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ABSTRACT. Using a preconditioned Richardson iterative method as a regularization to the data com-
pletion problem is the aim of the contribution. The problem is known to be exponentially ill posed that
makes its numerical treatment a hard task. The approach we present relies on the Steklov-Poincaré
variational framework introduced in [Inverse Problems, vol. 21, 2005]. The resulting algorithm turns
out to be equivalent to the Kozlov-Maz'ya-Fomin method in [Comp. Math. Phys., vol. 31, 1991].
We conduct a comprehensive analysis on the suitable stopping rules that provides some optimal es-
timates under the General Source Condition on the exact solution. Some numerical examples are
finally discussed to highlight the performances of the method.

RESUME. Lobjectif est d'utiliser une méthode itérative de Richardson préconditionnée comme une
technique de régularisation pour le probléeme de complétion de données. Le probléeme est connu
pour étre séverement mal posé qui rend son traitement numérique ardu. L'approche adoptée est ba-
sée sur le cadre variationnel de Steklov-Poincaré introduit dans [Inverse Problems, vol. 21, 2005].
Lalgorithme obtenu s’avere étre équivalent a celui de Kozlov-Maz'ya-Fomin par( dans [Comp. Math.
Phys., vol. 31, 1991]. Nous menons une analyse compléte pour le choix du critére d'arrét, et établis-
sons des estimations optimales sous les Conditions Générale de Source sur la solution exacte. Nous
discutons, enfin, quelques exemples numériques qui confortent les pertinence de la méthode.
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18 D. Thang Du and F. Jelassi

1. Introduction and variational formulation

LetQ be a bounded domain iR? (d = 2,3) with n the unit normal to the boundary
I' = 09, oriented outward. Assume thiatis the union of the disjoinf' andI’; that are
disjoint for simplification (see Figure 1).

lc

Figure 1. The boundary I'c where measurements are possible and I'; is unreachable.

Assume given a datum and a flgx, o) in H'/2(I'¢) x H=/2(I'¢)(Y). The Cauchy
problem we deal with reads afénd « such that

(=A)u = 0 in Q, 1)
u = g onl'¢, )

Opu = ¢ onl'¢, ©))

u = 7 onT;. (4)

Hadamard J. demonstrates through an example given in (see [7]) that the data completion
problem is ill-posed. Its severe ill-posedness for general geometries is proved by Ben
Belgacem F. in [2]. A variational framework of it is proposed in [3], which consists in
the duplication of the unknown into (up,uy) as follows: letA € H'/2(T'7), then

up = up(A, g) is solution of

(=Ayup = 0 in Q,
up = g OnFCa
up = A onl'y,

while uy = un (A, ) satisfies the problem
(—Ajuy = 0 in £,
Ohuny = @ onT¢,
uy = A onI'y.

The key idea is to consider the common tréeg)|,. = (un)., = A(€ H'Y2(T})) as
the main unknown of the problem. Findingallows to complete the boundary data and
to obtain thereby the solutianof the Cauchy problem. Thewe look for should satisfy
the flux equation,

Onup (A, g) = Onun (A, ) onI;. (5)

1. The Sobolev spaces are defined in [9].
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Richardson’s Regularization 19

Indeed, if A solves (5), it may be checked by Holmgren’s Uniqueness Theorem that
up =uy = (u)(€ H'(Q)) is the solution of the Cauchy problem.

In the subsequent, we are interested in the preconditioned Richardson iterative method
to approximate problem (5). An outline of the paper is as follows: We recall the Steklov-
Poincaré variational formulation. Then we describe the iterative Richardson method and
establish the connection with the work of Kozlov V.A., Maz'ya V.G. and Fomin A.V. (see
[8], [13]). Afterward, we conduct aa-priori anda-posteriorianalysis of the Richardson
algorithm used as a regularization strategy when associated to the Discrepancy principle.
We conclude by numerical examples to illustrate the reliability of the iterative regulariza-
tion.

