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ABSTRACT. The aim of this work is to reconstitute the state of a discrete-time nonlinear system
representing a dynamical model of a harvested fish population. For this end, we are going to use a
numerical method of building an interval observer for the consider discrete-time model fish population.
We adapt to this model an algorithm called "Interval Moving Horizon State Estimation" (IMHSE) which
gives an estimated interval of the system states. This algorithm is carried out in [8] and work well for
a general class of discrete-time systems.

RESUME. Le but de ce travail est de reconstruire les états d’un systéme discret non linéaire repré-
sentant la dynamique d’'une population de poissons soumise a I'action de la péche. Pour cela nous
allons utiliser une méthode numérique de synthése d’un observateur intervalle du modéle discret de la
population de poissons considéré. Nous adaptons a ce modéle un algorithme appelé "Interval Moving
Horizon State Estimation" (IMHSE) qui permet d’estimer les états du systéeme par des intervalles. Cet
algorithme est développé dans [8] et marche bien pour une classe générale de systemes discrets.
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1. Introduction

Management of renewable resource has become nowadays one of the great priorities
of political and economic decision-makers. In area of fishing, the difficulty in assessing
stocks of available resource marine due to the complexity of oceans makes difficult the
control of different species. Several mathematical models on dynamics evolution and ex-
ploitation of certain fish populations have been developed [6, 7, 16, 18, 21, 22]. These
mathematical models combined with simulations on computer enable to observe, under-
stand and regulate complex evolution of available resource marine. Basing oneself on
existent mathematical models and using some tools of control theory, we may reconstruct
the states of a dynamical system. Our aim in this paper is to evaluate the stock of an
exploited fish population whose dynamics are represented by the following discrete-time
nonlinear model (see for instance [7] page 76 ) :

Hfl(k/’ + 1) = f( E?:l bzxz(k))
zo(k+1) = zi(k)exp(— M — 1 E(k))

(1)
xo(k+1) = z,—1(k) exp(an_l qu"_lE(k))

Where

e 1. is the number of age groups of the considered fish population.

e [ is the step time discretization.

e z;(k) is the number of individuals in age group i (¢ = 1,2, ..., n) at time k.

e b, is the fecundity rate of individuals in age group 3.

e )M, and g; are respectively death and capturability rate of individuals in age group <.

o E(k) is the fishing effort at time & and 7 is the annual fishing time.

e f is a recruitment function which is continuous and non decreasing.

The recruitment function is an approximation of the number of young fish that enter for
the first time the exploitable phase. This recruitment function is very difficult to compute
because of certain phenomena (temperature and depth of water, speed of wind,competition,
predation,... ) which influence growth of grubs. However some recruitment function exist
in the literature [2, 13, 19, 17]. The widely used are:
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Beverton-Holt:  f(z) = ax/(1 4 Bz)

Ricker: f(z) = aze™"

Power function:  f(z) = ax’™?

Shepherd: f(x) = az/(1 + Bx¢) (c > 0)
Saila-Lorda: f(z) = azYe BT

Deriso-Schute:  f(z) = az(1 — Bz)'/7
where «, 3 and -y are positive real parameters.
We assume that the fish population is submitted to fishing action and that the harvested

number fish during each period [k, k + 1) is available for measurement. The catch in the
time interval period [k, k + 1) can be expressed as follows (see [7] page 146 for instance):

no okl
y(k) = / g E(k)Ta;(t)dt 2)
i=17F
After some computations, the relation (2) can be written:
N wER) ,
=3 (1= exp (~(M; + @ B(k)7) )i (k) 3)

i=1

In order to implement the dynamical system (1) we must know the initial condition x (k)
at a given time ko, that is we have to know the number of fish in each class at time kq. But
it is a difficult task to count the number of a fish population in an ocean zone, all that one
can measure is the value of the catch y(k) for a given time k. The motivation of this paper
is to assess the state x;(k) for a given fish population whose dynamics are described by
the model (1) using the capture data(2) . To solve this problem we use a classical method
of control theory which consists in building an observer for the system (1). We briefly
recall the meaning of an observer in control theory. Let us consider a discrete time system
of the form :

z(k+1) = G(z(k),u(k)) 4
with the measurable output:
y(k) = O(x(k), u(k)) )

