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RÉSUMÉ. Vue l’augmentation du nombre d’étudiants dans les établissements scolaires et 
universitaires, le nombre d’examens à passer par chaque étudiant et les réformes pédagogiques 
actuelles, les planifications classiques des cours et des examens ne sont plus suffisantes, ce qui a 
amené les chercheurs opérationnels et les informaticiens à chercher des nouvelles méthodes pour 
résoudre le problème d’emploi du temps des examens. Notre travail consiste à planifier les 
examens de telle sorte à maximiser le temps de séparation entre deux examens consécutifs pour 
chaque étudiant et ceci en utilisant l’algorithme de colonies de fourmis hybridé avec une technique 
de recherche locale. 

ABSTRACT. Due to increased student numbers and regulation changes educational institutions 
that allow for greater flexibility, operations researchers and computer scientists have renewed their 
interest in developing effective methods to resolve the examination timetabling problem. Thus, in 
the intervening decades, important progress was made in the examination timetabling problem with 
appearance of adaptation of meta-heuristics. This paper presents a hybridization of the Ant Colony 
Algorithm and a Complete Local search with Memory heuristic, in order to maximize as much as 
possible; the free time between consecutive exams for each student, while respecting the conflict 
constraints, a student cannot sit more than one exam in the same timeslot. 

MOTS-CLÉS : problème de planification horaire des examens, algorithme de colonie de fourmis, 
recherche locale complète avec mémoire. 

KEYWORDS: exam timetabling problem, ant colony algorithm, complete local search with memory. 

 

mailto:dkhissi_btissam@yahoo.fr�
mailto:boukachour@univ-lehavre.fr�


16  R. Abounacer, J. Boukachour, B. Dkhissi and A. El Hilali Alaoui 
 

Revue ARIMA, vol. 12 (2010), pp. 15-42 
 

1. Introduction 

The examination timetabling problem is concerned with assigning a set of exams to a 
limited number of timeslots, subject to a set of constraints. In the literature [17], these 
constraints are usually categorized into two types: hard constraints and soft constraints. 
Both of them vary widely from one institution to another according to resource 
limitations such as the total capacity of the establishment and according to the 
institutions desired objectives, for example the reduction of the planning horizon. The 
hard constraints (or feasibility constraints) must be satisfied under all circumstances; 
they determine whether or not a solution is feasible. The soft constraints are desirable 
but not absolutely decisive; they can be used to measure the quality of the feasible 
solutions. 

Due to the large variety of examination timetabling problems presented and 
investigated, a lot of constraints exist. The most important of these constraints are 
discussed in a review by Carter et al. [17]. They are as follows: 

– Hard constraints: 
- A student cannot sit more than one exam in the same timeslot 
- Certain exams must be assigned to the same timeslot 
- The maximum seats of the university (the total capacity of the university) may not 
  be exceeded at any timeslot 
- Some exams must precede others (the precedence constraint) 
- Some exams must be assigned only to a subset of the available timeslots 
- No student must sit more than x examinations in any y consecutive timeslots 
– Soft constraints: 
- Spread conflicting exams as even as possible for each student [51, 41, 9, 13, 11,  
39, 43]. (Two exams are in conflict if they have common students). 
- Minimize the number of timeslots needed [19, 18] 
- Minimize the number of students sitting two exams in a room on the same day    
[15, 39] 
- Minimize the number of students for two or more exams on consecutive days      
[12, 39] 
- Minimize the number of students sitting two adjacent exams the same day [47, 45] 
The high level of research interest in examination timetabling problem has led to the 

establishment of different variants of the problem called Toronto a, Toronto b,    
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Toronto c, Toronto d and Toronto e [44] and defined according to a set of objectives 
listed in Table1, which have provided a way for meaningful scientific comparisons and 
the exchange of research achievements.  

Variants Objectives 

Toronto a To minimize the number of timeslots needed 

Toronto b To space out conflicting exams within limited timeslots 

Toronto c To minimize students sitting two exams in a row on the same day 

Toronto d Same as above, and to minimize students sitting two exams overnight 

Toronto e To minimize students sitting two adjacent exams the same day 

Table1. Variants of the Toronto’s examination timetabling problem 
These different variants are studied in the literature, resolved by several approaches 

and tested using a set of benchmark datasets. 
This work deals with the resolution of the Toronto b variant. This variant is 

modelled as a combinatorial optimization problem, which aims to maximize the free 
time between two consecutive exams for each student, subject to the conflict constraint 
which requires that a student may not sit for more than one exam in the same timeslot.  

Mathematically the variant Toronto b can be formulated as indicated below by the 
formulas (1) and (2). The objective function (1) represents proximity between exams. If 
a student has two consecutive exams then a penalty value equal to 16 is assigned. Two 
exams with one empty timeslot between them will be assigned a penalty value of 8. Two 
empty timeslots correspond to a penalty of 4 and so on. In order to have a relative 
measure, this sum is divided by the total number of students.  

