
Open Distributed Processing

Typing rules OCL specification of QoS-capable ODP
Computational Interfaces

Oussama Reda* — Bouabid El Ouahidi** — Daniel Bourget**

* Département d’informatique
Faculté des Sciences Rabat
B.P. 10 14 Rabat
Maroc {ouahidi, reda_oussama}@fsr.ac.ma
** Département d’informatique
Telecom Bretagne Technopole de l’Iroise
CS 83818 29238 Brest
{Bouabid.Ouahidi,Daniel.Bourget}@telecom-bretagne.eu

RÉSUMÉ. Dans ce travail, nous analysons le concept ODP de signatures d’interfaces de traitement
et leurs règles de typages, le but étant de redéfinir les signatures de manière concise et compacte.
Pour cela, nous modélisons les signatures par des concepts UML équivalents. Ensuite, nous spéci-
fieons des contraintes imposées sur ces signatures d’interfaces de traitement ODP liées aux règles
de typages et sous-typages. Nous allons montrer également comment nous pouvons littéralement
redéfinir ces règles afin de mieux les formaliser en utilisant OCL 2.0. Par la suite nous introduisons
trois nouveaux concepts qui sont: functional computational interfaces, QoS-definable interactions
and QoS-capable interfaces . Finalement, nous définissons les règles typologiques relatives aux
QoS-capable interfaces et les spécifions en OCL 2.0

ABSTRACT. In this work we model the interaction signature concepts in a consistent and compact
manner as well as their related type checking rules. First, we begin by literally analyzing those con-
cepts in order to bring unambiguous definitions out of them. Following this analysis we shall formalize
those concepts by mapping them into UML language constructs. Secondly, we specify constraints im-
posed on computational interfaces interaction signatures related to the computational language typing
and subtyping rules. We shall show how we can we literally redefine those rules in order to steadily
formalize them. After rewriting those rules in a compact way, we make use of OCL 2.0 which provides
the means to exploit those new definitions. Then we introduce the concept of Functional compu-
tational interface and a set of related concepts which unify signal and operation interfaces notions.
Based on the new additional concepts introduced, we introduce two new important concepts, namely;
QoS-definable interactions and QoS-capable interfaces . We then provide a UML metamodel of
interfaces and interaction signatures. The final metamodel being a first step towards a QoS-capable
computational metamodel . Finally, as an application of our modeling choices we define ODP QoS-
capable computational interfaces type checking rules and then specify them using OCL 2.0

MOTS-CLÉS : ODP, point de vue traitement, UML, OCL, Meta-modélisation, signature d’interface,
QoS, règles de typages

KEYWORDS : ODP, Computational Viewpoint, UML, OCL, Meta Modeling, Interaction Interface sig-
nature, QoS, Type Checking Rules

Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba - Pages 17 à 36 - ARIMA

1. Introduction

The expansion of distributed processing field has led to the ODP standardization initia-
tive [1],[2],[3] which consists of a framework by which distributed systems can be model-
led using five viewpoints. The computational viewpoint is concerned with the description
of the system as a set of objects that interact at interfaces. A computational specifica-
tion describes the functional decomposition of an ODP system in distribution transparent
terms and is constrained by the rules of the computational language. These comprise,
among others, typing rules. Researches in [4], [5],[6] has been particularly interested in
applying UML [12]as a formal notation for the specification of the computational view-
point. Works [4], [5] have mainly addressed the specification of the functional decomposi-
tion of an ODP system using UML. Authors in [16] have focused on how to consistently
present concepts of the ODP computational viewpoint and clarified some ambiguities
found while aiming to express them formally. The solutions proposed were given on a
semantic level. Authors in [9],[10] [11] have also noted those issues, then, provided so-
lutions and presented them on a syntactic level without the need to relegate them on a
semantic one, as well as specifying constraints related to computational interface signa-
tures typing and subtyping rules. However, the OCL specifications of those rules are not
easy to write, and thus, are complicated to read and understand. This comes from the fact
that OCL 1.1 doesn’t provide any means in order to write easily comprehensible OCL ex-
pressions. OCL 2.0 has known significant enhancements, especially with the provision of
expressions that allow the definition and reuse of variables/Operations over multiple OCL
expressions. This fits well the specification of OCL constraints on typing/subtyping rules
associated to interaction signatures, since those rules are redundant and have the same
literal description pattern within their definitions. The attempt of this work is to model
concepts of the ODP computational viewpoint and our main focus is the formalization
of concepts of the interaction signature part as well as specification of their associated
typing and subtyping rules. In this respect, we use the UML language to discuss and
present our proposals. We also use the OCL 2.0 language [13]to specify clear and unders-
tandable constraints associated to computational signature interfaces typing rules. More
importantly, we consider QoS (Quality of service) aspects of distributed applications by
enhancing the computational metamodel with QoS features in a whole new fashion.
The remainder of the paper is organized as follows. In section 2 we present the interaction
signatures concepts as they are defined in the computational viewpoint. These definitions
will serve us to discuss the remainder of the paper. Section 3 shows interaction signatures
can be defined and modelled in a precise and concise way. Section 4 enhances the meta-
model elaborated in section 3. We first lead an algebraic analysis of interaction signatures
concepts, then, based on the results of this analysis we elaborate a new interface signatures
UML metamodel. We mainly show interactions are of two kinds : discrete (parameterized)
interactions and flows. Discrete interactions are composed by primitive and compound in-
teractions, primitives which are incoming or outgoing interactions. On the other hand, we
show interface signatures can principally be classified in two main classes, namely ; Pro-
cedural interface signatures and stream interface signatures. Based on those new concepts
we have elaborated a new metamodel of interaction and interface signatures. In section 5
we introduce QoS-definable interaction signatures which serve us to define QoS-capable
interface signatures. We also define incoming and outgoing interaction signatures based
on the definition of QoS-definable interaction signatures. The purpose of section 6 is to
define type checking rules associated with ODP computational interfaces based on the