Where (k) € IR" is the system state at time & and u(k) is a control term at time k.
As we mentioned it above, in most models cases we do not always have access to the



40 -ARIMA - Volume 11 - Numéro spécial CARI 2008 - Editeur : Marc Kokou Assogba

state z(k) but we can measure only a function y(k) of the state. This function is called
the measurable output. An observer of the system (4) is an auxiliary dynamical system
whose input is the input and the output of system (4) , which produce an estimator Z(k)
of the state x(k) such that the estimation error z:(k) — Z(k) tends towards zero as time k
goes to infinity and must remain small if it starts small. For example, for linear system of
the form:

{Jc(k‘+1) = Ax(k) + Bu(k)
y(k) = Cux(k)

(6)

Where z(k) € Q C R", u(k) e R", A€ R"xR",Be R"xR",y(k) € R?and C €
R? x IR", the synthesis of the observer is entirely determined by the Luenberger method
[12] if the pair (A,C) is uniformly observable i.e if rank (C* A'C* ... A""1C') =n.
In fact, the candidate observer is put as being

#(k+1) = A (k) + Bu(k) + K (y(k) — C2(k)) 7

It is shown that if the pair (A, C) is observable one can choose K such that the estimation
error x(k) — Z(k) tends towards zero when k tends towards infinity. For discrete time
nonlinear systems, the synthesis of an observer is a difficult task, only few results exist in
the literature ([4],[5],[10],[14],[20],[23]) and most of these results give local convergence
of the observer. While it is difficult to build an observer for the model (1)(3) due to the
high non linearity of the first equation one can use interval estimator theory to estimate
the system states ([4],[8],[9]). In [8] an algorithm called "Interval Moving Horizon state
Estimator" ( IMHSE) which builds an interval estimator state of a nonlinear dynamical
system is developed. The algorithm IMHSE has the advantage of being applicable to a
large class of dynamical system with global convergence. We would like to notice that an
observer for system (1) with the measurable output (3) has been developed in [15]. The
advantage of the observer of [15] is that it does not use the expression of the poorly known
recruitment function but this observer uses the outputs at time k41 instead of & to estimate
the system state at time k + 1. However, an observer generally uses the past information
outputs and inputs in order to give future estimation state of a given system. Since we
are interested in the prediction of fish stock for better management of the resources, we
must build an observer which uses only the past information to estimate future states of
the model. Furthermore, contrary to the observer built in [15], the observer we construct
in this paper requires no condition on the minimal fishing effort. Our paper is organized
as follows: first Section is devoted to motivation problem and presentation of the fish
model for which we aim to build an interval observer. In Section two we briefly recall the
IMHSE algorithm and adapt the algorithm to the considered harvested fish model (1)(3).
A numerical example is developed in the last Section to show the observer convergence.
To simplify the notation let us denote equations (1) and (3) respectively by:
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z(k+1) = F(z(k), E(k)) ®)

y(k) = H(x(k), E(k)) ©)
Functions F' and H are define by:
F:R"xR — R"
(2k), ER)) = (£ biai (k) o1 (R) (R, . ,vn_l(k)zn_l(k))t
H:R"xR —~ R
(2(k), B(R)) = S Calk)i(k)

where
2(k) = (21 (k). 2a(h). ... 2a(R))

vi(k) = exp( — M; — q,;E(k:)T)7 i=1,...,n—1,
0. E(k)

Gilk) = B + 7,

(1= expl=(M; + GE®)T), i =1,

2. Observer synthesis: Interval Moving Horizon State
Estimation (IMHSE)

The algorithm IMHSE is well developed in [8], we briefly recall the algorithm de-
scription for system (8) with measurable output (9). Let sh be the start horizon time and
[ the length horizon time observation. It is assumed that the measurable output y (k) is
available for £ = sh,...,sh + lh — 1. The algorithm IMHSE uses the available out-
put y(k) to compute an interval estimator state of system (8). For a given sh € IN and
lh € N, let z(sh),z(sh + 1),...,z(sh + lh — 1) the values of the unknown real states
corresponding to the measurable outputs y(sh), y(sh + 1),...,y(sh +1h — 1).