In order to construct a variational formulation of the Cauchy problem (1)-(4), we use
the notation provided in [3] for the solutions, that is

(U‘D(,u')v ’LLN(,LL)) = (uD (H“? 0)7 U‘N(Na 0))7
(ip(9), in(p)) := (up(0,9), un(0,¢)).

The variational formulation has been provided in [3] and consistrid:\ ¢ H'/?(T';)
such thatf) : for all . € H'/?(T;),

/ Vup (N Vup (1) dz — / Vun(NVun (@) de = (i, un()1/are
Q Q

—/ Vip(g)Vup(p) de.
Q

It may be put under the following compact form (with obvious notations)
s(A ) = n), Ype HYVAT)), (6)

wheres(-,-) = sp(+,-) — sn(-,-) andé(-) = {p(-) — In(-). The formssp(-,-), sn (-, )

are continuous, symmetric and elliptic d@h'/?(T;), and/p(-), £x(-) are continuous
linear on H'/2(T';) (see [12]). It is proved in [3, Lemma 3.3] that the bilinear form
s(+,+) is symmetric, non-negative definite which means that that,-) > sy(-,-). In
addition,s(-, -) is compact and its eigenvalues, though non-negative, are clustered around
zero which arises serious difficulties in the numerical treatment of the Cauchy problem.
REMARK. —

Each of the bilinear formsp (-, -) ands (-, -) are related to an inner-product &f/2(T';),

and their corresponding norms &H/2(T';) are equivalent to the natural NoA /2y,

that is to say, fop € H'/%(T';),

1/2

lellsn = (sp (s i)™= = il vy

In all the sequel we use the noifn [|5,, instead off| - || ;1/2(p,)-

Before switching to the regularization issues, we provide a stability property of the
linear form£(-) with respect tos(-, -) that will play an important role in the analysis we
have in mind. Let us denote firs

n = |ip(g) — un(e)|m1 (), (7)

2. (-,)1/2,r is the duality pairing bilinear of H~1/2(I'¢) and HY/2(I'¢).
3. The symbol | - | 1o, stands for the semi-norm in H' (Q2).
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20 D. Thang Du and F. Jelassi

There holds that (see [5])

O(p) <nv/s(p, ),  Yue HY(D)). ®)

2. Preconditioned Richardson Algorithm

We aim to build a stable approximate solution of the exact one (in some sense) by the
iterative Richardson method. We do not however apply it directly to the equation (6),
but use it in combination with a preconditioner. We describe the preconditioner we
have in mind after the construction of the operator of iterations. It is denotéd by
L(H'Y2(I'1)) and is defined as followsor any A € H'/2(I';), TA € H'/?(T';) is the
solution of

SD(T)‘aM) = SN(/\7:U’)7 VM € Hl/z(rl)'

T is symmetric non-negative and contracting @A'/2(T;), sp(-,-)). As a result, the
operator(I — T'), acting onH'/2(I';), satisfies
sp((I=T)\p)=s(\p),  Vue H/T)).

It is symmetric, non-negative and contracting. It is also compact. The fafathe
preconditioned system is constructed as follofired f € H'/?(T';) such that

sp(fip) =Lp),  Ype HV*(T)), ©)

Once, all this done, it is readily checked that the Steklov-Poincaré problem (6) may be
rewritten under the following formfind A € H'/2(T';) such that

(I-T)A=f,  inHYX(I;). (10)

We are now in position to perform the Richardson method, to the preconditioned problem
(10) to compute a sequentk,),, ¢ H'/?(T;) satisfying

Anp1 = TAn=f,  inHY*(I)). (11)

REMARK. —
An equivalent form of (11) is as follows

spAnt1s ) = sn(Nay ) +€(p), Y€ HYX(Iy). (12)

This is the variational form of the iterative flux equatidind (\,,),, ¢ H'/?(T';) such
that

anuD()\n+1vg) = anuN(Anv 90) (13)

The main advantage of the variational formulation of the problem shows up in the dis-
crete level. When the problem is approximated, say by the finite element method, we
obtain a stiffness squared matrix that inherits all the properties-pf), symmetry and
non-negativity definiteness. The overall regularizing tools developed for singular and ill-
conditioned matrices can hence be tested on this matrix.

