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ABSTRACT. The time-dependent Stokes equations are discretized by the original Chorin’s projection method
[5] and Temam[15]. According to an idea of [1], we derive time error estimators for velocity and pressure. In
particular, the velocity estimator is implemented for adaptation on the time step.

RESUME. Les équations de Stokes instationnaires sont discrétisées par la méthode de projection classique
de Chorin [5] et Temam[15]. En se basant sur une idée de [1], nous construisons des estimateurs sur I'erreur
de discrétisation en temps pour la vitesse et la pression. En particulier, I'estimateur associée a la vitesse est
mis en ceuvre pour I'adaptation sur le pas de temps.
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34 N. Kharrat and Z. Mghazli

1. Introduction

Forthe last forty years, a large number of works have been devoted to the analysis of the nu-
merical difficulty related to the incompressibility constraint in the time-dependent Navier-Stokes
equations. The Chorin [5] and Temam [15] scheme, started in the late 1960’s, was introduced to
overcome such a difficulty. However, this scheme, commonly refered as the projection scheme,
suffers from the lack of accuracy on the pressure. The conjecture given by Rannacher [14] and
the numerical experiments realized in [13], show in fact, the existence of boundary layers on the
domain boundary.

In this paper, we are concerned with th@osteriorianalysis of this scheme and we particularly
focus on its time error analysis. Our aim is to provide tools to control the time step size. In this
approach, we study the discretization error of the time-dependent Stokes problem in two or three
dimensionnal bounded domain and for a finite-time interval.

Based on the idea of [1], the methodology that we follow here, is rather similar to [2] for the
backward Euler scheme. Its main drawback consists in uncoupling as far as possible the time
and the space discretization errors. To this end, we use the space variational formulation of the
continuous Stokes problem and that of the two semi-discrete problems defining the projection
scheme, namely the prediction step and the projection step. Furthermore, we consider the time
continuous Galerkin method to approximate the velocity. For the present case, we use two con-
tinuous affine velocities respectively associated to the prediction step and to the projection step.
For the pressure, we consider a piecewise constant approach. It should be noted that the split-
ting feature of the projection method leads to distinguish two residual error estimators. They are
respectively associated to the velocity and the pressure. Furthermore, they depend on the fully
discrete solution and both of them are, local in time and global with respect to the space variables.
For the spatial discretization, we simply use the conforming finite element method.

Then, we prove, up to some terms involving the data and the spatial discretization error, a global
upper bound of the error by the Hilbertian sum of these estimators and also a local lower bound
of the error by each of them. In particular, we notice that the upper estimate on the pressure
estimator is derived independently from the one obtained for the velocity estimator. Moreover,
these estimates are obtained with constants independent of any discretization parameter.
Finally, considering a strategy different from the one presented in [1], we implement a simple
procedure justifying the efficiency of the estimators for time adaptivity. In particular, we will be
concerned only with the velocity estimator.

2. The continuous and semi-discrete problems

Let () bea bounded connected domainksf (d = 2, 3), with a Lipschitz continuous boundary
T". For a given positive redl’, we consider the time-dependent Stokes problem in the primitive
variables

ou—vAu+Vp=f in 0x]0, T,
V-u=0 in x]0,T7, )
u=20 on I'x]0,T],

U‘t:() = g in Q.

The unknowns are the velocity = u(x,t) and the pressurg = p(x,t) of the fluid; the data
are the density of body forcds= f(x,¢) and the initial velocityuy = ug(z). The kinematic

1. for an interesting overview, we refer to [8]

Revue ARIMA, vol. 13 (2010), pp. 33-46



Time error estimators 35

viscosity v is assumed to be a positive constant. For simplicity, we consider a homogeneous
Dirichlet condition.

