele d'initiation d’angiogenese dans
une tumeur solide. Ce processus, qui munit la tumeur d'un systeme circulatoire propre est modélisé
via la théorie des jeux, les joueurs étant les activateurs et les inhibiteurs du processus angiogénique.

ABSTRACT. This paper contains two short presentations related to the mathematical modeling of
Cancer. The first part intends to introduce a tumour-immune system interaction, which describes the
early dynamics of cancerous cells, competing with the immune system, potentially leading to either the
elimination of tumoral cells or to the viability of a solid tumor. The second part of the paper addresses
the case where a solid tumor has grown enough to initiate angiogenesis, a process which equips
the tumor with its own blood network. Nash game theory is used to model the interaction between
activators and inhibitors of the angiogenesis process.
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1. A model for tumor-immune system competition

This part is a summary of the results obtained in [13] [11] @rid [14]. Those articles
derive and study a class of models for the early stage of tutleeelopment when tumor
cells are not yet aggregated into a solid form. They may aésafplied when cells are
residually dispersed in the environment after the remofvalsolid form.

The spatial distribution of tumor cells is, at this staget oxerly important and the
models are therefore homogeneous in space. However itdatigo take the activity or
progression of the tumor cells into account as it is affebyethe immune system and the
guantity of food available (which is in limited supply as @genesis did not occur yet).

The models also consider the activity of immune cells andsequently require the
introduction of the two densitieg; (¢, u) and f»2(¢, «). The functionf; is the density of
tumor cells at time with activity u € R™ whereas, (¢, u) is the density of immune cells.
The two biologically important quantities are the total rhersn (¢) andnz(t) of tumor
and immune cells, which are defined as

R+

However the important quantities for the evolution of theteyn are the total activities
A1 (t) and Ay (t) given by

Ai(t):/wufi(t,u)du, =1, 2.

Notice that thed; are in general not accessible to measure (one can typiaaiycount

the cells and not determine whether they are quiescent prifag last important quantity

is the quantity of food available in the environment whichsirmaply denote by4s ().
The interaction between cells are the following

— The interaction between a tumor cell and a immune cell dse®the activity of
both cells;

— Immune cells may kill or destroy tumor cells;
— The presence of tumor cells induces the proliferation afime cells;
— The quantity of food available is depleted by the tumorscellt that increases their

activity.
With these assumptions, the equation for the tumor cellplsineads
Ocf1 + O0ul(a13 As — anz A2)u f1) = Prsu As fr — Br2 A2 fo, (1.1)
whereas the equation for the immmune system is
Orf2 — Ou(az1 A1 u f2) = Ba1 Aru fa, (1.2)
and for the environment we simply have
iA =—vA1 A (1.3)
di 3 = —741 43. .

The system was derived in a more general framework in [13pdiadurse requires initial
conditions

fit =0,u) = f2(u) € L' (1 +u)du), Az(0) = A € R,.
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The equations are weakly coupled through the total aa®ifl his weak non linearity
does not pose problems to obtain solutions but the contrthertotal activities is more
delicate. Indeed any bound on a moment of the qurmf“fi(t,u) du would require a
bound on the next momerftu**1 f;(¢,u) du. So existence of solutions was obtained
only in [11] under the conditions that

/ e f7(u) du < 0o, YA > 0; / ePnv/aa f9(y) duy < oo. (1.4)
Ry R4

They may appear rather strong but are in fact somewhat opisnid was proved in the
same paper : No solution may exist, even for a short time aunitkome exponential decay
on the initial data.

More interesting than the usual mathematical question dfpesedness is the study
of the asymptotic behaviour in time. For this first model, ltledaviour is very straightfor-
ward as either the tumor cells win, in which case the ac#igitf the immune system and
environment eventually vanish ; Or the immune system wiligjirating all tumor cells.
More precisely, define

my = [ et futu) du,
Ry

Then this number is conserved in tim&:f /dt = 0). It is therefore the maximal number
of immune cellsqz(t) and we have either of the two

(i) ni(t) — 0, [TAL(t)dt < 00, ma(t) — na(oo) < [ ePnw/on f(u)du,
butns, As, no, Ao are bounded from below.

(i) [, AL (t)dt = 0o, na(t) — [ef2v/22 fI(u)du, As(t), ns(t), As(t) — 0.

The model composed of (1.1), (1.2) and (1.3) is valid onlydahort period of time
during which no extra amount of food may be produced by thamggn. If one wants to
consider it for longer times, then some modifications haveetintroduced, which is the
object of [14]. For example (1.3) can be replaced by

d
%A3 = —7A; A3+ 6(A5 — A3z) As, (1.5)

whereAj; can represent the normal amount of nutriments and oxygechvare found in
healthy tissues. The new term simply allows for the envirentito recover to its normal
healthy state in the absence of tumor cells.