For any z € ), we define the quadratic function:

sh+lh—1 )
k=sh
Where z,, = zand 2, = F(zp—1, E(k — 1)) fork=sh+1,...,sh+1h— 1.
Let us consider the following inclusion functions :
F:BR") xR +— B(R")
(I,E) — FU,E)={F(z,E)/z € I}
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Jsh s BAR™) — B(R)
I = jsh(-[) - {]sh(x)/x € I}
We wish to compute at time sh + [h an interval with width less than € (arbitrary chosen)
that contains the solution z:(sh+[h) of system (1) at time sh+ [h. Consider the problem:

min jen (2) an

The first thing we have to do is to locate an invariant domain 2 of system (8) and to find
in 2 all the intervals with width less than 7 (arbitrary chosen) that contain a solution of
problem (11) by the use of global optimization by interval analysis [11].

2.1. Global optimization algorithm

We describe a simple algorithm that globally minimizes the nonlinear function (10)
[8]. The algorithm find all intervals with wide less than an arbitrary chosen positive real
number.
let 7 > O arbitrary chosen and L a box list that contained solution of problem (11).
Step1l : Consider an invariant domain €2 for the model (1)

Initialize L to be (2
Step2 : Compute d the wide of (2
Step3 : [La, Uq] := Jsn(Q) and put U; := Ug
Step4 : While d > 7 do:
Step4 — 1 : Remove the first box X of the list L
Step4 : —2 Bisect X by its widest such that X = X; | X»
Step4 — 3 : [Lx,,Ux,] := Jen(X1)
If Lx, > U, then delete X
Else add X at the end of the list L

If X is listed,

UJx, = Jsn(Bx, ), where Bx, is the midpoint of X
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if Xy islistedand UJx, < U; do U; :=UlJx,
Stepd — 4 : [Lx,,Ux,| = Tsn(X2)
if Lx, > Uj then delete X5
Else add X5 at the end of the list L
If X5 is listed
UJx, := Jsn(Bx,), where Sx, is the midpoint of X5
If Xy islistedand UJx, < U; doU; :=UlJx,
Step4 — 5 : Allocate the widest of the next box X in the list L to d:
d = wide(X)

2.2. IMHSE Algorithm

The IMHSE algorithm computes an enclosure of the state estimation at time sh + lh
by using the global optimization algorithm. The algorithm is the following:

Step1l : Define the invariant domain €2 for the system (8).

Step2 : Solve the minimization problem (11) using the global optimization algorithm.
Initialized X, to the box with width less than the prescribe tolerance 1 that
contained solution of problem (11).

Step3 : Compute the interval estimator vector X5, at the end of the time horizon:
Xsh+lh =FoF... f(Xsh)
lh—1

Step4 : Go to step 2 and calculate the next interval estimator: sh := sh + 1

See [8] for more details on this algorithm.

Definition 1 (Xy)rew C B(IR") is an interval observer of system (1) if there exists

ko € IN such that Vk > ko x(k) € Xy, where x(k) k > ko is the solution of (1) for a

given solution initial state x (ko).

Consider the following hypothesis:
H1: the model (F, H) in (8),(9) is perfect.
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Ho: the model (F, H) is free noise.
‘H1 and H2 have no biological sens, we give these hypotheses in order to have a well
posed mathematical problem.

Proposition 1 The sequence box (X} )rew generated by the IMHSE algorithm is an in-
terval observer of (8) .

As we have mentioned it above, the result in Proposition 1 is given in [8], we adapt the
proof to the harvested fish model (1),(3). To this end, let us consider the following lemma:

Lemma 1 Assume that H1,Ho are satisfied and that the system (8) with measurable out-
put (9) is locally observable then the problem (11) has a unique optimal solution which
corresponds to the solution of (8) at the beginning of the time horizon sh.

The proof of this lemma is given in [3].

Proof: (Proposition 1)

We restrict the proof to the case where n = 3 and the fishing effort E(k) = E is
constant. Where n > 3 and considering a time varying fishing effort the proof is similar
but the computation are too long.

Let x(sh) the solution at time sh of system (8).

‘H1 and Hy imply that j,5 (2 (sh)) = 0 and thus x(sh) is a global minimum of the positive
function jgp,.