Preliminaries : Let us denote b8 any separable Banach space &nd] any time interval
included in[0, 7). In the sequel, we denote by (a, b; B), the space of measurable functions
%

b
v from Ja,b[ in B such that||v||;2(45m) = / |v(., s)||3ds < +o0, andC(a, b;B)

the space of continuous functions frdmb| in 6. Fork = 0,1, 2, we use the Sobolev spaces
H*(Q), equipped with their standard norrjis ||, and semi-norms - |;, (the same notation is
used for the vector valued functions). As usudl(Q2) = L?(Q), L3(9) stands for the space
of functions in L?(2) with zero mean value of2 and, H}(2) the subspace of/!(2) with
vanishing traces ofi. We make use of the subspacdd;(div,) = {v € L?(Q)% V.v ¢
L*(Q) with vr-n = 0}, the kernelsV = {v € H}(Q)% V- v =0} andH = {v €
L?(Q)4; V-v = 0 with vir-n = 0}, wheren is the unit normal o’ pointing out of2. We also
consider the operatdPy as the orthogonal projection frofi? (2)¢ ontoH. This operator plays
a key role in the a priori analysis of projection schemes (see for instance [9] and the references
therein).

In particular, if A denotes the Stokes operator [6, Chap. XIX], we hAwe = — Py Av, Vv €

V N H%(Q)?. To simplify the presentation, we set :

X =04 X' =H'Y Y=L*(0)? and M= H'(Q)NLiN).

The problem (1) admits the variational formulation : fiadn Z2(0,7; X) N C%(0,T;Y) andp
in L2(0,T; L2(9)), such that

u(.,0) = ug a.e. in Q, 2
and that, for a.et €]0, 7] and for all(v,q) € X x L3(f),

(Opa,v) + v(Vu,Vv) — (p,V - v) = (f,v),
{ ~(V-u,q) =0. @)

Moreover, for anyt in ]0,7] and for allv in L2(0,¢; X) N C°(0,¢Y), it is useful to define

t 1/2

the energy normiv](t) = ( ||v(.,1)||3 + 1// |v(.,s)|§ds) . Then, we recall the following
0

stability result [2, Prop. 2.1] :

Proposition 1. For any data(uy, f) in H x L?(0,T; X'), problem (2)-(3) has a unique solution
(u, p), which satisfies for alt in 0, 77,

1
2

() < (v 12 0. + Huoll3)

Moreover, this solution is such th&u + Vp belongs toL?(0,T; X') and satisfies for alt in
10,71,

1
14 2
|90+ Fpllzz 00y < 2 (16130, + 5 Iuoll3)

Forthe sequel, we assume the détg, f) belong toH x C°(0, T; X”). Finally, for all (v, w)
in Y2 and(a, b) in R?, we make use of the following properties :

2v,v—w) = [IVI[g = Iwl§ + [Iv - wl, (4)

200 < aa®+b*/a (Ya>0). (5)
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36 N. Kharrat and Z. Mghazli

The projection scheme Let N be a given integer and = tg < t; < ... < ty =T
a partition of the interval0, T'] with step sizes,, = t, — t,—1. We denote by, the N-uple
(t1,...,7v) and we SeFT|=1£na<XN T,,. Moreover, we assume that partition is regular in the sense
n

of [3, Def. 1.2, Chap. VIII], i.e, there exists a constant- 1, such that

max <o. (6)
2<n<N Tp_1
Then,for eachn, 0 < n < N, such thatn® = u(.,0), the projection scheme uncouples every
iteration step, in two substeps.
At the first step, givem” !, we seek for a provisional veloci#”, such that :

" — un—l )
—— —vAu"=1f" in Q,

T e (7)
u" =0 on T,

wheref” denotes an approximation to the distributin ¢,,). In the second step, we look for a
divergence-free velocity™ and a pressur@”, satisfying the equations :

n "

W~ ver—0 in Q

Tn
Vou' =0 in Q, ®)
u-n=0 on T.