The new system made of (1.1), (1.2) and (1.5) has the sameptstycrbehaviour than
the previous one. However it is also possible to allow forithewune system to recover,
changing (1.2) into

Ot fa — Oulaz1r Aru fo) = Bo1 Avu fo + Baa(f5 (u) As(t) — A3 fa(t,u)). (1.6)

The behaviour in large time is now much more complicated aglttease may become
chronical (tumor cells lay low most of time but resurfaceiagand again).

The biological interpretation of this mathematical analys already interesting as it
predicts that the end of the disease will always be simplatfdiamor in solid form vs
elimination of the tumor) only if it evolves fast enough wittspect to the recovery time
of the immune system.

Finally two therapeutical actions were introduced and istiéh [12]. The first one
acts on the environment to decrease the amount of availabk® for the tumor cells.
Mathematically speaking we introduce a new quantifyt) satisfying

d

—A = —v AL A 1.7
7 4(t) Y4 A4 Az, (1.7)
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and suitably modify the equation ofy
d
%A3(t) = —yA; A3 — 1344 As. (1.8)

The second one directly helps the immune system and, matloathaspeaking, leads to
the new equations

& As(t) = s 4, (1.9)
and
O¢fo + Ou(aas As ufa — a1 Avu fa) = Ba1 Avu fa + Paa(fs (u) As(t) — A5 fa(t,w)).

(1.10)
In both casesi, and A5 represent the treatment which is given to the patient alhiceo
at timeo.

The two treatments do not have the same effect. Whereds(if) is large enough
then the system always evolve toward the elimination of timedr cells, this is not the
case for the first treatment. There are initial valuesffband £ such that, no matter how
high A{ is, the tumor cells always win.

However this does not mean that either of the treatmentstieowi risk. Namely, it
was not possible to prove that their effect is never damdgeabhere could be initial
dataf?, f and A for which the normal evolution is the elimination of the tunuells
whereas if we add a treatment (with smaf or A?) the opposite happens.

This implies that the treatments should always be stronggmowhich is a problem
in real situations as they typically have side effects. Megg, even though the second
treatment is better according to the analysis, numerioalksitions indicate that a combi-
nation of the two is much more effective : A positive outcorae be ensured with much
lower values ofA} and A?.

2. Tumoral Angiogenesis and anti-angiogenesis

The results presented in this section are excerpt from tperdd9]. The reader is
invited to refer toop. cit.for more details.

At their early stage of growth, solid tumors are avasculaeyrdo not need a blood
network, being small enough to get nutrients mainly by gsdiffusion.
However, their needs are proportional to their -growinduwae, while the feeding is pro-
portional to the surface in contact with the host tissue.tBey rapidly reach a critical
size for which the supply by diffusion is no more enough totoure developing. Then,
avascular tumors sometimes turn into a dormant phase dwtirgh the growth stops, as
a result of balance between proliferation and apoptosathd®f cancer cells.
Tumors which do not enter dormancy need ways alternativeffizsgn. It is now well
known that solid tumors use vascular supply. Tumor-assettizeovascularization allows
the tumor cells to express their critical growth advantageported by Saaristt al [25].
The process by which solid tumors develop a vascular netisamdledangiogenesisAn-
giogenesis is a complex process, a complete descriptiorizhws outside the scope of
the present paper. Readers interested in fundamentasbparticularly in view of mathe-
matical modeling could refer to the well documented reviepqr by Mantzaris, Webb
and Othmer [22].
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2.1. Mathematical modeling

It is likely that the first mathematical modeling of solid tangrowth amounts to the
paper by Collins et al. [10] in 1956. A few papers were thenicktdd to cancer related
mathematics, less than one per year, until the early 19A0sé introduction of a diffu-
sion model by Greenspan in 1972 [18]. Mathematical modedsdan diffusion gained
then a large audience, with an increasing number of pulitst about four or five per
year, see the review by J. Adam in 1989 [1]. The computatiefiatt was minimal, and
consisted in producing curves of temporal or one dimensgpetial response, until the
contribution by Duchting with 3D computations in 1989 [1Specific targetting of angio-
genesis modeling as a part of tumor growth was first addréss€taplain and Sleeman
in 1990 [8]. Since then, an important contribution to mathéoal and 4D-computational
tumoral angiogenesis was made by Chaplain, Sleeman, Aod¢?$ [3]. For a more
complete review, see Othmer [22] where an exhaustive lgitdiohy is presented.