The general theory of the Richardson algorithm shows that under some sufficient con-
ditions we obtain a converging regularization method. Our aim is to establish that under
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Richardson’s Regularization 21

some less stringent constraints the convergence is still guaranteed. In addition, when com-
bined with the discrepancy principle the theory predicts that the Richardson method does
not necessarily converge. Nevertheless, we are able to prove that it actually converges.
The mile stone for the analysis we have in mind is the following stabilityf evhich is
straightforwardly issued from (8) and (9).

Lemmal. We have that
(f.W)sp <l =) 2ulls,,  Yue HYA(T). (14)

REMARK. —
A particular consequence of (14) is that

||fH5D <.

3. Connection with Kozlov-Maz’ya-Fomin’s Method

The first step of our analysis is the equivalence between the preconditioned Richardson
procedure and the one proposed by Kozlov, Maz'ya and Fomin in 1991 (see [8, 13]),
currently pointed at as the (KMF)-method. Actually, they are the same method written in
different ways. By this result, one can see why the convergence of the algorithm occurs
only when the Cauchy data is exempted from errors, i.e. wherR (s) (or equivalently
whenf € R(I — T)). We recall the construction of the (KMF)-sequences. Ass(imé
is known, thenv,,, u,,+1) are calculated as solutions of the following iterative boundary
value problems, the functio, is the solution of

(~A)v, = 0, inQ (15)
Ontp, = ®, onlc,
Up = Up, ONIy.

andu,, 1 satisfies the boundary value problem

(=A)uppr = 0, InQ (16)
u'ﬂ+1 = g7 on FCa
anun-',-l = 8,111,“ onI';.

The following equivalence holds.

Proposition 1. Let()\,), C H'/?(I';) be the solution of the preconditioned Richardson
iterative procedureg(11) and (v, u,)n, C HY(Q) x H'(Q) be provided by the KMF
method. Then we have thaf = up(A,,g) andv, = uy(An, ).

Proof. Let the Cauchy datdg, ) € H'/?(I'c) x H-'/2(I'c) be given. Sew, =
un(An, ) @andu, = up(A,,g). On one hand side, the two first lines of (15) are ful-
filled and the condition oii; is given by

U = Up, (= An), onI;.
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On the other hand side, the two first lines of (16) hold true. Furthermore, due to (5) and
(13), we are allowed to write that

8nunJrl = anvnv on FI~

The proof is complete. O

The convergence of the sequen¢es),, and (v,,), towards the solutiorfu) of the
Cauchy problem when the d&t@ ) are exact comes directly from the Proposition 1 and
(8, 13)).

Corollary 1. Assume thaf € R(I — T), then the sequendg\,),, provided by(11)
converges towarda asn — oo. In the contrary, iff ¢ R(I — T'), the sequence blows-

up.

4. Stopping rules

In reality, the exact linear forrf(-) (and by thenf) is not available which means that
(g, ) are not known exactly. Only perturbed data are acces§jblg) = (g+dg, o+5).
The noise level affecting Cauchy data is assumed 9 be0, that is,

109/ zr272 ey + 10l =172y < € (7)

This induces a perturbation on the dgtan equation (10) since it suffers also from a
deviation. Instead of the exagt we dispose of = f + J f. Formula (14) allows to show
that

16fllsp < Ce" (=€)

We denote QXS\n)n the perturbed sequence obtained by the Richardson methodf with
replaced byf. We start from\o = A\o(= 0) and the induction henceforth reads as

S\n-&-l - Tj\n = f

The aim is to discuss now the issue of the stopping riile= n*(¢) to ensure that the
sequenc@\n*)oo converges toward the exact solutiarin Hl/Q(FI) whene decays.