The step (7) is nothing more than an approximation of the viscous part of the Stokes equations,
while the step (8) is associated to the incompressibility constraint. The algorithm (7)-(8) admits
the following variational formulation :

Find (™)1 <p<n in XY and(u?, (u™, ®")1<,<n) in H x Ho(div, Q)" x L3(2)", such that

w =u(0) ae in Q 9)
and that, for every,, 1 < n < N, and for all(w, v, q) in X x Hy(div, ) x L(Q),

(@", w) + v, (Va", Vw) = (0", w) + 7, (f", w), (10)

{ (u",v) = 7 (V- v, @") = (&, v), (12)

The latter step has also the following mixed formulation :
Find (u’, (u™, ®")1<,<n) in H x HY x MY, such that for every,, 1 < n < N, and for all
(v,q)inY x M,

{ (uh, V) + Tn(v7 vq)n) = (ﬁn’ V), (12)

(u",Vq) = 0.

In particular, (11) is equivalent to a Poisson-Neumann problem with a unknown pressure given
by :

AP" = —V-a" in Q Vo"-n=0 on T, (13)

andu” is given by

u" =1u" - 7,Vor. (14)

Revue ARIMA, vol. 13 (2010), pp. 33-46



Time error estimators 37

In this case®™ must satisfy a homogeneous Neumann conditiof owhich is not necessarily
satisfied by the exact pressure. In practice, such a condition often generates boundary layers on
T" that exponentially decay in the interior 6 Indeed, it is conjectured in [13, 14], that the
L2-pressure error is first order in time, for all subdomains strictly include. ikvith standard
arguments, we also prove the following stability result :

Proposition 2. There exists a unique solutig@”, u™, ®");<,<n of problems (10) and (11) or
(12), such that for alin, 1 < m < N, the following estimates hold :

m m m
Q™5+ D @™ f+ > & =+ Y ot —ut g
n=1 n=1

n=1

m (15)
Tn i en
§||u0||8+27\\f -
n=1

2

2 m U
) s2<ZTn|f"||%«+2||uo||3> . a9
n=1

2

X/

3. The upper and the lower bounds of the error

In this section, we introduce two distinct families of time error estimators, defined at each time
step as a function of the predicted velocity and of the pressure respectively. We dehaote(py

the mesh size associated to the finite element method and we der@g, mf, ®7)1<n<n, the

numerical solution obtained by the spatial discretization of the projection algorithm. In addition,

with any sequencé)™)o<,<n Of a given Hilbert space, we associate the functjioron [0, T

which is piecewise affine and continuous on the time interf¢als;, t,,], 1 < n < N, defined

by : ¢ (t) = ™ — Le=t(ym — 1), for t € [t,_1,t,]). Finally, we introduce the operatar.

such that, for any fun"ctiomz continuous fronj0, 7] into any Banach space, > denotes the step

function which is constant and equalddt,, ) on each intervalt,,_1,%,],1 < n < N. In order

to derive the gosteriorierror estimates, we need some regularityband the datduy, ).

(R) ForanydatginY, the Stokes problemAw = g on(2, w = 0 onTI, has a unique solution
win VN H2(Q)?, which satisfiedw||> < C(Q)||Aw]|o, whereC(9) is a constant which
depends o.

(D) uo € Vandf € L?(0,7;Y) N C%(0,T; X").

In this case (cf. [16]), the problem (1) has a unique solution, such that :

u e L*0,T; H*(Q)4) nc’(0,T; V), dyu € L*(0,T;H) andp € L*(0,T; M). (17)
Besides, we notice from (9), (10) and (12) that :
u-(0)=uy a.e. in Q, (18)
and that, forl <n < N, forallt €]¢,—1,t,], forall (w,v,q) € X xY x M,
00y, w) + (Vi Vw) — (V- w,®") = (", w) - v(V(&" — &), Vw),  (19)
and from (11),

{ (u; —4,,v) +7,(v,VO:) =0,

(uTa VQ) =0, (20)
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38 N. Kharrat and Z. Mghazli

where,®* denotes the function :

(1) = Ilgnt 4 LIt gn _ Tnol gt
Tn Tn Tn

We notice that®* defines an affine function associated wi#i*),<,, <, but which is discon-
tinuous att,,_1, for1 < n < N, since for allt €]t,,—1, t,.],

tn — t(l _ Tn,1)¢7L_1
Tn Tn ’