A R I M A

 - ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba18 -

Open Distributed Processing 3

analysis given in section 2. The main objectif of the current section is to show how typing
rules on ODP interfaces can be defined in a coherent manner than it is in RM-ODP. All
the OCL constraints presented in this section apply on UML constructs in the metamodel
of figure 1. This section is also intended to be as a first step to defining QoS-capable in-
terfaces typing rules. Section 7 provides the OCL specification of typing rules associated
with computational interfaces. The metamodel used for the specification is the one given
in section2. Finally, section 8 enhances those OCL constraints by applying them in the
context of the QoS-aware concepts defined in section 5. We shall see how the OCL spe-
cification of QoS-aware typing rules is a more concise and precise specification of typing
rules associated with ODP computational interfaces. A conclusion ends the paper.

2. Definitions of Interaction signatures Concepts

In this section we present the interaction signatures concepts as they are defined in the
computational viewpoint.

A Computational interface template is an interface template for a signal interface, a
stream interface or an Operation interface. Each interface has a signature :

– A signal interface signature comprises a finite set of action templates, one for each
signal type in the interface. Each action template comprises the name for the signal, the
number, names and types of its parameters and an indication of causality (initiating or
responding, but not both) with respect to the object which instantiates the template.

– An Operation interface signature comprises a set of announcement and Interrogation
signatures as appropriate, one for each Operation type in the interface, together with an
indication of causality (client or server, but not both) for the interface as a whole, with
respect to the object which instantiates the template. Each announcement signature is an
action template containing the name of the Invocation and the number, names and types
of its parameters.

– Each Interrogation signature comprises an action template with the following ele-
ments : the name of the Invocation ; the number, names and types of its parameters, a
finite, non-empty set of action templates, one for each possible termination type of the
Invocation, each containing the name of the termination and the number, names and types
of its parameters.

– A stream interface comprises a finite set of action templates, one for each flow type
in the stream interface. Each action template for a flow contains the name of the flow, the
information type of the flow, and an indication of causality for the flow (i.e., producer or
consumer but not both) with respect to the object which instantiates the template.

These definitions will serve us to discuss the remainder of the paper.

A R I M A

Open Distributed Processing - 19

3. Unifying invocation signatures and announcement
signatures

This section introduces the following section. It mainly shows interaction signatures
can be defined and modelled in a precise and concise way.

When trying to formalize those concepts (introduced in the previous section), we have
met with the issue concerning interaction signature concepts and how they are currently
used and defined. In other works such as [16] discussions have focused on whether the
action template concept lays on a syntactic level or a semantic one. Here, we do not take
sight of these considerations as the solution we propose lies on a syntactic level. We ana-
lyze how all these concepts are linked to each other, and Bring a consistent description out
from their definitions. Announcement signatures definition is clear and easy to understand
when taken apart and separately from the other definitions. However, it becomes ambi-
guous when we shall join it to the definition of Interrogation signatures. This is due to
the fact that the Invocation and announcement concepts are indistinguishable. interaction
signatures other than Interrogations and announcement signatures are unambiguous. The
new literal definition of Interrogation signatures is as follows :Each interrogation signa-
ture comprises at least two action templates which are an invocation and its correspon-
ding termination. An invocation can possibly have more than one associated termination.
Invocations and terminations are action templates and they are statically described by
their name and their number of parameters. Each parameter is characterized by its name
and its type .

Based on their definitions, announcement signatures and Interrogations signatures are
two different concepts ; at least, conceptually distinct. An announcement signature is an
action template ; so, it is formalized as in Figure 1. Now, Interrogation signatures do
comprise action templates. Invocations and Terminations are also both kind of action
templates ; and, since Invocations and Announcements describe the same concept from a
practical point of view, it is preferable to merge them in one term. Thus, Invocations are
now absorbed by Announcements, and, consequently, the Announcement term present
both Invocation and Announcement concepts. The natural way to formalize them is as
in Figure 1. Interrogation signatures comprise one and only one Invocation and to each
Invocation there is a corresponding finite non-empty set of Terminations. Terminations
are packed in an Interrogation signature. After we just come to put an Invocation into an
Interrogation signature, their associated Terminations have to be joined to it, getting them
packed into an Interrogation signatures (See Figure 1).