The parameter choie€" guarantees that the Richardson algorithm results in a convergent
regularization. The analysis relies on the bias-variance decomposition (with respect to the
sp-norm || - [|,,)

||)‘_/~\nH8D < ||>\_>\n||5D +||)‘n_5‘n||sf:>' (18)

The bias error is the error caused by the iterative method, while ¥agiance error
describes the effect of the erroneous measurements. The chaicedafpends on the
smoothness of the exact solutiarand can be mada-priori if that information is avail-

able. More likely, it may be achieved thanks toaposterioriartifice, the Discrepancy
Principle of Morozov, that does not need any other information than the approximated
solution. Henceforth we set, = (A, — ) andé,, = (A, — \,).
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4.1. An a-priori choice

To fix a-priori the stopping rule of the algorithm we conduct the convergence, starting
by the variance error.

Lemma 2. There holds that
”:\n = Anllsp < (\/5)5 (19)
If the iterations are stopped at* = n*(e) such that

lim n* = 400, lim(vn*)e = 0. (20)

e—0 e—0
The variance error decays to zero.
Proof. We have that
Mg —Thn=f, and Ay —TA, = f.

Subtracting one equation from the other, we obtain that

n

Enp1 =Tén + (3f) =D _THGf) = (I =TI = T)7'(55).

k=0

In view of the the symmetry df and(I — T'), we have
lenll2, = ((6£), (I = T™)I = )" (én))sp-
Now, owing to the stability (14), we derive that
I1€nll2, < @I =)V =T")I = T)~" @n)llss
< O =TI =T)" |5 llEnllsp-
We obtain therefore
I€nllsp < @I =TI =)~ ||, < (50)v/n.
Next, by (17), we have

(6n) = lip(0g) — un(6¢)|m1 () <€,

and hence

||é”||5D < (\/ﬁ)e
The proof is complete with = n*(¢) chosen as in (20). O
REMARK. —

In the general case, the convergence of the variance error is ensured under the sufficient
condition(ne) goes to zero. Our result is better and remind the behavior of the Landweber
method (see [6]). The combination of bias-variance decomposition, Proposition 1 and
Lemma 2 make out of the preconditioned Richardson regularization, with the a-priori
choice ofn*, a convergent strategy.

Now, the convergence of the bias error being arbitrary slow (see [6]) we may be tempted
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to consider the effect of some regularity on the exact solution. We introduce here the
General Source Condition (GSC), currently employed for ill-posed problems (see, e.g.,
[6]) thatish € R(I —T):

there exists x € H such that\ = (I — T)x. (21)

We setE’ = ||x||s,- The following lemma gives the convergence of the bias error.

Lemma 3. Assume that the solutiok of problem(12) satisfies th GSC)assumption.
Then the following bound holds

A = Allop < o
Proof. Without loss of generality, we st = 0. We have that,
en = —T"\=—T"(I - T)y.
We obtain therefore,
lenllen = IT"(T = T)xlsp < BIT" (I =Tl < 5
The proof is complete. O

The following theorem provides an optimal stopping rat¢ = n*(e)) when the
(GSC) assumption is fulfilled.

Theorem 1. Let the solution\ of problem(12) satisfy the(GSC)assumption. Then,
choosingn*(¢) = E?/3¢=2/3 yields the bound

5 3 €\2/3
1A =Alsp < 5B(5) - (22)

Proof. The above results give

~ FE
||)‘n - )\HSD < % + \/ﬁﬁ

Choosingn* = n*(e) so that
TL*(E) — E1/3€71/3’

yields the expected estimate. The proof is complete. O
REMARK. —
Theorem Tives a stopping rule of iteration= O (e~2/3), to ensure the convergence. An

alternative consists in using arposteriorirule ; the one we select here is the Discrepancy
Principle of Morozov.
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4.2. The Discrepancy Principle

Generally, an a-priori choice of the stopping parameter is impossible, because of the
difficulty to access an accurate information on the smoothnegas ¥fle may therefore
match the Discrepancy Principle of Morozov (see [10]). The criterion we adopt here is
based on the the minimum value of the Kohn-Vogelius functional, defined as follows (see
[112, 3]):

~ 1 ~ _
K(u) = 5lup(p.9) —un (. )lin @) Yu€ H'*(T).