(B, — B2)(1) =
We also derive from (12), for all €]¢,,_1, ¢,] and for allv in Y, the important relation :
By, v) + (v, V") = (9iiy, v) + (v, L v@m ), (21)

Tn

Then,by combining (2)-(3) with (18)-(19)-(20) and (21), we deduce that

(u—1,,u—u,;,p—mo,)satisfiefu —u,)(0)=0 ae. in Q,
and that, forl <n < N, fora.e.t €]t,,_1,t,]) and for all(w,v,q) € X x Y x M,

O(u—u),w)+v(Viu—1u,),Vw) — (p — 7, ®,,V - w)

f —m.f,w) +v(V@" —1a,), Vw), 22)

{ (0= 1ir,v) + 7 (v, V&) = (u - u,,v), (23)

(u - uT7 VQ) = 07
and moreover,

<8t(u - u.,.),V>—(V VvV, p— 7T'7'(1)7'):<8t(u - ﬁT),V>—(V VvV, p— %‘bn_l)' (24)
For eachn, 1 < n < N, we define the error estimators by

1
~ ™\ 2 |~n ~n— n n—
Go= (v3) I =8 G @ = a7 (25)

andtheir Hilbertian sum by,

1
2

m=1 m=1

For convenience, we considét = a" — aj, e” = u” — u} ands”™ = ®" — ¢} By following

a similar strategy to that of [2] (see also [1] for the heat equation), we prove in the result below, a
global upper bound of the error by the quantities (26) and, a local upper bound by the estimators
(25).

Theorem 1. Assume the condition®) and (D) are satisfied. Then, for each € [1,N],
there exists),, € [0, ;[ such that, for any(u1, u2) €0, 1]%, we have the following a posteriori
estimate of the error between the solutiof the problem (1) and the functiof@., u,, 7, ®.)

Revue ARIMA, vol. 13 (2010), pp. 33-46



Time error estimators 39

associated with the solutiofu®, (4", u", ®");<,<x) of the projection scheme (7)-(8), given
by :

1

m 2

<E12“,(tm) + Z Z Eg(tnvlleMQ))

n=1
+(20) 7 H 00w = ur) + V(p = 7@ 12 0,057
<2v6 (G 492 )” (27)
243118 = 7ot 2(00,00x) + (V24 VBT ECon (£, w0)
m
+4 (Z {V7n|é” —&" 2 4 %|Tne" — Tn_la"_lﬁ}) ,

n=1

N

whee, we denoted by :

1
2

tm 1
Eur(tm) = {|u(tm) —u™|2+ 1// lu — a,2dt + 5[u — ﬁ7]2(tm)} ,
0

tn
Ep(tnvlf['h//LZ) = {Tn/
t

n—1

2
Tn— n—
(=l = =201 4 (= )l = w0 ) dt} G () =

Tn —1 -1
(OO T 1,y H 208 0., 00 ) andy = § (B2 — 14 55,0

n=1

Then,for eachn, 1 < n < N, {, and(,, satisfy the following a posteriori estimates

P 1
G <v7 2 ”at(u - u‘r) =+ V(p - 71-7—(1)7—)|‘L2(tn—1)tn;xl)

+V% lu— ﬁTHLZ(tn—lytn;X) + vo2 If — 7r'rfllHLQ(tnq,tn;X/) (28)
+ (V‘%)i ‘én _ én_1|1~
V3 1 L
5 Sn < — n " — n— " E tn,0,0 . 29
2C_\/§|T8 Tn—1€"" |1 + Ep( ) (29)

Proof. By takingw andv equal tou — @, respectively in (22) and (24), and combining them,
we get:
]. d ~ 2 ~ 12 ~ Tn—1 n—1
st~ Orllo Friu =0y = (V- (u =), p = ——2")
(f —mf,bu—10,) +v(V@" - 4,),V(u—1a,)).
Next, from (23) forallg in M andv = V¢, we have
(v : (ll - ﬁ.-,—), q) = —(11 - ﬁ-‘ﬁ VQ) = _(u — Ur, VC]) - Tn(v(ij V(J) = Tn(vq):7 VQ)v

whence

l1d ~ 12 ~ 12 * Tn—1zn—1\y _
§£|Iu*urllo+V|ufur|1*Tn(V@T,V(pfﬁfﬁ ) =
f—mfiu—10,)+v(V@" —-1a,),Viu-—1a,)).