A R I M A

 - ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba20

 -

OperationInterfaceSignature

+parametersnumber : Integer

ParameterizedActioTemplate

StreamInterfaceSignatureSignalInterfaceSignature

AnnouncementSignature InterrogationSignature

+name : String
+type : ParameterDataType

Parameter

+type : Uninterpreted

FlowSignature

+causality : String

InterfaceSignature

+name : String
+causality : String

ActionTemplate

0..*1..*

0..*

0..*0..* 0..*

0..1

Figure 1. Interface signatures Metamodel

In this model (See Figure 1), Interrogation signatures comprise both Invocations and
termination signatures. Each Interrogation signature contains one and only one Invoca-
tion and contains also a set of its corresponding Terminations which is not empty. This
modelling choice has been influenced by two main factors. First, Invocation and Interro-
gation signatures are different from each others. Even if Interrogation signatures comprise
one and only one Invocation, it is more convenient to distinguish them from each other,
mainly from a conceptual point of view. Secondly, since an Invocation has a finite non-
empty set of corresponding Terminations ; it is more convenient to aggregate them in
Interrogation signatures rather than Invocations. This is mainly due to the fact that In-
terrogation signatures consist of both Invocations and their associated Terminations and
thus, they conceptually belong to Interrogation signatures and should not be comprised
by Invocations. On the other hand, both Invocations and Terminations are respectively
absorbed by Announcements and action templates (Parameterized Action Template), and,
by doing it this way, we must bear in mind that two UML terms representing Invocations
and Terminations were moved away, and, thus, unloading the model from superfluous
terms, especially for practical considerations. In this section, we have analysed the inter-
action signature concepts. We have detected inconsistencies in their verbal description.
We have mainly shown interaction signatures need to be redefined in order to to correct
their conceptual description. Finally, based on this new conceptual definition we have pro-
posed an interface signatures metamodel.

In the next section we enhance the metamodel elaborated here. We first lead an alge-
braic analysis of interaction signatures concepts, then, based on the results of this analysis
we elaborate a new interface signatures UML metamodel.

Open Distributed Processing - 21

4. Introduction of Procedural Interface Signature & Discrete
Interaction Signatures

The problem with all the difficulty in modeling interaction signatures is that the defi-
nitions of the concepts are not precise and leaves room for plenty of interpretations. To
eliminate this ambiguity one have to analyze the definitions on a conceptual level in order
to bring out the exact conceptual relationships semantics between those concepts.

In this section we show interactions are of two kinds :discrete (parameterized) inter-
actions and flows.discrete interactions are composed byprimitive andcompound interac-
tions,primitives which areincoming or outgoing interactions.
On the other hand, interface signatures are defined in the computational language in terms
of three kind of computational interfaces. However when we analyze interface signatures
concepts we show that in fact there are only two significant categories they are to be clas-
sified in. We shall see how interface signatures can principally be classified in two main
classes, namely ;Procedural interface signatures and stream interface signatures.

We begin by introducing the notation needed to demonstrate our propositions.

Notation :

– The symbol
�

denote the intersection of algebraic sets (it has the same meaning as
it is in classical set theory).

– Di, Pi and Ci mean respectively the contracture of Definition i, Proposition i and
corollary i, where i is an integer related to the order of their appearance in the text.

– A � B denotes the set of elements which are in A and are not in B.

– bby meansby and only by.

Let SAinv, SAann, SAint, SAter, SAflo, denote the sets of attributes that respectively
describe signatures ofInvocations, Announcements, Interrogations, Terminations and fi-
nally Flows.

Definition 1 :

An Action Template is definedbby the name of the action and its causality.

Proposition 1 : All Interaction Signatures are Action Templates.

Proof :

We have :

SAinv = SAann = SAint = SAter = {name, numbers of parameters, names of parame-
ters, types of parameters, causality} and separately SAflo={name, causality, information
type}.

The led set of these sets denoted SA which is their intersection SA = SAinv� SAann
� SAint � SAter={name, causality} is the set composedby and only by both the name and

A R I M A

 - ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba22 -

causality of interaction signatures. Moreover, the Action Templateconcept is involved in
the core description of all interaction Signatures concepts, and since the UML semantic
of intersection is a�������
	��
�����
�
������� , it follows that all Interaction Signatures areAction
Templates.

Proposition 2 : Interaction Signatures but flows are parameterized(i.e contain finite
set of parameters as well as their name and numbers).

Proof :

The sets SAinv� SA, SAann� SA, SAint� SA, SAter� SA have the same elements since
SAinv � SA= SAann� SA = SAint� SA = SAter� SA ={numbers of parameters, names of
parameters, causality}. Consequently, All Interaction Signatures butFlow Signatures are
parameterized (i.e described by finite sets of parameters as well as their names and num-
bers).

Now, when we separately take the set SAflo� SA={information type} we deduce that
flow signatures are of different nature than the other Interaction Signatures.

Flow Signatures areAction Templates with an (information type) attribute which is not
significant to the other interactions. Conversely, all Interaction Signatures have parame-
ters, their name and their numbers as attributes which do not contribute to the description
of flows.

Definition 2 :

A Discreteinteraction signature is anAction Template with a finite set of parameters
as well as their numbers (See Figure 2).

Corollary 1 :

From P1, P2 and the definition of interface signatures given in the previous section we
have :

1) Interaction signatures are of two kinds :Discreteinteractions signaturesand
flow interactions signatures.

2) Operation Interfaces signatures and Signal Interfaces signatures are composed
bby Discreteinteraction signatures.

3) A stream interface signature is composedbby a set of flow interactions signa-
tures.

Definition 3 : A Procedural Interface Signature is an interface signature composed
bby Parameterizedinteractions signatures(See Figure 2).

Corollary 2 : From D3 and the definition of interface signatures given in the previous
section we have :
Interface Signatures are of two kinds, namely ;ProceduralInterface Signature and Stream
Interface Signatures.

A R I M A

Open Distributed Processing - 23

+parametersnumber : Integer

DiscretedInteractionSignature

CompoundInteractionSignature

ProceduralInterfaceSignature

PrimitiveInteractionSignature

StreamInterfaceSignature

+name : String
+type : ParameterDataType

Parameter

+causality : String

InterfaceSignature

+type : Uninterpreted

FlowSignature

+name : String
+causality : String

ActionTemplate

outgoing

incoming

0..*

1

0..*

0..*

0..*

Figure 2. Procedural interface signatures metamodel
In this section we have introduced a precise definition ofAction Templates. We have

also defined two new concepts. First we have definedDiscrete interaction signatures
which we have used to defineProcedural interface signatures. Based on those new concepts,
we have elaborated a new metamodel of interaction and interface signatures.
In the following section we use the results of the present section in order to introduce new
QoS-aware concepts to the computational viewpoint.