The hard constraint (2) ensures that no student can sit for more than one exam in the 
same timeslot. 
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Subject to    
                                                                       
                                                                                                                                  (2) 
 
Where: 
– N is the number of exams  
– M is the number of students  
– T is the number of timeslots 
– The matrix E = (Eij)N×N  where each element Eij 

    have to take both exams i and j. 
 is the  number of students that  

– The decision variable is:                                                                               
                                                                                                                                 

         (3) 
 

– The penalty term D(h,k) is  defined as follow:            
 
                                                                                                                                  (4) 
 
h and k are two different timeslots of the planning horizon.    
In the following section, various methods are presented of resolving the examination 

timetabling problem, as found in the literature. The third section is devoted to our 
proposed approach, which is a hybridization of Ant Colony algorithm and Complete 
Local search with Memory method. The last section is dedicated to the experimental 
results.  

2. Related work 

Garey and Johnson [34] have proved that the examination timetabling problem is 
NP-hard. In the last decade, several approaches have been proposed and appeared 
efficient to resolve the examination timetabling problem. We give an overview of 
different approaches of resolution. Many successful approaches mix a number of 
techniques. 
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2.1. Graph based sequential techniques  

Graph based sequential techniques are widely studied methods which were 
developed during the early days of research on timetabling problems. They are used in 
sequential (or constructive) solution methods to order the events that are not yet 
scheduled according to the difficulties of scheduling them into a feasible timeslot 
(without violating any hard constraints).  

Several graph based sequential techniques have been successfully applied to 
examination timetabling problem. In 1996 Carter, Laporte and Lee [19] studied five 
ordering strategies on real and randomly generated exam timetabling problems: 
saturation degree (SD: gives priority to the examinations having the least number of 
available timeslots for placements), largest degree (LD: gives priority to the exams 
having the largest number of conflicts), largest weighted degree (LWD: prioritises the 
examination having the largest weighted conflicts, where each conflict is weighted by 
the number of students enrolled in two examinations), largest enrolment (LE: prioritises 
the examinations with the largest student enrolments) and Largest color degree (LC: 
gives priority to the examinations with the largest number of conflicts with already 
scheduled examinations). In 1964, Broder [7] used the largest degree strategy to resolve 
the final examination scheduling problem. In 1968, Wood [52] used the largest 
enrolment strategy in examination timetabling problem. Saturation degree was defined 
by Brelaz in 1979 [6]. In 2004, Burke and Newall [14] investigated a dynamic ordering 
strategy which ordered the exams adaptively during the problem solving in an iterative 
process.  Asmuni et al. [4] in 2004 have employed a Fuzzy methodology which has 
applied successfully in a wide range of real world applications. In the examination 
timetabling context, a fuzzy expert system is used to rank exams based on an assessment 
of how difficult it is to schedule the exams taking into account multiple criteria. By 
considering more than one criteria to rank the exams, it is hoped that rankings are 
produced that better reflect the actual difficulty of placing the exam, as several factors 
are simultaneously taken into account.  

2.2. Constraint based techniques   

The constraint based techniques are aimed at simplifying the resolution of a problem 
or demonstrating the non-existence of solution. Thus, they do not constitute a technique 
for resolving the problem, but provide instead a set of techniques for rewriting the 
constraints, thereby facilitating the exploration of the solution set, without modify it. 
Schematically, at each step, the following cycle is repeated: 

– Choice of a subset of constraints and generation of an induced constraint 
– Put in evidence of a redundant constraint relative to the induced constraint 
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– Modification of the set of the constraints: addition of the induced constraint and        
exclusion of the redundant constraint 

Practically, that can consist to remove a set of decision variables whose values do 
not belong to any solution: this filtering of the fields avoid many attempts at solutions 
that lead to eventual failure. These techniques also allow simplifying the expression of 
the constraints, for example by elimination of the redundant constraints.  

The investigation of constraint based techniques to exam timetabling has attracted 
the attention of the timetabling community for many years. In [22], the authors have 
modelled an exam timetabling problem faced by a French school as a constraint 
satisfaction problem and implemented a two-phase enumeration algorithm: 
“preassignment” and “final assignment” phases. In 2003 Merlot et al. [39] employed a 
constraint based technique to produce initial solutions, in a similar way to [5] using the 
Optimization Programming Language (OPL) [37], which is a new modelling language 
for combinatorial optimization that simplifies the formulation and solution of 
optimization problems. Subsequently, a simulated annealing and a hill climbing method 
(which are stochastic optimization procedures that are widely applicable and effective in 
several problems), were used to improve the solutions. In 2004, Duong and Lam [31] 
employed a constraint based technique to generate initial solutions for a simulated 
annealing methodology for the exam timetabling problems at Ho Chi Minh City 
University of Technology. 

2.3. Local search based techniques 

In local search techniques, the first step is to obtain any feasible solution to the 
problem. Given some feasible solution, all the “nearby” solutions are considered, and 
the better among them is chosen. This process is repeated till a locally optimal solution 
(a solution which is better than all its nearby solutions) is obtained.  