Also, by insertingr. ®.., we obtain

Sl = @[3+ v — @ — 7 (VO V(p — 7, D,)) =

f—mfiu—1u,) +v(V@E" -1a,),Vu-1i,))+ (Ve V(r,®" — 7,10 1)).
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40 N. Kharrat and Z. Mghazli

By applying (4) and observing moreover that

t—t
(VO V(1,®@" — 7, 10" 1)) = n

|7_n¢,n - Tn—lq)n_l ﬁ

Tn 2 Tn—1 zn—1,2 n Tn 1 xn—12
Lo — | 2o 2 4o — 2l
(8 - |t en 4 fon - T2tan 1),

n n

we successively deduce

1d - -
ol = G+ vlu - .
+3 (2" R = plf + p— 0TI = (30)
(= mfu—i,) +v(VE" —@,),V(a—i,))
_i_t*f—:—l (V(an)n _ 7_7171(I,n—1)7 V(p _ 77‘:1 q)n—l))’
and
1d T/ Tn—=1 o p—
g0 Gl viu = Geff 4+ == = pf + p - o) =

(f—mf,u—10,)+v(V@ar —uT),V(u—ﬁT)) (31)
V(7 ®" — 7 @), V(p — 7))
H(52 4 )@ — T @7

Besideswe note also, for ath, 1 < n < N and for allt € [t,_1,t,], that

tn
y/ \ﬁ"—ﬁTﬁdt:u%"m” L (32)
tn—1

By integrating (30) betweeh, ; andt,,, then from (32), the Cauchy-Schwarz inequality and (5),
for a given reals; in |0, 1], we derive

t’Vl
fu(ta) = &3 ulta-) — & E 4 [ a e

tn—1

tn
-
H|Tpo1 9" 1‘24‘(1—#1)%/ lp — :L_ el pn- 1\2dt
th—1

n— n

2 [
gf/ |f — 7 f||% dt + 2v —| —a 2
14

tn—1

tn
-1
—I—”g |7, ®" — 7,1 @ HZ + Tn/ p|3dt.
tn—1

Similarly, considering also (31), we obtain identical estimate, for a givenugai 10, 1], while
replacing the errop — T’;—T@”*l by p — 7, ®,. Consequently, by adding up these estimates, we
get

I\U(tn)*~t”|\3*HU(tn—l) QG+ | @

n - 1
b [ ju ot + JE b, )

tn—l . (33)
-

§2u% 1#1 ‘H’«z |7_ (I)n—Tfl(Pn 1|2

R+

n tn
+%/ ||f—7rTf||X,dt+Tn/ p|2dt.
t

n—1 tn—1
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From other part, it can be observed from (12) that fonadl [1, N], the following holds :
[TV 3 = 70 (@" — ", VO") = [[&" — u"|3
and also that
172V 3 = [u(ts) — @"[§ — [u(ts) — u"|3. (34)
In this case, (33) becomes
Ja(tn) — u:ll% = [lu(ta—1) —u" "G + [ @77
+”/t ' lu—1, Pdt+ %Eg(tn,ul,m)

o alem  wme1jz o 1ai g’ 1)2 (35)
< 21/%"|u" —a" 5+ 5%?}%@” — Tp_1 P77

n tn
42 [ It mtlodin, [ e
tn—1 tn—1
In particular, we observe that

3‘771(1)71‘% - |an>n - Tn—l(I)Thl % = {‘an)nﬁ - |Tn—1¢n71|%}
H{|Tn®" + T 1 @ — |7 @R
Thus, settingr,,, = Z{\Tnén + T 1 @2 — |71 @™ 12}, we obtain, after summing with
n=1
respect to, the inequality

tm
||u<tm>fum||3+u/0 O L O R S ZE b i1, r2)

m

- o 1 + _ .