Now let 2:(k) and Z(k), k > 0 be two solutions of (1) such that:

H(x(k), E) = H(z(k), E), Yk >0
We note z(k) = x(k) — Z(k) and we obtain:

Cy21(k) + Ca22(k) + C323(k) = 0. (12)
0121(k}+2)+0222(k‘+2)+C3Z3(k+2) =0 (14)
Let oy = Covn and oy = Cavavy , then (14) imply that
Ch Ch

Zl(k+2) —|—O[121(]€—|— 1)+Ol221(]€) = 0 (15)
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Hence for k£ = 0, we can write:

21(2) = —ay21(1) — 221 (0)

For k = 1, we obtain:

213) = —a121(2) — agz1(1) = —ar(—a121(1) — a221(0)) — azz1(1)

21(3) = (af — az)z1(1) + ara221(0))
z1(3) = fo(z(2)) — fo(2(2)) where fo(z) = f(Z bix;)

21(3) = fo(z1(2), v1z1(1), v1v221(0)) — fo(Z1(2), v1Z1(1), v1v221(0))

21(3) = (21(2) = 21(2))G1 + v1(21(2) — 71(2)) G2 + v1v2(21(0) — 71(0)) G
where

1

0

Gi = / 8£0 (tzl(2) + 3_31(2),“)121(1) + vljl(l),tvlvgzl(()) + ’Ul”l)gi'l(O))dt,
0 %

fori =1,2,3
Then we have:

21(3) = 21(2)G1 + v121(1)Ga + v1v221(0)G3
21(3) = G1(—a121(1) — a221(0)) + v121(1)G2 + v1v221(0)G3
213) = (—a1G1 + 11G2)21 (1) + (—aeG1 + v1v2G3)21(0)
Remark that G; = %Gl, we finally obtain:
(1112G3 — @Gy — a1a)21(0) + (11G2 — a1Gy — &2 + )z (1) =0 (16)
If £ = 2, equation (15) gives:
21(4) = —a121(3)—a221(2) = —o ((af—a2) 21 (1) +ara221 (0)) —a2 (—a1 21 (1) —az21(0))

21(4) = as(az — a?)21(0) + a1(2az — a?)z (1)
Otherwise

21(4) = fo(z(3)) — fo(z(3))
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z1(4) = fo(z1(3), v171(2), vivaz1(1)) — fo(Z1(3), v171(2), v1v2Z1(1))

21(4) = (21(3) = 71(3))G1 + v1(21(2) — 21(2)) G2 + viva(21(1) — 71(1)) G

21(4) = 21(3)61 + 1}121(2)(_;2 + ’U1’U221(1)G3
where

1

_ )

Gi:/ 8;;” (tzl(3)+gz1(3),tulzl(2)+um(2),tv1v221(1)+v1uﬂl(1))dt, i=1,2,3
0 7

Since 21(3) = (o —ag)21(1)+a1a21(0)) and 21 (2) = —a;21(1)—az221(0), we obtain:

21(4) = ((a2 —a2)z1 (1) + 1221 (0))G1 + (—a1 21 (1) — a21(0))v1 Go +v1v921 (1)G3
2’1(4) = ((Oé% — 042)61 — 0411}1@2 + 1)11}2@3)21(1) + (Ckloégél — 0421}1@2)21(0)

The two expressions of z; (k) give:

(0610&261 — 012’0162 — 052(042 — a%))zl (0)

(17)
+(a1(a% —2a2) + (a — a2)G1 — aqv1Ga + vwgég)zl(l) =0
- bi ~ . .
Remark that G; = b—Gl, for ¢ = 2, 3, hence equation (17) can be written as:
1
((a1a2 — apUq 2—?)@1 —ag(ag — a%))zl(O)
B (18)
—|—<a1(a% —2a) + ((a2 — ag) — qul% + vvaZ—i’)G1>zl(1) =0
Coupling equation (16) and (18) we obtain the following system:
<(’U1'U21% — CVQ)Gl — alag)zl(O) + ((Ul% — OZ1)G1 — Ck% + a2)21(1): 0
(19)

((alag — (g g—f)él —ag(ag — a%))zl(O)

+(O¢1(C¥% — 2&2) + ((Oé% - 042) - 0411]12% + Ulﬂg%)C?l)Zl(l): 0
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Let:
Fll = Ul(O)Ug(l)l%Gl — Ozg(O)Gl — 051(1)042(0)