For the examination timetabling problem, efficient algorithms exist for refining 
arbitrary points in the search space into better solutions. Such algorithms, called local 
search based techniques, define a neighbourhood’s structure, typically based on initial 
crude solutions. This structure is used to iteratively improve an initial solution. In 1998, 
Thompson and Dowsland [49] carried out valuable work to develop a two-stage 
approach where feasible solutions from the first stage were improved in the second stage 
by simulated annealing concerning soft constraints. In 2001, Di Gaspero and Schearf 
[24] carried out a valuable investigation on a family of tabu search-based techniques 
whose neighbourhoods were in regions around hard or soft constraints. In the same year, 
White and Xie [50] developed a four-stage tabu search called OTTABU for the exam 
timetabling problem at the University of Ottawa. The solutions were gradually improved 
by considering more constraints at each stage. Also, in 2001, Caramia et al. [16] 
developed a fine-tuned local search method where a greedy scheduler assigned exams 
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into the least possible number of timeslots and a “penalty decreaser” improved the 
timetable without increasing the number of timeslots. In 2002, Di Gaspero [23] 
presented a family of Tabu Search algorithms for the examination timetabling problem. 
The algorithm relies on multiple neighbourhoods and is based on a token-ring search 
which circularly employs recolor (change single exam) and shake (swapping groups of 
exams), followed by kickers (change sequence of single exams) to further improve the 
obtained solutions obtained in 2001[24]. The technique extended the idea of 
diversifying the search from local optima. In 2003, Merlot et al. [39] employed a 
simulated annealing approach initialised by constraint programming techniques and 
followed by hill climbing to further improve the solution. The hill climbing approach, 
proposed for the timetabling problem by Appleby et al. [3] in 1961, inspects iteratively 
the neighbourhood and replaces the current solution by a candidate with better fitness. 
In 2004 Yang and Petrovic [43] employed case-based reasoning to choose graph 
heuristics which are then used to construct initial solutions for the “great deluge” 
algorithm. They obtained the best results reported in the literature for several Toronto 
instances. In 2004, Burke et al. [9] studied a variant of simulated annealing, called the 
“great deluge” algorithm which is proposed by G. Dueck in 1993 [30]. This algorithm, 
like simulated annealing, may accept worse candidate solutions. The worse solution is 
accepted if its fitness is less than or equal to some given upper limit, called a level. The 
value of level does not depend upon the current solution: at the beginning, the initial 
value (the only input parameter) of level is equal to the initial cost and at every iteration, 
it is lowered by a fixed decay rate. In 2006, Burke et al. [8] investigated variants of 
variable neighbourhood search and obtained the best results in the literature across some 
benchmark Exam Timetabling Toronto datasets. The results were further improved by 
using standard genetic algorithms to intelligently select subsets of neighbourhoods. Also 
in 2006, Abdullah et al. [1] developed a large neighbourhood search based on an 
improved graph construction methodology that had originally been developed by Ahuja 
and Orlin [2] for different optimization problems. 

2.4. Population based techniques 

Population-based methods deal with a set (i.e., a population) of solutions rather than 
with a single solution. At each iteration, a one of a number of techniques is applied to 
the current population to generate the population of the next generation. Therefore, 
population-based algorithms provide a natural, intrinsic way for the exploration of the 
search space. 

Various population based techniques have been proposed to resolve the examination 
timetabling problem. Burke et al. [15] in 1996 developed a mimetic algorithm which 
employs light and heavy mutation operators to reassign single exams and sets of exams, 
respectively, with the aim of escaping from local optima. Burke and Newall [12] in 1999 
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studied the decomposition of the exam timetabling problems by iteratively assigning a 
subset of the n most difficult exams as measured by graph heuristics. The exams 
assigned in previous stage are fixed and the sub-problem at the current stage is solved 
using the Mimetic Algorithm investigated. Terashima-Marin et al. [48] in 1999 designed 
a clique-based crossover operator on timetabling problems that was transferred into 
graph colouring problems. Erben [32] in 2001 developed a grouping genetic algorithm 
where appropriate encoding and fitness functions were studied. Sheibani [46] in 2002 
built a special mathematical model whose purpose is to minimize interference of exam 
times for each student, and developed a standard genetic algorithm for solving exam 
timetabling problems in training centres with the objective of maximising the intervals 
between the exams. The fitness value for each chromosome is calculated according to 
the product of a weight and a distance between two exam subjects.  

Naji Azimi [40] in 2004 implemented an ant colony system and compared it with 
simulated annealing, tabu search and a genetic algorithm under a unified framework for 
solving a systematically designed exam timetabling problems. Our ACO approach is 
different from that of Azimi’s one. This difference lies in the choice of the various 
parameters. Azimi generated randomly some instances of various sizes. Our approach 
has been tested using datasets widely employed in exam timetabling literature. 
Dowsland and Thompson [29] in 2005 developed ant algorithms based on the graph 
colouring model studied in [21] for solving exam timetabling problems without soft 
constraints. 

2.5. Multi-criteria techniques 

In the majority of approaches on timetabling, weighted costs of violations of 
different constraints are summed and used to indicate the quality of the solutions. 
However, in real world circumstances, the simple sum of costs on different constraints 
cannot always take care of the situation in such cases. Multi-criteria techniques have 
been studied in timetabling with the aim of handling different constraints easily by 
considering a vector of constraints instead of a single weighted sum.  