SQVZ%U”—U” 1‘%+§(u_ Z|7'n = Tp—19" ! ? which by
n=1

2 tm tn
+;/ I — 7o f2dt + Zrn/ ip|2dt.
0 n=1 tn—1

taking into account (34), yields

2 1 _ twn _
) w3+ glu(t,) ~ &1+ [

m

% Z naﬂlvuﬂ

n=t Ut In ad-
< 2”2 —u" ! % + 3(72 Z |Tn - Tn—lq)nilﬁ

2 tm m
+;/ If — 7 £ % dt + Zrn/ |p|3dt.
0
dition, we first notice that
_ _ 1
|70 @™ + 71 O™ 1|§ — |Tp—1®" 1|? =Qn— Z|Tn — Ty L2 T

wherewe denote by),, = 2|7, ®" (2 + |7,,_1®" 1| — 2|7,,®" — 7,1 @" ! [3. In particular, we
also remark tha®,, = % (|7,@"(2 — |7,—1®" " 1[3) + 3|7,,®" + 7,,_1 ®"~1|3. Consequentlyif
R,,, < 0 then there exists,, in ]0, 1| suchthat

D 2@+ [ @ = (1= 8) 70" — 1 @MY = 0.

n=1
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42 N. Kharrat and Z. Mghazli

Hence,R,, = —0,n, Z |7 ®" — 7,_1®" 7|2, by settings,, = (% —1+6m)

n=1
andusing the triangular inequality while inserting (25) then noting (26), we derive

2 . b
3 (It =B v [ )

_ 1<
+ [u — UT]Q(tm) + § Z EZ(tnuul?u'Q)
n=1

W =

(36)
{2ur, 8" — &" 12 + Bn|Tne" — 116" 3}

NE

<+3

n=1

tm m tn
22EL, + Bru) + 2 / I — 2 dt+ 3 7 / ipl2dt.
n=1

tn—1

Furthermore, whem?,,, > 0, this inequality is also satisfied witf),, = 0. Next, in order to
estimate the last term in (36), we deduce from the first equation of (1), and (17), that for almost
anyt €]0, T}, we havelp|; < [[£]lo + | drullo + v[ull..

Then, by applying the operatéy to the same equation, we obtaiu + vAu = Pgf.
Consequently, from the conditiofR) and the continuity of the operatdry, we then have
vlullz < C(Q){10ullo + [1£]lo}. Whence

m m

tn
S [ bRt <2004 COP Y rullEla, i + 100l i)
n=1 tn—1

n=1

Now, using the classical Faedo Galerkin method (we refer to [6, Chap.XIX, Prop.2] for a similar
proof), we derive at each tinig,, foranym, 1 < m < N, the a priori estimatﬁatuHLz(O’tmy) <
Vv|wolt + [If][22(0,,.;v) @nd therefore

m tn m
> Tn/ Iplidt < 2(1+C(Q))? { > TallElZ20 vy + 27 IUENZ 20,0079
n=1 tn—1

n=1

+vlugl?)} .
Now, we prove a similar upper bound for the error functthfu — u,) + V(p — 7. ®,) in the
norm of X’. In fact, if we observe that

10 (u — u,) + V(p — 7@, )| x = sup (Or(u—ur),w)—(p—m P, V-w)

weX |W|1 ’

andusing equation (22), we get for anyet,,_1, ],

I 0w —u,) + V(p— 7,8, |lxs S v I — mof| x + v u— gy 4 vI A" — ).