Plg = ’Ul(l)%Gl — O[l(O)Gl — al(O)a(l)
F21 = 0&1(1)042(0)@1 — 042(0)1}1(2)1%@1 — 042(0) (052(2) — 041(2)041(1))
FQQ = (Ctl(O)Oll(l) — O[Q(l))(;l — Ckl(O)'Ul(Q)l%Gl + ’()1(1)1)2(2)%(;1

—(02(2)21(0) — a1(2)(e1(0)ar (1) — a2(1)))
We write system (19) in the condensed form:

I‘Hzl(O) + Flgzl(l) =0
(20)
I'9121(0) + To221(1) =0

Assume that the parameters of the model are such that:
—T'21T2 + T2 #0 (21

Then we obtain z1(0) = 21 (1) = 0. Using equation (15), we obtain z;(k) =0V k > 0.
Remark that z5(2) = v121(1), hence z3(2) = 0.

By equation (12) we obtain z3(2) = 0 and consequently 25(1) = 0 and 23(1) = 0.

z3(1) = 0 implies z2(0) = 0. Hence by equation (12), we have z3(0) = 0.

Finally z1(0) = 22(0) = 23(0) = 0. Hence if (21) holds then the model (1)(3) is
observable. By lemma 1, the solution of problem (11) is unique. Hence the Global
Optimization Algorithm computes a unique interval X, that contains x(sh).

F'"=1 5 a continuous function. Hence,

Iy >0/ ||z — zsh| <y = ||[F" Yz, E) — F"""Y(zh, E)|| < 1

The interval X, is such that its diameter is less than 7). By the inclusion function F, we
obtain:

Xy, = F'1(X,p,) and wide(X,) <7

2.3. Numerical example
We consider the Beverton-Holt recruitment function:
f(z) = az/(1+ px)

Assume that the length of the time observation [/ is equal to 3 i.e the past measurable
output y(k — 3), y(k —2), y(k — 1) are needed to calculate the interval estimator X},
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of the state z(k) at a given time k. Let us consider the following parameter values (these
values are not from real data):

a=1, #=0.0002, b=1[55 5],
q=10.240.36 0.42], M =][0.20.20.2],

r=1, E(k) = E =8/3,

We verify that with these parameters, the relation (21) becomes

0.00734219 + 0.0055823G1 + 0.00140772G1 + 0.0025079G 1G4 # 0 (22)

Relation (22) is true because G and G are positive reals when f is the Beverthon-Holt
recruitment function. The system is then observable and the IMHSE algorithm computes
an interval observer for the model. With the Beverthon-Holt recruitment function f one
can remark that % is a global maximum of the map: z — f(z) on IR.

Let:

m = min M; and ¢ = ming;
7 K2

For all k£ > 0, we have:

3
i=1
zo(k) = e MTuErg (p-1) < e‘m_qET%
1‘3(k‘) — 671VI2*¢12E7'1,2(]€ _ 1) < 672m72qET 1
1 efquE‘r 672m72qET
It becomes easy now to see that: 2 = [0, =] x [0, ————] x [0, ————] is an in-

variant domain for (1) when n = 3. Simulations are done with Scilab. The real states are
represented by solid line and the bound observer are represented by the dashed one. Re-
sults of simulations are drown in Figure 1 and the convergence of the interval observer is
very fast. Various modifications of the parameters given in simulation will note influence
the observer convergence while the relation (21) is satisfy.
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Figure 1: state x (solid line) and its interval observer X (dashed line)

3. Conclusion

We have applied the IMHSE algorithm by considering a discrete time nonlinear model
for a harvested fish population. We note that the algorithm works for any n-age class and
any recruitment function when it is possible to find an invariant domain for the model
(1). The IMHSE algorithm works well due to the observability of the model (1)(3).
Some numerical examples are given and one can see on simulation that the convergence
of the interval observer is very fast. The importance of this algorithm application is that
it can help to predict the stock evolution for a given fish population whose dynamics are
described by the model (1-3) using only the measurable output. Hence the numerical
interval estimator can be helpful in management policies. This work is an example that
shows how control theory combined with computer science can be used as a tool for the
management of renewable resources.
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