Burke et al. [10] in 2001 developed a two-stage multi-criteria approach dealing with 
nine criteria in exam timetabling problems. A multi-criteria method called compromise 
programming [53] was used where the quality of the solutions was evaluated by the 
distance between them to an ideal point representing optimal solutions concerning all 
criteria. This technique was further studied in [42] by Petrovic and Bykov. Their multi-
criteria approach is based on the “great deluge” algorithm [30]. 
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3. Proposed approach 

In the first of this section, we define the constructive meta-heuristics which build 
solutions iteratively from problem-specific solution components. All constructive 
heuristics take an empty solution and successively add solution components to build a 
complete typically feasible solution to a problem. Generally, the solutions built by 
constructive meta-heuristics are improved by the application of a local search procedure 
[33, 27] which represents the gradual improvement of a current solution(s) starting from 
initial one(s) until some stopping condition is satisfied.  

ACO is a constructive meta-heuristic in which successive populations of artificial 
ants build solutions, guided by a model of the solutions that may be produced, called a 
pheromone representation. Thus, the ant colony algorithm provides good starting points 
for local search [28]. So, in the following, we present the two techniques used in our 
proposed approach to resolve the examination timetabling problem: the ACO and the 
CLM. 

3.1. Ant colony algorithm for the examination timetabling problem 

Ant colony optimization (ACO) is a technique inspired by the work of biologists. It 
has been taken up by several scientists and mathematicians and has been widely 
exploited and developed in the early 90s [20, 25, 26]. ACO is a simulation of a set of 
agents that cooperate to find a solution of an optimization problem by relying on 
uncomplicated communication. The term stigmergy is used to describe this kind of 
behavioural feedback.  

Stigmergic effects are present generally in the collective behaviour of many social 
insects and in ant’s colonies in particular. Many of these interactions are mediated by 
pheromones, volatile chemicals secreted by individual insects that cause changes in 
other individuals’ behaviours. So ants exchange information by laying down 
pheromones on their way back to the nest when they have found food. In that way, they 
collectively develop a complex network of trails, connecting the nest in the most 
efficient way to the different food sources.  

The ants use a stochastic construction technique that employs probabilistic decisions 
on the basis of artificial pheromone trails and heuristic information. The stochastic 
component allows the ants to explore a greater number of solutions. At the same time, 
the use of heuristic information helps guide the ants toward promising search regions 
using the collective interaction of a population of ants. Pheromone is accumulated 
during iterations through a learning mechanism implied in the pheromone update rule. In 
particular, ants move from node to node on a constructed graph using a transition rule 
that favours shorter edges. 

http://en.wikipedia.org/wiki/Pheromone�
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The pheromone trail is updated of their generated tours based on a pheromone 
update rule. This rule consists of depositing a quantity of pheromone proportional to the 
quality of the corresponding tour; and thereafter evaporating the pheromone trail to 
avoid an unlimited accumulation of pheromone that could lead to premature 
convergence to a suboptimal solution region. This mechanism favours the exploration of 
the search space. 

In the following of this section, an adaptation of the ACO to the examination 
timetabling problem is presented. The aim is to obtain the best assignments of the 
available timeslots to the examinations by maximizing the separation between two 
consecutive exams for each student according to the formula (1) and respecting the 
conflict constraint presented by the equation (2). 

3.1.1. Solution representation 

Each ant aims to build a feasible solution minimizing the cost expressed by the 
formula (1). The solution provided by each ant is a matrix with two rows and a number 
of columns equal to the number of exams. The first row represents exams; the second 
represents the assigned timeslot to the corresponding exam as shown in figure1.   

 
 

 

Figure1. Representation of the solution matrix 

The proposed approach consists of initially scheduling exams sequentially, 
beginning with the exams which are considered to be most “difficult” for scheduling. 
Thus, the set of exams presented in the first row of the matrix (figure1) are sorted using 
two strategies; first, the sort is commenced with the exams with largest number of 
conflicts (LD). We note that the number of conflicts for exam x is defined as the number 
of other exams which one or more students in common with exam x. Second, if two 
exams have the same number of conflicts, then an exam with largest student enrolment 
has the priority to be sorted (LE).  

We note that the choice of scheduling the most “difficult” exams (in term of number 
of conflicts and number of enrollments) aims to avoid the situation in which some exams 
cannot be assigned to any time period without violating hard constraints. 

3.1.2. Graph representation 

Each ant is an agent who, in order to build a feasible solution minimizing the cost, 
operates on a bipartite graph G = (U, V, L), where U and V are the two sets of vertices 
and L is the set of edges. 
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The first set of the vertices U is the set of the examinations made in a predefined 
order according to (LE) and (LD) strategies. The second set V of the vertices is the set 
of the timeslots. The set L is the set of edges connecting each vertex in U to one in V, 
such that L = {(i, t) / i∈  U, t∈V}. Figure2 shows the adopted graph representation. 

                                       Examinations                     Timeslots 

 

 
 
 

Figure2. Structure of the graph associated to the proposed approach  
All ants are initially placed on the first exam. Each ant has to assign to the current 

exam an adequate timeslot, according to the movement strategy presented in the 
following section, such that the edges are not bi-directional. Thus, after choosing a 
suitable timeslot for the current exam, the ant takes one’s place on the next exam. We 
note that each element of the set of examinations must be visited once only, unlike to the 
elements of the timeslots set which can be visited more than once because each timeslot 
can be assigned to several exams not having common students. The tour of each ant is 
finished once all the exams are planned, and the process is repeated.  