Taking the square of this inequality, then integrating betwgen andt,,, from (32) and using
the same arguments to establish (36), we derive

(20)72 0w = ur) + V(p = 780 | L2(0,00:x7)

- 1
< (v[u- u‘r”QL?(o,tm;X) + ;”f - 7TTf||2L2(0,tm;X’)

m N 2 m
23 G 23 e a1
n=1 n=1

Nl=
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Foruy = ue = 1, the second term in the right-hand side of the previous inequality is bounded in
(36), and this leads to

(20) 72 0w = ur) + V(p = 1 @) | 12(0,100:x7)
1

< (6512717' + 26m<72n‘r)§ + \/%Hf - 7T‘I'fHL2(0,1‘/,,L;X’) + |27—|%C’m(f7 uO)

1

m 2

(S et - e )
n=1

Finally, we conclude the proof of (27) by combining (36) with (37). Conversely, thanks to trian-
gular inequality, we have

(37)

1

p Tn ~n ~n— ~n ~n—
G (vi) (=t far — ). (38)

To bound the last term, we take fisstequal tou™ — u. in (22), next we integrate betweeén
andt,,, then from (32) we deduce
(VT")z [a" —a"~ 1|1 <v- 3 [0:(u —ur) + V(p— WT@T)“LQ(tn—lvtn;Xl)

AvE | u— Tl 2, a0 + V2 I = T f| L2,y ix-
So,inserting this estimate in (38), we get (28). Similarly, we note that

= f(‘Tn Tnflgn_lh"‘|Tn®n_7—n71q)n_1|l)~
Takingthe square of this inequality, we deduce
2 2 n n—12 b n Tn—1 zn—1,2
(o < §(|Tn€ — Th_1€ T+ T |®" — — D 1dt). (39)
tn—1 Tn
This concludes, the proof of the Theorem. O

The local lower bound of the error (28), is similar to [2, Proposit8]. In particular, (29)
concerns the incompressibility part of the Stokes equations while (28) rely on its evolution or
diffusive part and is derived independently thereof.

Next, taking the square of (28), multiplying then (39) pynd summing on the, and noting

t
m 2
thatu/ lu—a,|2dt < ZE2_(t,,), weget
0

3

(gmr + ,YCW”LT) = <E2 ( ) + (2V)_1H8t(u - uT) + V(p - 7-‘-7'(1)7')||%f’-’(0,tm;X’)

e _
+5 > E}(tn,0, 0)) + v = fl 32 0.0 x)

1 _ _ _
+§Z{I/Tn|e"—e" 1%+%|Tn£”—7n,15" 1|%}

n=1

Consequentlyprovided that the regularity parameteis bounded independently af then for
p1 andps satisfying3 (1 — py) = 1 = 2(1 — py), the full error

1

3 m 2 i .
{Eir(tm) + 1 ZE?z(tn»/‘17ﬂ2)} + (2v)72[|0i(u — ur) + V(p - 71'7'CI)7')||L2(O,tm:,X/) IS
n=1
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equivalent to the Hilbertian sugg?,, +v¢2,,)2 upto some terms involving the datay, f) and

2

m
the spatial erro(Z{vmlé" —&" M + %mgn _ Tn—lanlﬁ}) _

n=1

In this case, we observe that(=1:,) is solution of18u% — (19 — 24,,)  + 1 = 0 which admits
two solutions in0, 1]. So, selectingi; = <19 — 20 + \/(19 — gém)2 — 72), we notice

that ford,, € [0, %[, theny, (6,,,) €]0.97545,1]. In particular, we observe that for (0) = 1
the full errorE,, (t,,) + (2v)~2||8,(u — u,) + V(p — T @) || L2(0,4,.:x7) IS €Quivalent to the
quantity,,,» up to some terms involving the data and the spatial error. Which situation is similar

to the case of the Euler scheme (see [2, §3]).