5. Definition and UML modeling of QoS-Capable interfaces
and QoS-labeled interactions

Interactions in the computational language are of three kinds (signals, operations and
flows). We have shown interactions are of two main kinds :Discrete andContinuous in-
teractions. Signals in the computational language are defined as being atomic interactions
that constitutes the building blocks of the other kinds of interactions. Indeed, an opera-
tion or a flow can be resolved in terms of a composition of several individual signals. For
instance, we can interpret an interrogation in terms of a sequence of four signals : invoca-
tion emission (by the client object), invocation receipt (by the server object), termination
emission (by the server), termination receipt (by the client). In opposition, since the com-
putational model do not provide the precise semantics of flows, their mapping on signals
is not defined. In fact, a definition of flows using signals depends upon the details of the
interactions abstracted in the specification of the stream interface concerned and therefore
is beyond the scope of the ODP Reference Model.
Similarly, discrete interactions are classified in two main categories :Primitive discrete
interactions (homologous of signals) andcompound discrete interactions (homologous of
operations). This classification is necessary to define end-to-end QoS in open distributed
systems, and the operation of multi-party binding and bindings between different kinds of
interfaces (e.g. stream to operation interface bindings).

A R I M A

 - ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba24 -

In [17], authors specified those constraints based on their definitions provided in RM-ODP
[3], then redefined[14],[15], those rules in one unified rule applied onProcedural inter-
face signatures establishing a correspondance betweenprimitive andcompound discrete
interactions. As a consequence, it is shown [14],[15], unification choices in modeling
computational interfaces signatures and interaction signatures concepts help specifying
compact OCL constraints applied on computational interfaces refinements which esta-
blishes a correspondance betweenprimitive and compound interactions ofProcedural
computational interfaces, thus providing for the definition of end to end QoS characteris-
tics, as well as allowing for different kind of computational interfaces to be bound (e.g
Procedural to stream interfaces bindings).
In this section, we drop compound interactions in favor of primitive interactions in or-
der to provide a QoS-built-in features computational metamodel. Indeed, instead of re-
fining compound interactions into primitives, we model primitives as being the only in-
teractions composing Procedural interfaces. In fact, every Procedural interface containing
compound interactions can also be considered as being composed by primitives, since a
compound interaction is an alliance of primitives. Having said that, an interaction bet-
ween two or more procedural interfaces only consist of primitives being involved in the
interaction process. Since primitives are now the only constituent interactions of proce-
dural interfaces, end-to-end QoS characteristics become an intrinsic feature of Procedural
interfaces, thus, there is no need for interaction refinement rules to be specified since
interaction refinements for QoS ends are now statically (plugged in) within the compu-
tational metamodel. In doing so, refinement rules OCL specification have gone from the
specification of two refinement rules in [17] to reducing it to only one in [14],[15], which
is (refinement rule) now superfluous in the actual metamodel.
At this point, we are ready to provide the final interaction signatures computational me-
tamodel, but before this we give the two following definitions which summarize what is
explicited above.
Definition 4 :

A QoS-labeledinteraction signbature is aPrimitive discrete interaction signature (See
Figure 3).

Definition 5 :

A QoS-embddedinterface signature is aProcedural interface signature composedbby
QoS-labeledinteractions (See Figure 3) .

Operations in the computational language consist of invocations and announcements
which areoutgoing interactions. To each invocation in the interface corresponds a finite
non empty set of terminations which areincoming interactions. In the previous section
we have shown invocations and announcements do play the same role conceptually and
practically. In [14],[15], we have also shownPrimitive discrete interaction signatures can
be composed by two kinds of interactions :outgoing interactions andincoming interac-
tions. That is, for everyoutgoing interaction corresponds a finite set (possibly empty)
of incoming interactions and conversely, anincoming interaction corresponds to one and
only oneoutgoing interaction(see figure??). However, neither outgoing nor incoming in-
teractions have been defined in [14],[15].

A R I M A

Open Distributed Processing - 25

+parametersnumber : Integer

QoSlabeledInteractionSignature

QoSembeddedInterfaceSignature

IncomingOutgoing

StreamInterfaceSignature

+name : String
+type : ParameterDataType

Parameter

+causality : String

InterfaceSignature

+type : Uninterpreted

FlowSignature

+name : String
+causality : String

ActionTemplate

1..*

0..*

0..*

0..*

Figure 3. Qos-embedded interface & QoS-labeled interaction signatures metamodel
Before we define outgoing and incoming interactions we have to redefine causalities at
both interface and interaction level. Causalities in the computational language are of three
kinds corresponding to the types of both interfaces and the interactions they support. That
is, "client" and"server" causalities,"initiator" and"responder" as well as"producer" and
"consumer", respectively for operational interfaces and operations, signal interfaces and
signals and finally, stream interfaces and flows.
Thus, causalities follow the causal-effect principle. Consequently, we can reduce all kind
of causalities in the computational language to only two kinds. In fact,"client" , "initiator"
and"producer" causalities are reduced to"actor" causality as well as"server", "respon-
der" and"consumer" causalities are abstracted to"reactor" causality. Having said that,
computational interfaces as well as interactions defined in are reduced to acting and reac-
ting entities.
Since outgoing interactions go from a causal interface out to a receipient interface and
conversely incoming interactions come from a causal interface into a receipient one, we
define outgoing and incoming interfaces as follows :

Definition 6 :

An outgoing interaction signature is aQoS-labeled interaction signature going from
anacting QoS-embedded interface out to areacting QoS-embedded interface (See Figure
3).

