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RÉSUMÉ. Haddar and Kress [9] ont étendu l’utilisation de la méthode des applications conformes
[2, 8] pour construire le bord intérieur Γi d’un domaine doublement connexe à partir de données de
Cauchy sur le bord extérieur d’une fonction harmonique qui satisfait une condition homogène d’impé-
dance sur Γi. Cependant, l’analyse de la méthode montre la non-convergence de l’algorithme pro-
posé dans [9] dans le cas des faibles impédances. Dans ce travail, nous proposons des modifications
de cet algorithme afin d’obtenir un schéma d’inversion convergent et stable dans ce cas. La mé-
thode est ensuite validée par des exemples numériques qui incluent également le cas d’impédances
variables.

ABSTRACT. Haddar and Kress [9] extended the use of the conformal mapping approach [2, 8] to
reconstruct the internal boundary curve Γi of a doubly connected domain from the Cauchy data on the
external boundary of a harmonic function satisfying a homogeneous impedance boundary condition
on Γi. However, the analysis of this scheme indicates non convergence of the proposed algorithm
for small values of the impedance. In this paper, we modify the algorithm proposed in [9] in order to
obtain a convergent and stable inversion process for small impedances. We illustrate the performance
of the method through some numerical examples that also include the cases of variable impedances.
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1. Introduction

We are interested in an inverse problem for harmonic functions that arises in the ma-
thematical modeling of electrostatic or thermal imaging methods. As examples of applica-
tions we can mention the detection of faults in metal plates via applying electric currents
[3, 4], the monitoring of lung patients [7] or also the evaluation of wood quality both via
electrical impedance tomography in long cylindrical objects [17]. In these applications,
an unknown inclusion within a conducting host mediumD with constant conductivity is
assessed from overdetermined Cauchy data on the accessible part of the boundaryΓe of
the medium. We shall consider the cases where the effect of the inclusion on imposed
currents can be modeled by an impedance boundary condition that has be to satisfied on
its boundaryΓi. This model can be viewed for instance as an approximation of the trans-
mission problem in the asymptotic regimes : inclusion with a very high or a very small
conductivity.
In a series of papers, a simple and fast numerical scheme was developed to reconstruct
a perfectly conducting inclusion [2, 14] or a nonconducting inclusion [8], governed by a
homogeneous Dirichlet or Neumann boundary condition on the boundaryΓi of the inclu-
sion. The approach is based on a conformal mappingΨ : B → D that takes an annulusB
bounded by two concentric circles ontoD. In the first step, in terms of the given Cauchy
data onΓe, by successive approximations one has to solve a non-local and nonlinear or-
dinary differential equation for the boundary valuesΨ|C1

of this mapping on the exterior
boundary circle ofB. Then in the second step, a Cauchy problem for the holomorphic
functionΨ in B has to be solved via a regularized Laurent expansion to obtain the unk-
nown boundaryΓi = Ψ(Cρ) as the image of the interior boundary circleCρ.
The application of the conformal mapping method to the inverse impedance problem was
first analyzed in [9]. Since the homogeneous impedance condition onΓi transforms into
an impedance condition onCρ that contains the trace of the derivative of the conformal
mapΨ onCρ, the method does not completely separate the two steps indicated above. The
analysis of the proposed algorithm indicated the convergence for large impedances (i.e.
when the impedance boundary condition is close to a Dirichlet boundary condition). Ho-
wever, as expected from known results on the Neumann problem, (and as numerically ob-
served) the algorithm does not converge in the opposite regime, i.e. for small impedances.
This paper is devoted to addressing this issue using similar ideas as in the treatment of
the Neumann problem, namely by deriving the nonlinear equation of step 1) associated
with the conjugate harmonic function. The impedance condition is transformed into a ge-
neralized impedance condition (where second order tangential derivative is involved) and
therefore the subsequent analysis requires a special care. The analysis of the algorithm
indicates convergence for sufficiently small impedances. This is confirmed numerically
even in the case of variable impedances. As we shall point out theoretically, the values of
the impedances for which convergence occurs depends on the size of the inclusion. This
is also true in the case of [9]. For other work using conformal mapping ideas in the study
of inverse problems for the Laplace equation we refer to [1, 5, 6, 12, 11]. Concerning
the recovery of obstacles with impedance boundary conditions we also refer to [15, 16]
where a Newton like method based on the use of appropriate integral representation of
the solution is used. Compared to our method, this technique is indeed more general and
allows one to seek both the impedance and the geometry of the obstacle. However, no
convergence proof is available for this technique and as opposed to our algorithm, close
enough initialization is required to ensure convergence.
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The paper is organized as follows. We introduce in Section 2 the inverse impedance
problem and recall the general ideas of the conformal mapping method and the recons-
truction process proposed in [9]. In section 3, we describe the modified algorithm for
small values of the impedance. The convergence of the proposed algorithm is discussed
in Section 4. Finally, we conclude in section 5 with some numerical implementations to
valid our approach both for a constant and variable impedances.