4. Adaptive algorithm : Time step size control

In the following, we introduce a simple procedure allowing to control the time step size, based
on the local lower bound (28) For this, for eachn, 1 < n < N, we introduce the local norm

1 1
tn 2 L tn 2
A, = <u/ |ﬁh7|fdt> +v2 </ ||3tuhT+TnV<I>Z§(,dt> .
t tn—1

n—1

Thenegative norm in the last term &f,, is approximated byjv||; wherev is the solution of the
Laplace equation-Av = d;uy, + 7, VO with homogeneous Dirichlet boundary conditions
at each iteratioA. Next, we denote byol the prescribed tolerance in order to bound the error.
Then, for a given parametérin ]0, 1[, and for eachn, 1 < n < N, we assume the condition

ftol < j—: < tol is satisfied. So, for a fixed, an initial guess and for a fixed value of (6),
we adopt the following procedure :

whilet,, < T
o =Tn_1; tn = tu_1+ Tn; SOIVe (7)-(8); compute, andA,;
if tol< fT T = tol%m endif:

,? ,o)7, endif;

Sn

if $= < 6tol 7, = min(6tol

end while

A simple test case : the Poiseuille flow. We assume thak) =|0,L[x] — H,+H| is a
rectangular tube, triangulated by a uniform mesh, made of isosceles rectangular triangles with
diameterh. We consider the Taylor-Hood element, which uses the polynomial functions of a
degree 2 and 1 to approximate respectively the velocity and the pressure. The flow is generated
by prescribing a parabolic and horizontal profile of the velocitf{@px| — H, + H|. We assume
that, the exact solution is given by :

(w;p) = a®)((H —y)(H +y),0; —2v(z — L)),

with au(t) = (146 (t)+cos(rmt)) =t —(2+6(t))~*; for afixede in]0, 1], 7 in N*, and forT" = &,
de = € X {X[0,2] + 0.6 X x[2 1] + 0.8 X x[2 71} Herex(, ) defines the characteristic function

2. we also refer to [12] for similar idea and different context
3. we refer to [4, 17] for similar situations
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associated with any time intervalla, b]. In this case, the exact solution reaches its maximal values
atthe timed} in [0, T with £ odd integer. For the numerical test, we take= 0.15, H = 0.015,

v =107%,¢=0.25,r=16,h = V54, t0l=7.5x10°°, 71=1.2x10°%, =1.5 andh¥=0.5.

Now, for eachn, 1 < n < N, we reported the time stepg (Fig.1-(a)) and the global error

[u — a,,](t,) (Fig.1-(b)), obtained with an adapted and a constant time step. In particular, the
constant step corresponds to the average of the variable steps and equal to‘9.8d$ides,

we noticed identical CPU time for both cases. Clearly, we first observe that, the sequence of time

xTol

12 4 o.02s

1r 0.02 -

=]

o8 - o.015 |

0.6

4 owo1 |

0.4 - 4 o.00s |

0.2 o
o 0.05 0.1 0.15 25 0.3 0.35 o1 oz o3

@ (b)

Figure 1. Behaviour of (a) 7, and (b) [u — Q-] (tn).

stepsr,, reaches its minimum at the peaks level, where the éorer uy.](t,) is maximal. In
addition, when time is advancing, the error obtained with the adaptive steps becomes increasingly
reduced. The computations are carried out on PC Toshiba (A100-088) intel core-duo (1 GB of
RAM) and by using the finite element code Freefem++, see [10].

5. Conclusion and perspectives

In this work, we presented posteriorianalysis of the original Chorin-Temam scheme by a
residual approach. We assumed, the time and the spatial discretization errors are independent.
In order to control the time step size, we set up a simple algorithm proving the efficiency of the
time error estimators. In particular, only the estimator associated with the velocity seeked at the
prediction step is used for the time adaptation. Moreover, we assume that the spatial discretiza-
tion error and some other terms involving the data are not considered in the present algorithm.
Besides, the present analysis can be extended to other higher order projection $cheozes
be easily developed in the framework of any spatial discretization method viz., the finite volumes
or spectral elements. In addition, using a residual approach with a conforming finite-element
method, the first analysis given in [11], introduces another family of estimators associated with
the spatial discretization error. In practice, they are well adapted for mesh adaptivity. In the
same way, they can be also combined with time adaptivity in one single procedure. This will be
addressed in a forthcoming paper.
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