Definition 7 :

An incoming interaction signature is aQoS-labeled interaction signature coming from
areacting QoS-embedded interface into anacting QoS-embedded interface (See Figure 3).

In this section we have defined four new concepts. We have introducedQoS-labeled
interaction signatures which served us to defineQoS-embedded interface signatures. Then

A R I M A

 - ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba26 -

wedefined incoming and outgoing interaction signatures based on the definition ofQoS-
labeled interaction signatures. We have also elaborated a new metamodel specifying all
the new concepts introduced here. Having done that, the final metamodel is a consistent
QoS-aware formalization of ODP computational interfaces & interaction signatures.

6. OCL Typing Rules Re-Definition

The purpose of this section is to define type checking rules associated with ODP com-
putational interfaces based on the analysis given in section 2. The main objectif of the
current section is to show how typing rules on ODP interfaces can be defined in a co-
herent manner than it is in RM-ODP. All the OCL constraints presented in this section
apply on UML constructs in the metamodel of figure 1. This section is also intended to be
as a first step to definingQoS-embedded interfaces typing rules, and thus, showing how
we can specify more precisely and easily OCL constraints related to ODP computational
interfacesQoS-embedded typing rules.

In this section we specify semantics of interaction signatures related to subtyping
rules. We rewrite those literal rules and present them under a new form. First, we give
the rules as they are presented in the ODP computational language, and, then provide a
clearer and compact description of those rules. We shall just concentrate on Interrogation
signatures as the other rules are already compact and easy to understand. Typing rules in
the computational language corresponding to Interrogation signatures are defined as fol-
lows. Operation interface X is a signature subtype of interface Y if the conditions below
are met :

– For every Interrogation in Y, there is an Interrogation signature in X (the correspon-
ding signature in X) which defines an Interrogation with the same name.

– For each Interrogation signature in Y, the corresponding Interrogation signature in
X has the same number and names of parameters.

– For each Interrogation signature in Y, every parameter type is a subtype of the cor-
responding parameter type of the corresponding Interrogation signature in X.

– The set of termination names of an Interrogation signature in Y contains the set of
termination names of the corresponding Interrogation signature in X.

– For each Interrogation signature in Y, a given termination in the corresponding In-
terrogation signature in X has the same number and names of result parameters in the
termination of the same name in the Interrogation signature in Y.

– For each Interrogation signature in Y, every result type associated with a given ter-
mination in the corresponding Interrogation signature in X is a subtype of the result type
(with the same name) in the termination with the same name in Y.

– For every announcement in Y, there is an announcement signature in X (the corres-
ponding signature in X) which defines an announcement with the same name.

– For each announcement signature in Y, the corresponding announcement signature
in X has the same number and names of parameters.

– For each announcement signature in Y, every parameter type is a subtype of the
corresponding parameter type in the corresponding announcement signature in X.

A R I M A

Open Distributed Processing - 27

As we look at those literal constraints provided by the ODP computational language,
we realize they can be aggregated in a more compact description and especially for Ope-
ration interface signature typing rules. When we shall give an equivalent description of the
ones prescribed by the computational language, we can see how easy their specification
becomes.

Having said that, the new form these definitions are rewritten in is as follows : Opera-
tion interface X is a signature subtype of interface Y if the conditions below are met :

– For every Interrogation in Y, there is an Interrogation signature X with the same
name, with the same numbers and names of parameters and that each parameter in the
Interrogation signature in Y is a subtype of the corresponding parameter in the Interro-
gation signature in X.

– For every termination in an Interrogation signature in Y, there is a corresponding
termination in Interrogation signature X with the same name ; with the same numbers
and names of parameters and that each parameter in the termination of the Interrogation
signature in X is a subtype of the Interrogation signature in Y.

– For every announcement in Y, there is an announcement signature X with the same
name, with the same numbers and names of parameters and that each parameter in the
Interrogation signature in Y is a subtype of the corresponding parameter in the Interro-
gation signature in X.

For signal interface types that are not defined recursively, the rules [3] are summarized
below. Signal interface signature type X is a subtype of signal interface signature type Y
if the conditions below are met :

– For every initiating signal signature in Y there is a corresponding initiating signal
signature in X with the same name, with the same number and names of parameters, and
that each parameter type in X is a subtype of the corresponding parameter type in Y.

– For every responding signal signature in X there is a corresponding responding
signal signature in Y with the same name, with the same number and names of parameters,
and that each parameter type in Y is a subtype of the corresponding parameter type in X.

Now, that we have reorganized the verbal description of these rules in a compact form,
we realize they do share the same description pattern. Indeed, interaction signatures which
are related by a Type/Subtype relation must have the same names, the same names and
numbers of parameters, the latter having to satisfy a Type/Subtype relation. We can break
these rules in order to bring out OCL sub-expressions which can be used in the context
of all kinds of interaction signatures. We shall exploit these similarities between these
definitions and come up with general formal expressions which can be used to specify
OCL constraints on all interaction signatures. OCL 2.0 provides the means to realize this.