2. The inverse problem and the conformal mapping method

LetD be a doubly connected bounded domain inR
2 with a smooth boundary∂D that

consists of two disjoint closed Jordan curvesΓi andΓd, that is∂D = Γi ∪ Γe with
Γi ∩ Γe = ∅ such thatΓi is contained in the interior ofΓe. By ν we denote the outward
unit normal toΓe. For a given functionf ∈ H1/2(Γe) and a positive constantλ we
consider the impedance problem for the Laplace equation

∆u = 0 in D, [1]

with boundary conditions
∂u

∂ν
− λu = 0 on Γi, [2]

and
u = f on Γe. [3]

Note that the positivity ofλ ensures existence and uniqueness of a solutionu ∈ H1(D).
The inverse problem we are interested in, is to determine the shape of the interior

boundary curveΓi from one or many pairs of Cauchy data

(f, g) =

(

u,
∂u

∂ν

)∣

∣

∣

∣

Γe

, [4]

assuming that the impedance is known a priori. We shall use for that purpose the confor-
mal mapping method introduced in [2, 8]. We shall first describe the principle of this
method and the setting used in [9] to solve the case of large values ofλ.

Principle of the conformal mapping method : Let B := {z ∈ C : ρ < |z| < 1}
denotes the annulus bounded by the two circlesCρ := {z ∈ C : |z| = ρ} andC1 :=
{z ∈ C : |z| = 1}. SinceD is a doubly connected domain, then by using the conformal
mapping theorem (see [11]), there exists a uniquely determined radiusρ and a bijective
holomorphic functionΨ : B → D that conformally mapsB ontoD such that the
boundariesCρ andC1 are mapped ontoΓi andΓe, respectively. Denoting byL1 the
length ofΓe, and letγ : [0, L1] → Γe be a parametrization ofΓe in terms of the arc
length. The mappingΨ is uniquely characterized by prescribingΨ(1) = γ(0).
The inversion algorithm is based on the determination ofρ andΨ. To this end, we intro-
duce the two functions :χ : [0, 2π] → C andϕ : [0, 2π] → [0, L1] defined by

χ(t) := Ψ(ρeit) and ϕ(t) := γ−1(Ψ(eit)). [5]

The functionχ is injective and parametrizes the interior boundary curveΓi. The function
ϕ is strictly monotonically increasing and bijective, and roughly speaking it describes how
Ψ maps arc length onC1 onto arc length onΓe. Obviously, determining the mapχ solves
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the inverse problem. The main idea behind setting up the conformal mapping method is
the derivation of a non linear differential equation satisfied by the boundary mapϕ. This
equation is then solved iteratively to determineϕ then obtainχ.
Iterative operator for large impedances (see [9]) : The derivation of the non linear
differential equation used in [9] for large impedances is done as follows. We associate
the impedance problem (1)-(3) inD with an impedance problem posed in the annulusB.
More precisely, ifu solves the impedance problem (1)-(3) thenv := u ◦Ψ is a harmonic
function

∆v = 0 in B [6]

satisfying the boundary conditions

∂v

∂r
(ρeit)− µρ,Ψ(ρe

it)v(ρeit) = 0, 0 ≤ t ≤ 2π, [7]

and
v = f ◦Ψ on C1, [8]

where

µρ,Ψ(ρe
it) :=

λ

ρ

∣

∣

∣

∣

d

dt
Ψ(ρeit)

∣

∣

∣

∣

=
λ

ρ
|χ′(t)|, 0 ≤ t ≤ 2π. [9]

Denote byAρ,µ : H1/2(C1) → H−1/2(C1) the Dirichlet-to-Neumann operator for the
impedance problem (6)-(8). It maps functionsf ◦Ψ ∈ H1/2(C1) onto the normal deriva-
tive ∂v/∂ν onC1 of the solution of (6)-(8).
Using the Cauchy-Riemann equations, we get the following non-local differential equa-
tion

∂ϕ

∂t
=
Aρ,µ(f ◦ γ ◦ ϕ)

g ◦ γ ◦ ϕ
[10]

for the boundary mappingϕ which has to be complemented by the boundary conditions