3.1.3. The strategy of ant’s movement  

The basic ingredient of ACO is the use of a probabilistic solution construction 
mechanism based on stigmergy. Initially, all the ants are placed on the first examination 
according to the defined schedule in section 3.1.2. The ant ν  must choose the best 
timeslot h to move to, taking into account the conflict constraint in the sense that if the 
current exam i has common students with another exam to which a timeslot t is already 
assigned, then it is necessary to avoid the assignment of this timeslot to the current 
exam. 

The probability υ
ihP  of selecting a timeslot h for the current examination i, depends 

on both the amount of pheromone and the heuristic information present on the edge      
(i, h). 
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The parameters α and β define the relative importance of the pheromone 
information (t)τ ih  on edge (i, h) and the heuristic information (t)ηυih   on edge (i, h): 

According to the objective function (1), this expression (t)ηυih is an estimation of the 
partial solution constructed until the current step and which will guide the ants’ search 
with problem specific information.  
 

                                                                                                                                  (6) 
                                                                                                             
Where: Eij   

And 
is the number of students that have to take both exams i and j.  

(t)Bυ is the set of all couples (examination, timeslot) visited by the ant υ before 
choosing a timeslot for the current examination i in iteration t. 

D(h, k) is the penalty term defined as follows: 
 
  
h and k are two different timeslots of the planning horizon. 
Thus, the probability υ

ihP is a compromise between the heuristic information and the 
pheromone information in each iteration t. 

3.1.4. The pheromone update 

The pheromone update rule defines the way in which good solutions are reinforced 
in the pheromone trail by adding a quantity        which is high on the best solution arcs 
as is shown by the formula (7). Thus, after a complete tour of each ant (when the ant has 
visited all exams assigning to each one a suitable timeslot), the pheromone on each edge 
(i, h) connecting the exam i to the timeslot h, is updated by a certain amount of 
pheromone:  

 
                                                                                                                      (7) 
Where K is the total number of the ants.  
Where 
 
                                                                                                                                  (8) 
The algorithm would not be complete without the pheromone evaporation process, 

which is applied to avoid the unlimited accumulation of pheromone and premature 
convergence toward a suboptimal solution region. The rule for updating trails is: 
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)t(  )t( )1t( ihihih τ∆+τρ=+τ                                                             (9) 
Where ρ  is the pheromone evaporation rate.                                                             

3.2. Complete local search with memory 

Local search techniques can be classified into those that store attributes of the 
solutions they visit during their execution, and those that do not. The former type 
includes heuristics like tabu search while the latter type includes heuristics like 
simulated annealing. In a wide variety of applications, tabu search and its hybrids have 
proved superior to memoryless heuristics. In this paper, we use Complete Local search 
with Memory (CLM) [35], a new neighbourhood search approach that makes effective 
use of memory structures in a way that is similar to the idea of “Tabu search with 
structured moves” [36]. This recent heuristic uses memory in an explicit manner, i.e. all 
explored solutions are recorded in order to avoid the exploration solutions that have 
been already visited. In addition, the heuristic described here has a backtracking 
mechanism that allows it to search solution spaces more thoroughly. 

The term memory in CLM refers to storage space set aside specifically for storing 
solutions generated by the approach. The CLM approach keeps track of the solutions 
visited and prevents their neighbourhoods from being searched again at later stages 
during its execution. CLM is used to maintain three lists of solutions. The first one, 
called LIVE, stores solutions that are available to the approach for future consideration 
called exploration. A second list, called DEAD, contains solutions that were in LIVE at 
some stage, but have already been explored. The third list, called NEWGEN is a 
temporary store for new solutions being generated by the approach during the current 
iteration. 

In this work, the best solutions generated at each iteration by the ACO are used as 
starting points for CLM, putting them in LIVE. The two sets DEAD and NEWGEN are 
initially empty. A threshold is generated, initially using the solutions obtained by the 
ACO. Thus at each iteration of the ACO, the best value of the objective function (1) is 
taken from among all those obtained. After the generation of the neighbours, this value 
is updated if a neighbour has a better evaluation. Then CLM performs a number of 
iterations until certain stopping conditions are met. During each of these iterations, it 
picks at most K solutions from LIVE. Each one of these is explored, i.e. it is transferred 
from LIVE to DEAD and all their neighbours, according to a specific neighbourhood 
definition, are generated.  Several neighbourhood structures have been defined for the 
examination timetabling problem. The two most used structures are: 

– Exchange neighbourhood exams: This type of neighbourhood is done by moving 
an examination into another available timeslot. Usually, even for problems whose size is 
limited, this type of neighbourhood does not allow a fast convergence since the moving 
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in the solution space is low. In addition, the previous assignments and timetable 
conflicts can also make the movement of a single examination impossible.  

– Exchange neighbourhood timeslots: all exams of two randomly selected timeslots 
are exchanged. This method allows exchange timeslots while respecting the timetable 
constraints. 