Identification of OCL sub-expressions

The different type checking rules related to computational interfaces contain simila-
rities in their literal definitions. That is, all interaction signatures (but flow signatures) of
all computational interfaces which are related by a Type/Subtype relation must have the
same names, the same names and numbers of parameters and that parameters have to sa-
tisfy a Type/Subtype relation. Since all interaction signatures (but flow signatures) derive
from the Parameterized Action Template term, we explore this fact in order to specify
those similarities mentioned above in the context of the Parameterized Action Template
classifier. In what follows we give the identified OCL sub-expressions to be used in Ty-

A R I M A

2 - ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba28 -

ping/Subtyping relation specification constraints :

Context ParameterizedActionTemplateinv :

def : hasSameName(PAT : ParameterizedActionTemplate) : Boolean = (self.name=
PAT.name)

def : hasSameParametersNumber(PAT : ParameterizedActionTemplate) : Boolean =
(self.parameternumbers= PAT. parameternumbers)

def : hasSameParametersNames(PAT : ParameterizedActionTemplate) : Boolean =
self.Parameter� forAll(Px : Parameter� ParameterizedActionTemplate� Exists(Py :
Parameter� Px.name= PAT.Py. name))

def : isSubTypeOf (PAT : ParameterizedActionTemplate) : Boolean = self.Parameter
� forAll(Px : Parameter� ParameterizedActionTemplate� Exists(Py : Parameter�
PAT.Py.oclIsKindOf(Px)))

def : isOfCausality(c : String) :Boolean= self.causality=c

At this point, given the OCL expressions above, we are ready to specify OCL constraints
related to typing rules associated with computational interfaces. The metamodel used for
the specification is the one figure 1.

7. OCL Typing Rules Specification

7.1. Signal Interface signatures Subtyping Rules OCL Specification

The RM-ODP definition of signal interface subtyping rules was given in the previous
section.This constraint is described using OCL as follows :

Context SignalInterfacesignatureinv :
SignalInterfacesignature.allInstances�
forAll(X,Y � ParameterizedActionTemplate.allInstances�
forAll(PY � ParameterizedActionTemplate.allInstances�
exists(PX �
PX.isOfCausality(’initiate’)
and
PY.isOfCausality(’initiate’)
and
Y.PY.hasSameName(X.PX)
and
Y.PY.hasSameParametersNumbers(X.PX)
and

A R I M A

Open Distributed Processing - 29

Y.PY.hasSameParametersNames(X.PX)
and
X.PX.isSubTypeOf(Y.PY))))

and

ParameterizedActionTemplate.allInstances� forAll(PX �
ParameterizedActionTemplate.allInstances�
exists(PY �
PX.isOfCausality(’respond’)
and
PY.isOfCausality(’respond’)
and
Y.PY.hasSameName(X.PX)
and
Y.PY.hasSameParametersNumbers(X.PX)
and
Y.PY.hasSameParametersNames(X.PX)
and
Y.PY.isSubTypeOf(X.PX)))

implies

X.oclIsKindOf(Y)

7.2. Operation Interface signatures Subtyping Rules OCL
Specification

The rules for Operation interface types that are not defined recursively were given in
the previous section. This constraint is described using OCL as follows :

Context OperationInterfacesignatureinv :
OperationInterfacesignature.allInstances� forAll(X,Y �
(Interrogationsignature.allInstances� forAll (Iy �
Interrogationsignature.allInstances� exists(Ix �
Announcementsignaturee.allInstances� forAll (Ay �
Announcementsignature.allInstances� exists(Ax �
Y.Iy.Ay.hasSameName(X.Ix.Ax) and
Y.Iy.Ay.hasSameParametersNumbers(X.Ix.Ax)
and
Y.Iy.Ay.hasSameParametersNames(X.Ix.Ax)
and
X.Ix.Ax.isSubTypeOf(Y.Iy.Ay)))))))

A R I M A

 ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba30 -

and

(Interrogationsignature.allInstances� forAll(Iy �
Interrogationsignature.allInstances� exists(Ix �
ParameterizedActionTemplate.allInstances� forAll (Ty �
ParameterizedActionTemplate.allInstances� exists(Tx �
Y.Iy.Ty.hasSameName(X.Ix.Tx)
and
Y.Iy.Ty.hasSameParametersNumbers(X.Ix.Tx)
and
Y.Iy.Ty.hasSameParametersNames(X.Ix.Tx)
and
Y.Iy.Ty.isSubTypeOf(X.Ix.Tx))))))

and

(Announcementsignature.allInstances� forAll(Ay �
Announcementsignature.allInstances� exists(Ax �
Y.Iy.Ay.hasSameName(X.Ix.Ax)
and
Y.Iy.Ay.hasSameParametersNumbers(X.Ix.Ax)
and
Y.Iy.Ay.hasSameParametersNames(X.Ix.Ax)
and
X.Ix.Ax.isSubTypeOf(Y.Iy.Ay))))

implies

X.oclIsKindOf(Y)

7.3. Stream Interface signatures Subtyping Rules OCL Specification

Stream signature subtyping rules depend upon the details of the interactions abstracted
in the definition of the stream interfaces concerned. In particular these details will clarify
whether or not the subtyping rules will permit incomplete correspondences between the
set of flows in the two interfaces. For stream interface types that are defined recursively,
the constraints are summarized below. Stream interface X is a signature subtype of stream
interface Y if the conditions below are met for all flows which have identical names : If
the causality is producer, the information type in X is a subtype of the information type in
Y. If the causality is consumer, the information type in Y is a subtype of the information
type in X. This constraint is described using OCL as follows :

Context StreamInterfacesignatureinv :