Most if not all of the above contributions use mathematicatliels of nonlinear para-
bolic reaction-diffusion type. These models are based oatins which express balance
or conservation laws of physical relevant quantities ligdkod cells or extracellular ma-
trix densities. The full dynamics of the tumor growth areedgtined starting from given
initial conditions. An illustrative presentation exceffim Chaplain [2] is as follows :

chemotaxis
random motility haptotaxis

—_— n ———
vV.d,Vn — xV.[——Vc| — pV.nVf
k+c
roduction ~ degradation
p (2.11)
fe = wn' — pnf
uptake
~ =
¢ = — Anc

uz

where

n : density of the blood vessels

f :density of the matrix tissue

¢ : concentration of angiogenic factors

Obviously, solid tumor growth is not only a question of dgfon ; it should and in
fact it does include key factors from structural mecharlicgdeed, there are only a very
few and quite recent contributions to this area. In Chapdaid Sleeman [9], elasticity
theory is used to describe tumor invasion. Jones et al. hifibduce a constitutive law
that combines the stress-strain relation of linear eliggticith a growth term derived by
analogy with thermal expansion. Tumor spheroid growth $® atudied with poroelas-
ticity modeling in [23] [26]. A more recent study by Araujo&McElwain addressing
growth-induced stresses in tumors can be found in [4], thdeharesented highlights the
role of various tissue properties in inducing vascularaqke phenomena observed inside
tumors.

Our aim is to define a framework well adapted to the formukatibangiogenesis and
anti-angiogenesis as a theoretical Nash game.

We shall deal with rather classical linear elliptic partifferential equations, within a
framework for which existence and unigueness of solutisnsgéll known, [17]. So, for

the sake of clarity of the exposure, we do not detail standiandtional spaces, weak
formulations and regularity assumptions on the data, srifegecessary.



24 ARIMA —Volume 10 — 2008/2009

2.1.1. A porous media model for the tumor

The extracellular matrix as well as the tumoral vasculatweeseen as a porous me-
dium, which occupies a volum@ c RY (N = 2 or 3), with a variable permeability
denoted by , which lies between the matrix permeability; and blood vessel permea-
bility py :

0<puy<p<pv

The simplesteffective(or homogenized) model for porous media is the followingpal
known as the Darcy Law, where the physical unknown variabpgéssure :

—div (pVp) = Q in Q

pg—p = pg overly

8p” (2.12)
— = 0 over I'

on

P = 0 over I'p

The right-hand sid&) represents a residual source of nutrients by diffusionutino
the host tissue, it is assumed to be negligible comparedeantiard blood flowg. It
should be noticed that we do not take into account what hapjpside the tumor itself,
considering only its boundaity; as an outlet.

Obviously, the pressure field depends on the permeabibtyilition.

We postulate that angiogenesis provides the tumor with aimapdrainage mecha-
nism,i.e. with a permeability such that the tumor optimal blood netwminimizes the
averaged pressure drop.

The pressure drop denoted by(p; p) is given by the formula :

Ly(p;p) =/dear+/ pgp ds
Q 'y

2.1.2. A structural model for the extracellular matrix

Now, one may also consider the host surrounding tissue asteaaam medium, let us
say a linear isotropic, nonhomogeneous, elastic mat@tidgd.model is of course a coarse
approximation of the actual mechanical behavior of thenfviissues, which is rather of
visco-elastic nature [16]. This medium is composed of hgeadihd degraded tissues. The
degradation could be due to established vascularizatido an early enzyme’s action,
like as the MMPs family.The elasticity tensBrlies then (in a certain sense) between the
degraded material tensByp, and the original -sane- extracellular matrix tenBgy.

Conforming to the linear elasticity classical equilibrigguations, the displacement
vectoru = (u;) solves

—div(Ee(u)) = b in Q
u = 0 overly
Ee(u).n = 0 overl'y (2.13)
Ee¢(u).n =t overl'p
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The strain tensor denoted by ) is defined with obvious notations as

o 1 8u7 8’U,j
(Wi =5 (awj + em)

The mechanical stress tensor is giveroijy) = Ee(u).

The body forces -such as selfweight- are denoteb land the normal tension which
models the stress induced by the tumor growth is denotetd e tissue is assumed
to be clamped to the mother ves$gl. A related model can be found in [21] where the
authors study the stress induced during avascular tumaitigro

The displacement vectar depends on the Elasticity tensBr The latter itself de-
pends on the interaction between activators and inhibibtissue degradation.

We assume that the host tissue is willing to keep its intgdoy using all available
factors it could control (one example is inhibitors of MMPSs)
In continuum mechanics, it is usual to consider that suchig@ehieved by maximizing
the stiffness, or equivalently, minimizing the compliance

Ly(E;u) :/b.udx—l—/ t.uds
Q I'r

2.2. Mathematical formulation of the game

It turns out that our approach naturally fits into tbpology desigframework, amongst
a large literature, one could refer to [6] and to the refeeartberein. Multidisciplinary to-
pology design solved as Nash game can be found in [20].