In this work, the second structure is used because it allows a permutation of the 
timeslots while respecting the conflict constraint unlike to the first structure which 
requires a checking of the conflict constraint and then a correction of the introduced 
neighbour. 

From all generated neighbours, those whose objective values are lower than the 
threshold value are checked for membership in LIVE, DEAD, and NEWGEN. The 
neighbour is put into NEWGEN if it does not exist in any set. Clearly, if a neighbour is 
member of one of these three sets, it can be discarded. If it is in LIVE, then it will be 
explored in a future iteration. If it is in DEAD, then it has already been explored. 
Finally, if it is in NEWGEN, then it has already been generated in the current iteration. 
When all neighbours of all K solutions picked have been considered, then the solutions 
in NEWGEN are transferred to LIVE and the iteration has been completed. 

There are a number of parameters and decisions that influence CLM: 
– The initial solution(s).  
– K, the number of solutions to be picked from LIVE at each iteration.  
– The neighbourhood definition: The type of neighbourhood is defined by the way 

moves of made in an examination timetabling vicinity to introduce another called 
neighbour. 

– The threshold value: This parameter controls the way in which CLM accepts non-
improving moves in the sense that a solution with evaluation higher (resp. lower) than 
the threshold value is not accepted in the case of the minimization problem (resp. the 
maximization problem).     

– The stopping criterion: Clearly, the algorithm must stop when LIVE is empty. 
When this condition is satisfied, the heuristic has explored all solutions that can be 
reached from the initial solution. Consequently this stopping rule determines the longest 
execution times, and returns the best solution possible. However, additional conditions 
can be imposed to lead to early termination of the search, such as terminating after a 
predefined number of iterations have been reached, or terminating if no improvement is 
recorded after a number of iterations. 

– The order in which the solutions are stored in and picked from LIVE: In [35], three 
possibilities are suggested: first, choose the solution in LIVE with the best objective 
value. Second, choose the solution that allows the best improvement on exploration, this 
condition takes the search along a path which appears to bring about the best results at 
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that stage. Third, choose randomly any solution. In this work, the last condition, i.e. 
random choice, seems to be the fastest rule to apply in most circumstances, since it does 
not require sorting LIVE on any iteration. However the results obtained by applying 
such a rule are unpredictable.  

The pseudocode of the CLM heuristic is provided in Figure 3. Note that it is a 
template heuristic. Apart from the choice of neighborhood structures, one has to decide 
on the memory size, the stopping rule, the criteria for picking solutions from LIVE, and 
the values of k and τ . 
 

 
 
Figure3. Pseudocode of a complete local search with memory heuristic 

 

Input: Problem instance I, initial solution s0, k,τ . 
Output: A solution to I. 
        LIVE  ←  s0 ; 
        DEAD←  Ø ; 
         While stopping rule is not satisfied 
                     NEWGEN ←  Ø; 
                     Chosen ← 0; 
                     While chosen < k and LIVE ≠Ø; 
                                     Choose a solution s from LIVE; 
                                     Chosen ← chosen + 1; 
                                     Transfer s from LIVE to DEAD; 
                                     Generate neighbors of s with objectives better than a thresholdτ ; 
                                     For each neighbor ns of  s 
                                                     If ns is not in LIVE, DEAD or NEWGEN 
                                                            If sufficient memory is available 
                                                                  Add ns to NEWGEN; 
                                                            Else 
                                                                  Transfer all nodes from NEWGEN to LIVE; 
                                                                  Goto postproc; 
                   For each s in NEWGEN 
                         Transfer s from NEWGEN to LIVE; 
Postproc: for each solution s in LIVE 
                    Remove n from LIVE; 
                    Obtain a locally optimal solution nl from n using local search;  

    Add nl to DEAD; 
 
Return the best solution in DEAD; 
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Figure 4 describes the proposed approach of ant colony algorithm coupled with a 
local search with memory approach. Noting that cost(s) is calculated according to the 
objective function (1) and best* is the best solution obtained by the ACO. 

 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
Figure4. Illustration of the hybrid ACO   

4. Experimental results 

This section aims firstly to test the proposed approach of resolution on a set of 
Carter’s real-world data, secondly to apply the approach to a real-world exam 
timetabling problem face by the Faculty of Sciences and Techniques of Fez (FSTF).  

4.1. Tests on Carter’s Benchmarks 

In 1996, Carter, Laporte and Lee in [19] introduced a set of 13 real-world exam 
timetabling problems from three Canadian highs schools, five Canadian universities, one 
American university, one British university and one university in Saudi Arabia. Over the 
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years they were widely employed as datasets in exam timetabling research. The 
benchmarks can be downloaded from: ftp://ftp.mie.utoronto.ca/pub/carter/testprob/.    