ϕ(0) = 0 and ϕ(2π) = L1. [11]

In order to rewrite (10)-(11) as a fixed point equation we introduce the affine operatorV :

(V ψ)(t) =
L1

2π
t+ ψ(t), t ∈ [0, 2π]. [12]

Then, for a pair of Cauchy data(f, g), after setting

Uρ,µψ :=
Aρ,µ(f ◦ γ ◦ V ψ)

g ◦ γ ◦ V ψ
,

we define an operatorTρ,µ : H1
0 [0, 2π] → H1

0 [0, 2π] by

(Tρ,µψ)(t) :=

∫ t

0

[

(Uρ,µψ)(τ)−
1

2π

∫ 2π

0

(Uρ,µψ)(θ) dθ

]

dτ, t ∈ [0, 2π]. [13]

Finally, if ϕ ∈ H1[0, 2π] is a solution of (10)-(11) thenψ = V −1ϕ ∈ H1
0 [0, 2π] is a fixed

point ofTρ,µ.
The scheme proposed in [9] is mainly based on solving the fix point equationTρ,µψ =

ψ using successive approximations. However, in order to completely describe the scheme
and obtain a convergent one we omitted three steps 1) stabilization of the division byg in
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(10) by combining the use of two Cauchy data 2) derivation of an equation for the radius
3) regularization of the mappingϕ→ χ. One obtains a convergent algorithm for large im-
pedances mainly because, asλ → ∞ the operatorAρ,µ ”converges” to the DtN operator
associated with a homogeneous Dirichlet boundary condition on the interior circle. One
can also show that the algorithm is non convergent for sufficiently small impedances since
in that caseAρ,µ is close to the DtN map associated with a homogeneous Neumann boun-
dary condition on the interior circle. To obtain a convergent scheme in the latter cases, we
shall modify the right hand side of (10) using a DtN map associated with the conjugate
harmonic. Asλ→ 0 this operator has a similar behavior asAρ,µ whenλ→ ∞.

3. The new scheme for small impedances

If u is a harmonic function inD with Cauchy data(f, g) onΓe satisfying the impe-
dance condition (3) then from the Cauchy-Riemann equations it follows that a conjugate
harmonicũ of u satisfies

∆ũ = 0 in D [14]

with the ”generalized” impedance condition

∂ũ

∂ν
+

1

λ

∂2ũ

∂s2
= 0 on Γi [15]

and the Cauchy data

∂ũ

∂s
= g on Γe, [16]

∂ũ

∂ν
= −

∂f

∂s
on Γe. [17]

We observe in particular, from integrating (16) overΓe, that the existence of single valued
conjugate harmonic functioñu is subjected to the condition

∫

Γe

g ds = 0. [18]

Let us assume for the moment that this condition is verified and letũ be the (unique)
solution to (14)-(16). Thẽv := ũ ◦Ψ satisfies

∆ṽ = 0 in B [19]

with the following generalized impedance boundary condition onCρ

∂ṽ

∂r
(ρeit) +

1

ρ2
∂

∂t

(

µ̃(t)
∂

∂t
ṽ(ρeit)

)

= 0 t ∈ [0, 2π] [20]

and the Dirichlet boundary condition onC1

ṽ(eit) = F̃ (eit) t ∈ [0, 2π], [21]

where we have set :

µ̃(t) :=
ρ

λ |χ′(t)|
and F̃ (eit) := f̃ ◦ ϕ(t), t ∈ [0, 2π], [22]
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with f̃ denoting the function defined with respect to the arc length onΓe by

f̃(s) =

∫ s

0

g ◦ γ(t) dt, s ∈ [0, L1]. [23]

Let Ãρ,µ̃ : H1/2(C1) → H−1/2(C1) be the Dirichlet-Neumann operator :F̃ 7→ ∂ṽ/∂r|C1
,

associated to the impedance problem (19)-(21). Similarly to above, using the Cauchy-
Riemann equations, one get the following non-local differential equation

∂ϕ

∂t
=
Ãρ,µ̃(f̃ ◦ ϕ)

g̃ ◦ ϕ
[24]

for the boundary mappingϕ, which are complemented by the boundary conditions

ϕ(0) = 0 and ϕ(2π) = L1. [25]

The functionf̃ is given by (23) whereas̃g is defined in terms of the arc length onΓe by

g̃(s) = −(f ◦ γ(s))′, s ∈ [0, L1]. [26]

3.1. Combination of three Cauchy pairs

In order to get a stable reconstruction algorithm, the functiong̃ should have no zeros.
Moreover, the assumption (18) is not satisfied in general for some Dirichlet dataf . To
remedy to these problems, we use three different pairs of Cauchy data(fi, gi), 1 ≤ i ≤ 3.
We assume that at least one of the three pairs does not satisfy (18), for example the pair
number 3. We then build two pairs of Cauchy data(f̂i, ĝi), i = 1, 2, verifying (18) by
setting :

f̂i := fi − θi f3 andĝi := gi − θi g3.

where

θi =

(
∫

Γe

gi ds

)

/

(
∫

Γe

g3 ds

)

.