We consider a two-players static game of complete inforonafl he two players are
the Tumoral Angiogenic Factors (TAF) which control actosgt distribution, denoted by
1, and anti-Angiogenic Factors (aAF) which control inhilogdlistribution, denoted bj.

Strategy spaces are defined as follows :
— (TAF) is equipped with a strategy space

Si= (nel=@), 0<p<t [ pdo <o)
Q
— (aAF) is equipped with a strategy space
Sy = (ke L¥(Q), 0<k<1, / kdz < 1|9}
Q

The constraints on the relative volume fractions expresddht that there is only a
limited available amount of activators and inhibitors.

A simultaneous (or blind) choice df:; k) prompts an interaction between TAF and
aAF, which is modeled as follows :

— Interaction Law 8 = u(1 — k)
— Permeability p = p (1;k) = pm + (pv — par) P(0)
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— Elasticity tensorE = E (u; k) = Ep + (Ep — Ep ) P(60)

whereP(0) is the identity, an exact homogenization operator, or arpalated SIMP-
like (Solid Isotropic Material Penalization) operatoredgozvany et al. [24].

The interaction law is a very simple, arbitrary choice. itss for example that the
inhibitor action is completely and immediately efficientctAal biological situations are
of course much more complex.

>From other part, even if we content ourselves with lineappe media and elasticity
models, there is a need for a more accurate effective fluidtindtural equations, taking
into account at least microscopic progressive degradafitime medium.

To end with the definition of the game, objective or loss fioret are defined respec-
tively as :

Pressure Drop  j1(u; k) = L1(p;p) for player (TAF) (2.14)
Mechanical Compliance  ja(u; k) = Lo(E;u) for player (aAF) (2.15)

wherep is the pressure solution to the Darcy equation (2.12) aiglthe displacement
vector solution to the elasticity equation (2.13).

Let us finally remark that even if the original game considédrere is a noncooperative
static game, computational requirements lead us to cangetative solving methods.
The algorithmic version mimics then a repeatgattially cooperativegame since the two
players exchange information about their respective glaofptima during the iterative
process.

Existence of a Nash equilibrium

We consider the cases where eithfefd) = 6 or P(0) is a restriction operator,
i.e. P(8) = g o Sr(0), with g being a convex function anflr a linear compact filter,
cf [7] for details. We have the

Theorem 2.1 There exists a Nash equilibriufp*, £*) € S; x S3 such that
w* solves  min j1(p, k*) (2.16)
HEST
k* solves Igreusr; Jo(u*, k) (2.17)

Proof. Let us first notice that the strategy spacgsand.S, are convex and compact
for the weak-stal.>° topology.

>From one part, in case @f(¢) = 0 and since the functiong andj. are the respec-
tive compliances of Darcy and Elasticity equations, it idlwerown that these functions
can be expressed as supremum envelops of contiraffissfunctions with respect to res-
pectivelyy, and tok (using a variational formulation of the equations (2.12) §2.13)),
so these functions are convex and weak-star lower semmanus.

>From other part, ifP(#) is a restriction operatoy; and j, can still be expressed
as supremum envelops of continuous convex (but not nedgsatfine) functions with
respect to respectivelyandk. Convexity is preserved thanks to linearity of the filterdan
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to convexity ofg. Compactness of the filter implies the weak-star lower seminuity of
the objectives.

The assumptions are fulfilled in order to apply the Nash erist theorem,which
yields the existence of a Nash equilibrium, see Aubin [5].

A Numerical Experiment

We use a classical finite element method in order to solvetemsx2.12) and (2.13).
First, density distributiong and k are approximated by means of piecewise-constant
interpolation, over triangular three-nodes elementsnT e pressure and the displace-
ments are approximated By -triangular elements. We use a gradient-based optimizatio
method in order to solve, iteratively, each of the playersgrpams. The gradients with
respect to the strategies of the respective players werpuit by means of the adjoint
method.

We present a case where the tumour is a circular hole locasédki a trapezoid. The
initial vessel is located on the upper side of the trapeZdi@é.game is a zero-sum variant,
where activators aim to maximise the tumour drainage witige inhibitors play with
exactly the opposite objective.

The numerical results presented in figures 1-2-3 illusthete during the iterative
solving of the Nash game activators try to optimally conrtbet vessel to the tumour,
while inhibitors try to find an optimal location to preventsgel-tumour connections.

Figure 1. Activators. Figure 2. Inhibitors. Figure 3. Final Network.
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