That function is calledk () when (7, @) are replaced byg, ¢) and K°(-) if they are
replaced by(dg, d¢). Before the description of the strategy we intend to use, we need
to state the monotonicity of the sequen(dé(\,,)),. Some formulas will help in the
analysis. We recall first that, in [5], is stated that

K(n) = ()~ )+, e H(Ty), (23

Identity (23) still holds forf((-) and K°(-) wheren, given in (7) , is changed inty and
(6n) with obvious notations. Moreover, the following holds (see [4])

2K () = s(p—Ap—N),  Vpe HY(T)). (24)
Lemma 4. The sequenceSs (\,))n, (K (An))n and(K%(),)), are decreasing.

Proof. Owing to (12) and the Lax-Milgram theorem, we derive that

1

1
§SD()‘n+1a/\n+1) = sN(Ans Ant1) = L Any1) < §SD(/\m/\n) = sN(Ans An) = €(An)-

As a result, we obtain that
K(wir) + %SN()\TL_H, M) + 55 Oms Agn) < K () — %SN(A,,, ),
and therefore
K )+ 35w (e = An At = M) < K().

The non-negativity oy (-, -) completes the proof. O

Let us now remark that the exact solutidre H'/2(I';) of the entire problem satisfies
the bound

2K (A)Y? = |iip(3g) — iin (60) | m1 () = (0n) < e.

We fix o > 1. The Discrepancy Principle suggests to interrupt the iterations at the first
timen* = n*(e) where the following inequality holds true

(2K (An+))'/? < oe. (25)

Such a procedure yields a convergence rate that can be comparedtpribe choice.
We need the following preparatory Lemmas.
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Lemma 5. Assume that the solutiok of problem(12) satisfies thg GSC)assumption.
Under the stopping iteration* = n(e) provided in(25), the variance bound holds

Proof. Due to the Discrepancy Principle (25) we have

H;‘n* - )‘n*

oe < [up(An+—1),§) — un(An=—1), ) 110

< upAmr—1),9) = un A1), @) 1) + [UD(E(nr—1),09) — un (E(n=—1), 09) |11 (@)

= (2K A —1)) /2 + (K2 (Ege—1))) /2.
That(K°(é,)), is decreasing yields

ge < (2K (A@m=—1)))"/? + (K°(0))"/?
< @EA@e—p)"? + (0n) < @K Ae—)'/? +e.
We deduce therefore that
(0 —1)e < (2K (Ap-_1))"/2. (26)

Now, on account of (24) we write that

(KDY = (5O = A A0 = ADV2 = (1= T)en, en)sp)'?

E
_ _ 1/2 _ _ 3/2mn
- ||(I T) enHSD - H(I T) T (X)HSD S (n+ 1)3/2'
Back to (26), we come up with the bound
E
7 Ve= Gy
from which we derive that
E 2/3
n*<C () .
€
Calling back the estimate (19), we establish that
- € 2/3
. = Ape < e < —
Ans = Ansllsp < (V*)e < CE (E)
This completes the proof. O

Lemma6. Under the stopping iteration* = n*(e) chosen by the Discrepancy Principle,
there holds that

IN = Aellsp < DE (%)2/3.

Proof. Let us denotey,, € Hl/Q(FI) such that\,, = (I — T)x,. The existence of
X» May be obtained by induction withy,.- — x|ls, < E. Invoking the interpolation
inequality (see [6, 4]), we have by (24)

sp < (s(ensy€n ) = xl10° = K Qo)) xnr — x5

([
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On the other hand side, by the Discrepancy Principle (25), we obtain that

(2K()\n*))1/2 S |’U,D(5\n* y g) — UN(E\n* y @)‘Hl(g) + |’U,D(én* s 59) — ’U,N(én* s &P)|H1(Q)
< 2K )2 + 2K (6,-)V? < ge+ (0n) < (0 + 1)e.