Each instance is characterised by five values: 
– The number of examinations 
– The number of students: is the number of students in each instance. 
– The number of enrolment: To calculate the number of enrollment in each instance, 

a vector E was defined where each element Ei

 

 is the number of students enrolled in 
exam i. The number of enrollment is the total sum of students enrolled in each 
exam: 

 
– The number of timeslots 
– The density of conflict: To indicate the density of the conflicting exams in each of 

the instances, a conflict matrix C was defined where each element cij=1 if exam i 
conflicts with exam j (have common students), or cij

Two variants of objectives were defined in the original dataset: 

=0 otherwise. The density of 
conflict represents the ratio between the number of elements of value ‘1’ and the 
total number of elements in the conflict matrix. We note that the maximum density 
of conflict is 1.0. 

– Minimize the number of timeslots needed for the problem (corresponding to 
Toronto a in Table 1) 

– Minimize the average cost per student (corresponding to Toronto b in Table 1). 
For the first objective, the aim is to find feasible timetables of the shortest length. 

For the second objective, an evaluation function was defined to calculate the cost of the 
timetables generated, the aim is to space out the conflicting exams within a limited 
number of timeslots.  

In the literature, two versions of the data were circulated and were tested by different 
approaches. The characteristics of the first version that has appeared more in the 
literature and which is used in this paper are listed in Table 2. 

 
 
 
 

 

∑
=

exams of Number
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iE
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Data  Number of 
examinations  

Number of 
students  

Number of 
enrollments  

Number of 
timeslots  

Density of 
conflict  

car-s-91  682 16925 56877 35 0.13  

car-f-92  543 18419 55522 32 0.14  

ear-f-83  190 1125 8109 24 0.27  

hec-s-92  81 2823 10632 18 0.42  

kfu-s-93  461 5349 25113 20 0.06  

lse-f-91  381 2726 10918 18 0.06  

rye-s-93  486 11483 45051 23 0.07  

sta-f-83  139 611 5751 13 0.14  

tre-s-92  261 4360 14901 23 0.06  

uta-s-92  622 21266 58973 35 0.13  

ute-s-92  184 2749 11793 10 0.08  

yor-f-83  181 941 6034 21 0.29  

Table2. Characteristics of the Torontob Benchmark Datasets 

4.2. Adjustment of the parameters  

Several test runs were carried out in order to determine the required parameters 
appropriately.  

Different parameters of the ACO approach are fixed as follows: 
–  Number of iterations : 1000 
–  Number of ants : 20  
–  Initial pheromone amount 0τ = 0.5 
–  Evaporation factor ρ = 0.4 
–  Relative importance of pheromone factor α = 2 
–  Relative importance of heuristic information factor β = 3.5 
Different parameters of the CLM heuristic are fixed as follows: 
– The number of iteration : 100 
–  The size of NEWGEN : 200 
–  The size of LIVE : 250 
–  The size of DEAD : 300 
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4.3. Computational results 

According to the objective function presented in section (1.2) by the equation (1), 
Table3 presents the best results obtained over 40 runs, using ACO alone and then using 
ACO with the CLM approach.  

Approach  car-
s-91 

car-
f-92 

ear-
f-83 

hec-
s-92 

kfu-
s-93 

lse-
f-91 

rye-
s-93 

sta-
f-83 

tre-
s-92 

uta-
s-92 

ute-
s-92 

Yor-
f-83 

ACO 8.1 6.6 50.1 13.1 22.7 17.7 17.4 164.
2 11.5 5.1 35.3 53.2 

hybrid ACO  6.9 5.9 42.4 11.0 17.3 14.9 14.0 155.
7 9.9 4.5 32.0 44.1 

Table3. Results obtained using the ACO, then using the hybrid ACO  
We can observe from Table3, that results given by the hybridization of the ACO 

with the CLM approach are better than those given by ACO alone, for all instances. In 
fact, the ants guide the search process into promising regions of the solution space 
where the complete local search with memory approach can find good solutions. 

The following section aims to compare our results with those produced by the state-
of-the-art of examination timetabling problem in term of solution quality. Table4 
represents different results obtained by several authors. The last row of the table 
contains the best results obtained by our approach. The best results are presented in 
bold, and “-” means that the corresponding problem is not tested or a feasible solution 
cannot be obtained in the literature. We have not listed computational times for the 
following reasons: Firstly, comparisons across very different platforms over the years 
are impossible. Secondly, examination timetabling is a problem which is almost always 
tackled weeks or months before the timetable will be used. 
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    Data  Carter  
1996 