StreamInterfacesignature.allInstances� forAll(X,Y �
(Flowsignature.allInstances��� forAll(Fxp,Fyp �

A R I M A

Open Distributed Processing - 31

Fxp. isOfCausality(’produce’)
and
Fyp.isOfCausality(’produce’)
and
X.Fxp.hasSameName(Y.Fyp)
implies
X.Fxp.type.oclIsKindOf(Y.Fyp.type)))

and

(Flowsignature.allInstances��� forAll(Fxp,Fyp �
Fxp.isOfCausality(’consume’)
and
Fyp.isOfCausality(’consume’)
and
X.Fxp.hasSameName(Y.Fyp)
implies
Y.Fyp.type.oclIsKindOf(X.Fxp.type))))

implies

X.oclIsKindOf(Y)

In this section we have specified OCL constraints related to typing rules associated
with ODP interfaces. Since a direct OCL specification of those rules is a complicated task,
we have decomposed those rules into elementary rules easily specified in OCL. Then, we
have constructed OCL constraints corresponding to type checking rules by combining the
elementary OCL sub-expression identified. However, the final OCL constraints provided
can be presented in a more concise way. The purpose of the next section is to enhance
those OCL constraints by applying them in the context of the QoS-aware concepts defi-
ned before. We shall see how the OCL specification of QoS-aware typing rules is a more
concise and precise specification of typing rules associated with ODP computational in-
terfaces.

8. Definition and OCL specification of Type checking rules on
ODP QoS-embedded computational interfaces

In the continuity of the previous section this section represents an enhancement of ty-
ping rules definitions and specification given in the previous section. Thus, we specify se-
mantics of interaction signatures related to QoS-embedded computational interfaces sub-
typing rules. The objectif of this section is to show how can we specify OCL constraints
associated to ODP typing rules in a more precise and compact way. It is intended to show
that our conceptual choices provides us with clear and precise concepts which are easy to
specify.

A R I M A

 - ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba32 -

Interrogations (invocations in the context of type checking rules definitions) and an-
nouncements areoutgoing interactions. On the other hand, terminations areincoming
interactions we can redefine those rules which will hold in only two rules :

Procedural Interface X is a signature subtype of interface Y if the conditions below
are met :

– For everyoutgoing interaction signature in Y there is a correspondingoutgoing in-
teraction signature in X with the same name, with the same number and names of para-
meters, and that each parameter type in Y is a subtype of the corresponding parameter
type in X.

– For everyincoming interaction signature in X there is a correspondingincoming
interaction signature in Y with the same name, with the same number and names of pa-
rameters, and that each parameter type in X is a subtype of the corresponding parameter
type in Y.

RM-ODP does not distinguish between the clients and servers when establishing type
relationships for operational computational interfaces. This leads to incorrect type che-
cking rules specification. In our model this is implicitly stated by the fact that we only
have two kinds of primitive interactions ; namely, incoming and outgoing interactions.

At this point, we specify typing rules in OCL 2.0. We can break down those two rules
to bring OCL sub-expression out of them which establishes a correspondance betweenin-
coming interactions andoutgoing interactions for two computational interfaces related
by a type/subtype relationship. That is, twoincoming or two outgoing interactions rela-
ted by a type/subtype relationship must have the same name, the same number and names
of parameters, and that corresponding parameter types verify type/subtype relationship
following the rules provided above. The OCL sub-expressions are given in what follows :

Context QoS_labeledInteractionSignature inv :

def : hasSameName(QoS_LIS : QoS-labeledInteractionSignature) : Boolean =
self.name= QoS_LIS.name)

def : hasSameParametersNumber(QoS_LIS : QoS-labeledInteractionSignature) : Boo-
lean =
(self.parameternumbers= QoS_LIS.parameternumbers)

def : hasSameParametersNames(QoS_LIS : QoS-labeledInteractionSignature) : Boo-
lean =
self.Parameter ��� forAll(Px : Parameter �
QoS-labeledInteractionSignature ��� Exists(
Py : Parameter �
Px.name = QoS_LIS.Py. name))

def : isSubTypeOf (QoS_LIS :QoS-labeledInteractionSignature) : Boolean =
self.Parameter ��� forAll(Px : Parameter �
QoS-labeledInteractionSignature ��� Exists(

A R I M A

Open Distributed Processing - 33

Py : Parameter �
QoS_LIS.Py.type.oclIsKindOf(Px.type)))

Based on the sub-expressions above we can specify Procedural typing rules interfaces
as follows :

Context QoS-embeddedInterfaceSignature inv :

Let QoS_out : QoS_labeledInteractionSignature =
QoS_labeledInteractionSignature.oclAsType(
outgoing)

Let QoS_in : QoS-labeledInteractionSignature =
QoS_labeledInteractionSignature.oclAsType(
incoming)

QoS-embeddedInterfacesignature ��� forAll(X,Y �

(QoS_out.outgoing � forAll(PY �
QoS_out.outgoing � exists(PX �
Y.PY.hasSameName(X.PX)
and
Y.PY.hasSameParametersNumbers(X.PX)
and
PY.hasSameParametersNames(X.PX)
and
Y.PY.isSubTypeOf(X.PX)))))

and

(QoS_in.incoming ��� forAll(PY �
QoS_in.incoming ��� exists(PX �
Y.PY.hasSameName(X.PX)
and
Y.PY.hasSameParametersNumbers(X.PX)
and
PY.hasSameParametersNames(X.PX)
and
X.PX.isSubTypeOf(Y.PY)))))

implies

X.oclIsKindOf(Y)

A R I M A

 - ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba34 -

Since stream interface signatures and flow interaction signature have not been redefi-
ned in the current work, their corresponding typing rules OCL specification is not given
here, since they are provided in [11][?].