Given that|| x»- — x|lsp, < F, replacing in the above formula completes the proofld

REMARK. —
The constant§’ and D are known explicitly and are given by

C=(c—-1)7%3  D=(o+1)%3
Putting together Lemmas 5 and 6 provides the following global convergence result.

Theorem 2. Assume that the solutionof problem(12) satisfies th€dGSC)assumption.
Then, choosing* = n*(e), thanks to the Morozov principl5), the following optimal
bound holds

- €\ 2/3
s = Alep <CE (%) (27)

REMARK. —

The order of thea-posterioriestimate is>/3. That is to say the preconditioned Richard-
son iterative method combined to the Discrepancy Principle of Morozov (25) provides a
super-convergermegularization strategy.

REMARK. —

The General Source Conditione R(I—T') can be weakened toe R((I—T1)%), where

a € (0,1) or to the logarithmic type, i.& € R((log(I —T)~!)*). The convergence rates

we are able to exhibit remain of optimal order.

REMARK. —

Both Theorems 1 and 2 show that the Richardson iterative method behaves like the
Landweber algorithnfsee [6]). This suggests that whatever the Cauchy boundary condi-
tions (g, ) are iNH'/?(T¢) x H-'/?(T¢), the resulting datg obtained by (9) belongs

to R(v/I — T), which make us believe that the variational formulation data completion
problem is actually the Euler-Lagrange of some least-squares problems.

5. Numerical Examples

The computations are realized by a finite element method. The meshes we use are all
triangular(*) and uniform, the finite elements are line3)i(The advantage of the Steklov-
Poincaré equation (10) is that it yields a symmetric and non-negative definite stiffness
matrix (see [5]). In our experiences, the inversion of the algebraic equations is realized
by the preconditioned Richardson algorithm. Nevertheless, different methods may tested
to solve that equation such as Krylov subspaces type methods.

The purpose of the first experience is to assess the solution obtained by means of the
Discrepancy Principle combined to the iterative preconditioned Richardson method. The

4. The meshes are generated by the EMC2 public software; it can be downloaded from the INRIA

Web-site, .
5. The primary procedures, in Fortran 77, are provided on the O. Pironneau home-page,
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Figure 2. The squared domain with two holes.

domains2 is the unity square with two holes in it as indicated in Figure 2. The aim is the
reconstruction of the solution of the data completion problem.

The Cauchy boundary¢ is the external boundary of the square and the two holes are the
incomplete boundar¥;. Letw be defined by

™ ™ . T . ™
w(z,y) = cosh(?v) cos(§y) + sm(§x) s1nh(§y).

The data o' are(g, ¢) = (w, dyw) so that the exact solution of the Cauchy problem
(1)-(4) isu = w. Arandom noise is generated on the datap) by the Fortran random
function ( ). In this computation the magnitude of the nois#0i% with respect to

Figure 3. Computed solutions, up to the left and ux to the right for 10% -noise. The gap
between u and ux is measured to 0.061 with respect to the maximum norm.

the max norm. Notice that theis so that
€= (on) = |up(dgc) — un(dvc)|m () (28)

necessary in the Discrepancy Principle is not at hand. The deviation (28) is not avail-
able to us and needs to be estimated. It is dependent on multiple factors and especially
of the domainQ2 and has to be re-evaluated for each experiment through some prepara-
tory calculations. The evaluation of the incidence of the noise level (0.1) on the value
of e is achieved by conducting several computations where there is no signal on the data

Revue ARIMA, vol. 13 (2010), pp. 17-32
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Figure 4. Curves of exact and computed solutions X and .- along both holes contours
with 10% noise. Quadrangular’s contour to the left and circular’s contour to the right.