Carami
a 2001  

Gasper
o 2001 

Gasper
o 2002 

Merlot 
2003 

Burke 
2004 

Burke 
2004 

Yang 
2005 

Abdul
ah 
2006  

Burke 
2006 

Our 
approa
ch 

car-s-91 7.1 6.6 6.2 5.7 5.1 5.0 4.8 4.5 5.2 4.6 6.9 

car-f-92 6.2 6.0 5.2 - 4.3 4.3 4.2 3.9 4.4 4.0 5.9 

ear-f-83 36.4 29.3 45.7 39.4 35.1 36.2 35.4 33.7 34.9 32.8 42.4 

hec-s-92 10.8 9.2 12.4 10.9 10.6 11.6 10.8 10.8 10.3 10.0 11.0 

kfu-s-93 14.0 13.8 18.0 - 13.5 15.0 13.4 13.8 13.5 13.0 17.3 

lse-f-91 10.5 9.6 15.5 12.6 10.5 11.0 10.4 10.3 10.2 10.0 14.9 

rye-s-93 7.3 6.8 - - - - 8.9 8.5 8.7 - 14.0 

sta-f-83 161.5 158.2 160.8 157.4 157.3 161.9 159.1 158.3 159.2 159.9 155.7 

tre-s-92 9.6 9.4 10.0 - 8.1 8.4 8.3 7.9 8.4 7.9 9.9 

uta-s-92 3.5 3.5 4.2 41.1 3.5 3.4 3.4 3.1 3.6 3.2 4.5 

ute-s-92 25.8 24.4 27.8 - 25.1 27.4 25.7 25.3 26.0 24.8 32.0 

yor-f-83 41.7 36.2 41.0 39.7 37.4 40.8 36.7 36.3 36.2 37.2 44.1 

Table4. Results of the Toronto b Dataset 

Comparing our results with those presented in the literature, it seems that our 
approach is superior to some of other approaches. So, for the sta-f-83 benchmark, we 
find the best solution. For seven benchmarks, our approach obtained greater or equal 
values compared to some of those presented in the literature. For the rye-s-93 
benchmark instance, our algorithm finds a feasible solution, unlike 50% of approaches 
of literature which are not tested or feasible solutions cannot be obtained.  

4.4. Application of the resolution approach 

These encouraging results led us to address a real-world exam timetabling problem 
at the Faculty of Sciences and Techniques of Fez (FSTF). This instance is relatively less 
complicated compared to Carter’s instances in terms of the conflict density, as shown in 
Table5.  

In order to give a feasible planning for the FSTF, it was essential to include an 
additional constraint which takes into account the total capacity of the establishment. 
This constraint requires that the total capacity, at each timeslot, is not exceeded. 
Adapting the same notations used above, this constraint can be expressed as follows: 
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                                                                                                                        (10) 
 
Where  
C is the total capacity of the establishment. 
Eii

 
 is the number of students that are enrolled in exam i. 

 
  

Data Number of 
examinations 

Number of 
students 

Number of 
enrollments 

Number of 
timeslots 

Density of 
conflict Total Capacity 

FSTF-09 198 1876 7691 12 0.026 660 

Table5. The FSTF dataset  
Our problem is particularly characterized by only four timeslots per day, in contrast 

with the Toronto instances which are characterized by 6 timeslots per day. According to 
the penalty term presented by formula (4) for the Toronto instances with 6 timeslots per 
day, the penalty term for the FSTF instance with 4 timeslots per day, is presented by the 
following formula (11), which aims to separate two consecutive exams for each student, 
at the very least, with two timeslots. So, if a student has two consecutive exams then a 
penalty value equal to 4 is assigned. Two exams with one empty timeslot between them 
will be assigned a penalty value of 2. Two empty timeslots correspond to a penalty of 1.  

               
                                                                                                                        (11) 
 
h and k are two different timeslots of the planning horizon.  
Table6 shows the best planning obtained by our approach with a cost equal to 2.76. 

The first column of table 6 represents the set of the timeslots (T1, …, T12

 

). Each row of 
the table presents the set of examination indices associated with the relevant timeslot. 
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T1 3 188 39 28 11 156 17 192 184 177 173 141 118 93 85 54 49 47 132 129 122       

T2 2 197 41 34 14 181 152 126 123 107 97 92 86 72 71                   

T3 1 162 42 29 23 193 179 174 171 169 160 139 135 95 88 83 78 68 53 48 44 131 130   

T4 116 113                                             

T5 35 15 189 157 43 142 24 180 168 149 137 125 109 104 98 90 87 80 73 70 66       

T6 7 194 164 32 12 36 145 20 22 182 176 170 159 151 147 110 100 75 69 60 58 50     

T7 117 114                                             

T8 4 196 40 31 8 155 25 21 120 190 185 166 158 134 124 111 106 101 96 94 89 79 65 63 

T9 0 187 163 13 16 119 27 175 167 153 146 143 138 136 84 64 61 56 51 45 178       

T10 112 115                                             

T11 5 195 38 33 9 165 144 26 18 183 172 127 108 102 82 76 74 62 59 55 133 121 128   

T12 6 186 154 37 30 10 19 191 161 150 148 140 105 103 99 91 81 77 67 57 52 46     

Table6. Planning of the FSTF examinations using the hybrid ACO  
This planning allows to the most of the students to have a maximum separation 

between two consecutive exams. For example, the students enrolled at the exams 154, 
155, 156 and 157, have a large time between two consecutive exams as mentioned in 
Table7. 

 
Exams 154 155 156 157 

Timeslots T12 T8 T1 T5 

Table7. Example of a subset of exams 

5. Conclusion 

In this paper, we have shown a hybrid Ant Colony Algorithm with the Complete 
Local Search with Memory approach. The proposed algorithm is able to solve large real 
world exam timetabling problems and to generate results which are compared with high 
performance algorithms from the literature. We conclude the paper by presenting a real-
world examination timetabling problem faced by The Faculty of Sciences and 
Techniques of Fez.  

A self-evident extension would be to adapt the resolution approach proposed to 
resolve the other variants of the examination timetabling problem. 
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