We definef̃i and g̃i as in (23) and (26) wheref andg are respectively replaced witĥfi
andĝi. It is then clear from 24 that

∂ϕ

∂t
=
Ãρ,µ̃(f̃i ◦ ϕ)

g̃i ◦ ϕ
=

(g̃i ◦ ϕ)Ãρ,µ̃(f̃i ◦ ϕ)

|g̃i ◦ ϕ|2
[27]

for i = 1, 2. To shorten the notation, we introduce the complex-valued functions (which
have therefore different meaning from those introduced above)

f̃ = f̃1 + if̃2 and g̃ = g̃1 + ig̃2

and observe that (27) implies that one also have

dϕ

dt
=

ℜ
{

(g̃ ◦ ϕ) Ãρ,µ̃(f̃ ◦ ϕ)
}

|g̃ ◦ ϕ|2
. [28]

In order to write (28) as a fixed point equation, we define the operatorTmod
ρ,µ̃ : H1

0 [0, 2π] →

H1
0 [0, 2π] by

(Tmod
ρ,µ̃ ψ)(t) :=

∫ t

0

[

(Umod
ρ,µ̃ ψ)(τ)−

1

2π

∫ 2π

0

(Umod
ρ,µ̃ ψ)(θ) dθ

]

dτ, t ∈ [0, 2π]. [29]
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where

Umod
ρ,µ̃ ψ :=

ℜ
{

(g̃V ψ) Ãρ,µ̃(f̃V ψ)
}

|g̃V ψ|2
.

Here, the operatorV is still given by (12). Obviously, ifϕ ∈ H1[0, 2π] is a solution of
(28) satisfying (25) thenψ = V −1ϕ ∈ H1

0 [0, 2π] is a fixed point ofTmod
ρ,µ̃ , that is

ψ = Tmod
ρ,µ̃ (ψ) [30]

is satisfied. Note that ifTmod
ρ,µ̃ is a contraction, then (28)-(25) and (30) are equivalent.

3.2. Equations for ρ

The fixed point equation (30) has to be coupled with an equation for the unknown
radiusρ. We shall adopt a similar procedure as in [9]. Letw be a harmonic function inB
satisfying the generalized impedance boundary condition (21) onCρ, with µ̃ as defined
by (22). Moreover, we assume thatw = F1 onC1 for a givenF1 ∈ H1/2(C1). Then, we
introduce the functionHΨ : (0, 1) → R given by

HΨ(ρ) :=

∫

C1

f̃ ◦ ϕ
∂w

∂ν
ds. [31]

Applying the Green’s theorem tõv = ũ ◦ Ψ andw in the annulusB, and since the two
functions satisfy the same generalized impedance condition on the interior boundaryCρ,

∫

C1

ṽ
∂w

∂ν
ds =

∫

C1

∂ṽ

∂ν
F1 ds =

∫ 2π

0

g̃(γ(ϕ(t)))ϕ′(t)F1(t) dt

Therefore, we have

HΨ(ρ) =

∫ 2π

0

g̃(γ(ϕ(t)))ϕ′(t)F1(t) dt. [32]

To compute an approximate solution of (32) via Newton iterations, we need the derivative
of HΨ. This in turn requires to calculate the derivativew′ of the functionw.
w′ is a harmonic function inB vanishing onC1. To derive the boundary condition satisfied
byw′ onCρ, we indicate the dependence ofw on the radiusρ by writingwρ and expand,

∂wρ+δ

∂r
(ρ+ δ) +

1

(ρ+ δ)
2

∂

∂t

(

µ̃ρ+δ
∂wρ+δ

∂t

)

(ρ+ δ)

=
∂wρ

∂r
(ρ) +

1

ρ2
∂

∂t

(

µ̃ρ
∂wρ

∂t

)

(ρ)

+
1

ρ2

{

∂

∂t

(

µ̃ρ

∂w′
ρ

∂t

)