(g, ) = (0,0) which suffers however from different noises the magnitude of which does
not exceed).1. Next, sorting the obtained results and taking the mean-value of the dif-
ferent (dn) allows to approximate. The first row of Table 1 provides for different
(L*-)magnitudes of the noise, it seems to grow linearly with respect to the maximum
norm of the pollution.

max (Noise) | 0.01 0.05 0.025 | 0.075 0.1
€ 0.1466| 0.3741 | 0.7518 | 1.003 | 1.544
n* 48 17 8 6 5
(u—un)y 0.038 0.045 0.05 0.056 | 0.061

Table 1. The third row gives the stopping iteration by the discrepancy principle. The last
row indicates the accuracy of the computed solution. The notation (v —ux ) is for max |u—
un|/ max |ul.

Currently, the parameter is fixed very close to unity for the discrepancy equa-
tion (25). Althougho = 1 is not tolerated by the analysis, we observe that doing so
yields very satisfactory results (the selection= 1.01 results also in good results). In
fact, those in Table 1 are obtained by= 1. Figure 3 depicts the approximated solu-
tionsup (An-, ) anduy (A,+, @) when the data are polluted byl@%-noise . For this
experiment the iterations are stoppechat= 5 and the computed solutions seem reli-
able. Observe that the noise on the Neumann conditions (the solwtida regular at
the boundany' ) is less visible than the one affecting the Dirichlet conditions (the oscil-
lations onup at the boundary’- may be observed). Notice that when the algorithm is
not interrupted by the discrepancy principle, the accuracy of the computations is slightly
improved in a first stage, before blowing-up. We also represent in Figure 4 the curves
of the exact solution, so as the approximated om@J(S\n* , ) on the two components
of I'y, the quadrangular and the circular part. The (local) relative gap between the two
curves is evaluated independently for each component. It equalsfor the quadrangle
(curves to the left in Figure 4) and is a little higher for the circular contbi® (curves
to the right in Figure 4). These may be considered as acceptable results for computations
with data influenced by0%-noise.

The second experiment involved in completing the data where the sotusaffers
from the proximity of a singularity. The domain herefls=| — 0.5,0.5[x]0.05, 1[. The
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Figure 5. The approximated solutions for the nearly singular test, up to the left and ux to
the right.

Figure 6. The solution A and the computed one \,~. The front is smoothed for A,-.

Cauchy boundarf’¢ is the union of the vertical side§-0.5,0.5}x]0.05,1[ and the
upper boundary — 0.5,0.5[x {1}, and the lower side is the incomplete boundBry=
[-0.5,0.5] x {0.05}. The goal is the reconstruction by the preconditioned Richardson
method of the solution

v(z,y) =Vaetr,  r=\atty?

That solution corresponds to the singularity generated by horizontal crack with the tip
located at the origin. That singular point is narrowly clos€ tpthe solution may present

a stiff front at the vicinity of the origin and the reconstruction)ot= ur, is expected

to be harder than for the first test. In Figure 5 and Figure 6 we observe a smoothing
of the computed solution at the middle Bf. The magnitude of the noise % which
corresponds te = 0.3332. Here again we fix to unity for the Discrepancy Principle
stopping rule. The solver require$ = 81 iterations to achieve the convergence. The
relative maximum error for the global solution on the whole computational domain is
0.073 which is pretty satisfactory.
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6. Conclusion

The purpose here is to apply the preconditioned Richardson iterative method to the
variational formulation, introduced in [3], for the Cauchy problem. When the Cauchy
data are not compatible, no solution is available, thus the approximate solution can not
converge. With a suitable choice of the iteration stopping inddepending on the noise
level ¢, we can guarantee the convergence of computed soldfjdoward the exact one
A. We address here the two ways to achieve the parameter selection. An apniai
criterion has been discussed and studied. Afterwardatpesteriorirule of the discrep-
ancy principle of Morozov, based on the Kohn-Vogelius functional, provides a monotonic
method which result in a convergent strategy. As checked out in Section 3, the regulariz-
ing algorithm we obtain is nothing else than a different form of the Kozlov-Maz'ya-Fomin
method (see [8]). The advantages are twofold. It is possible to conduct a numerical anal-
ysis on a standard equation with symmetric and non-negative operator. Similarly, in the
computational ground, users are left to handle symmetric algebraic systems to which they
may apply a solver of their choice (see [14]).
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