9. Conclusion

In the present work, we specified OCL constraints associated to type checking rules
for distributed applications. In the first main part of this work, we analyzed the interaction
signatures concepts. We then raised inconsistencies in their verbal description ; and finally
provided an UML model of those concepts. We have already came across those inconsis-
tencies in other works [?],[10] [11], and have provided reliable solutions to those issues
mainly from a conceptual point of view. Here, we proposed new solutions based on a
different analytical approach. The result is a consistent formal model of the interaction si-
gnature concepts. Then, we specified in OCL, semantics of interaction signatures relating
to subtyping rules. We showed that those literal rules provided by the ODP computational
language can be aggregated in a more compact definition. We then reorganized them and
gave an equivalent description in a clearer manner. After we have done that, we enhanced
the computational metamodel elaborated before. That was achieved by the introduction
and UML formalization of theFunctional computational interface,QoS-definable inter-
actionsandQoS-capable interfacesconcepts. Finally we defined type checking rules re-
lated toQoS-definable interactionsandQoS-capable interfacesand specified them using
OCL 2.0.

.

10. Annexe

In Cari’08 proceedings we have proposed a new model of ODP interaction signa-
tures. In fact we have corrected, the conceptual relationship between Action Templates
and interaction signatures. The new conceptual relationship between Action Templates
and interaction signatures allowed us to define consistent type checking rules on interac-
tion signatures. Based on the new rules we have specified typing relationships between
computational interfaces.

The present extension of the work summarized above provide a new conceptual re-
lationship between Action Templates and interaction signatures. Indeed, we provide al-
gebraic proofs that justify our proposals. The results of this Algebraic analysis is intro-
duction of new kind of interactions (Discrete interactions) and consequently a new type
of ODP computational interfaces (Procedural interfaces). A second contribution we have
introduced in the present work is enhancing ODP discrete interactions procedural inter-
faces. Indeed we introduce additional concepts and specify them using UML2.0 and OCL
2.0. Finally we define type checking rules on the new proposed concepts. Based on these
we provide trhe final metamodel which is considered as a QoS-aware computational me-
tamodel.

A R I M A

Open Distributed Processing - 35

11. Bibliographie

[1] ISO/IEC, , « Basic Reference Model of Open Distributed Processing-Part1 : Overview and
Guide to Use »,ISO/IEC CD 10746-1, 1994.

[2] ISO/IEC, , « RM-ODP-Part2 : Descriptive Model »,ISO/IEC CD 10746-2, 1994.

[3] ISO/IEC, , « RM-ODP-Part3 : Perspective Model »,ISO/IEC DIS 10746-3, 1994.

[4] R. ROMEO ET AL., , « Modelling the ODP Computational Viewpoint with UML 2.0 »,IEEE
International Enterprise Distributed Object Computing Conference, 2005.

[5] D.H.AKEHURST ET AL, , « Addressing Computational Viewpoint Design »,Seventh IEEE
International EDOC, IEEE Computer Society, 2003.

[6] BEHZAD BORDBAR ET AL, , « Using UML to specify QoS constraints in ODP »,Computer
Networks Journal pp.279-304, 2002.

[7] R. ROMERO ET AL, , « Action templates and causalities in the ODP computational viewpoint »,
WODPEC’04 pp. 23-27, 2004.

[8] J. RUMBAUGH AND AL , , « OMG Document ptc/03-10-14 »,Addison Wesly, 2003.

[9] B.EL OUAHIDI ET AL , , « Interaction signatures and Action Templates in The ODP Compu-
tatinal Viewpoint », Proceedings of the 6th WSEAS International SEPADS’07, Corfu Greece,
Feb 16-19,2007.

[10] B.EL OUAHIDI ET AL , , « Towards Refinement of The ODP Computational Viewpoint Inter-
action signatures »,WSEAS Transactions On Telecommunications Journal, pp 601-606, May
2007.

[11] B.EL OUAHIDI ET AL , , « Interaction signatures and Action Templates in The ODP Compu-
tatinal Viewpoint », Proceedings of the 6th WSEAS International SEPADS’07, Corfu Greece,
Feb 16-19,2007.

[12] OMG, , « UML 2.0 Superstructure Specification »,OMG document formal/05-07-04,2005.

[13] OMG, , « UML 2.0 OCL Final Specification »,OMG Document ptc/03-10-14,2003.

[14] B.EL OUAHIDI ET AL , , « On UML Modeling of Computational Interfaces & Interactions in
the UML4ODP Computational Language »,In Proceedings of the 12th WSEAS International
multiconference, Advances in computers, CSCC’08, Crete Island, July 23-25, Greece, 2008.

[15] B.EL OUAHIDI ET AL , , « UML4ODP : OCL 2.0 Constraints Specification & UML Mode-
ling of Interfaces in the Computational Metamodel »,Accepted in WSEAS Transactions on
Computers international Journal, , February 20, 2009.

[16] R. ROMEO ET AL, , « Action Templates and Causalities in the ODP Computational View-
point », 1St International Workshop on ODP in the Enterprise Computing (WODPEC), Monte-
rey, California USA pp. 23-27 , 2004.

[17] O. REDA ET AL, , « Towards a Refinement of the Open Distributed Systems Interactions
Signatures »,1WSEAS transactions on communications, vol. 6, pp. 601-607 , Apr 2007.

A R I M A

 ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba36 -