(ρ) +
∂

∂t

(

µ̃′
ρ

∂wρ

∂t

)

(ρ) +
∂

∂t

(

µ̃ρ
∂

∂t

∂wρ

∂r

)

(ρ)

}

δ

+

{

∂w′
ρ

∂r
(ρ) +

∂2wρ

∂r2
(ρ)−

2

ρ3
∂

∂t

(

µ̃ρ
∂wρ

∂t

)

(ρ)

}

δ +O(δ2)
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In view of the boundary condition (21) forwρ+δ andwρ and after dropping the subscript
ρ, we have

∂w′

∂r
+

∂

∂s

(

µ̃
∂w′

∂s

)

= −
∂2w

∂r2
+

2

ρ

∂

∂s

(

µ̃
∂w

∂s

)

−
∂

∂s

(

µ̃′ ∂w

∂s

)

−
∂

∂s

(

µ̃
∂

∂s

∂w

∂r

)

onCρ.

Therefore, using the Laplace operator in polar coordinates and once again the boundary
condition (21) forw, the derivativew′ satisfies onCρ

∂w′

∂r
+

∂

∂s

(

µ̃
∂w′

∂s

)

=
1

ρ

∂w

∂r
+
∂2w

∂s2
+

2

ρ

∂

∂s

(

µ̃
∂w

∂s

)

[33]

−
∂

∂s

(

µ̃′ ∂w

∂s

)

−
∂

∂s

(

µ̃
∂2

∂s2

(

µ̃
∂w

∂s

))

Finally, the derivative ofHΨ is

H ′
Ψ(ρ) =

∫

C1

ṽ
∂w′

∂ν
ds [34]

wherew′ is a harmonic function inB which vanishes onC1 and satisfies the boundary
condition 33 onCρ.

3.3. Regularization of the mapping ϕ 7→ χ

The nonlinear equations forφ andρ (which use in particular the impedanceµ̃) as well
as the reconstruction ofΓi requires a (stable) determination ofχ in terms ofφ andρ. More
precisely, knowing the radiusρ andΨ(eit) = (γ ◦ V ψ)(t), we need to solve the Cauchy
problem for determining the holomorphic functionΨ from its values onC1. Expanding
in a Fourier series

(γ ◦ V ψ)(t) = eit
∞
∑

k=−∞

ake
ikt, t ∈ [0, 2π],

we obtainΨ by the Laurent series

Ψ(z) = z

∞
∑

k=−∞

akz
k. [35]

The severe ill-posedness of the Cauchy problem inherited from the ill-posedness of our
inverse problem is clearly illustrated, since small errors in the Fourier coefficientsak,
k < 0, will be amplified by the exponentially increasing factorsρk. Hence, we incorporate
a Tikhonov-type regularization and replace (35) by

Ψα(z) = z
∞
∑

k=0

akz
k + z

∞
∑

k=1

a−k
|z|2k

α+ |z|2k
z−k, 0 < |z| < 1, [36]

whereα > 0 serves as a regularization parameter. We then getχ via χ = For its choice
via a discrepancy principle we refer to [8]. To simplify notation, in the sequel byLα we
denote the map that takesψ intoΨα as defined by (36).
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3.4. The inversion scheme

Now, we can summarize our inversion process in the following iteration scheme. Gi-
ven an initializationψ0 = 0 (see Remark 3.1) for the boundary map and an arbitrary
choice for the initial radius byρ0 (we usedρ0 = 0.3 in the numerical examples), the
iteration algorithm is slitted into the following steps

1) Compute the mappingΨα = Lαψn and the correspondingχ(t) = Ψα(ρne
it).

2) ComputeHΨα
given by (31) and its derivative, by evaluatingw andw′ associa-

ted with a chosen functionF1 on the unit circle.

3) Update the radius using one Newton iteration via

ρn+1 = ρn −
HΨα

(ρn)−
∫ 2π

0
g̃(γ(V ψn(t)))(V ψn)

′(t)F1(t) dt

H ′
Ψα

(ρn)
.

4) Update the impedance functioñµn+1 =
ρn+1

λ|χ′(t)|
.

5) Update the mappingϕn+1 = V ψn+1 by solving the differential equation asso-
ciated with the iteration

ψn+1 = Tmod
ρn+1,µ̃n+1

(ψn).

Remark 3.1 A natural initial guess forψ would be the one that corresponds withΨ
being the conformal mapping that transforms the unit disk onto the domain enclosed by
Γ1. Since in our experiments we choose the to be the unit disk, this initial guess coincides
withψ0 = 0.

4. Convergence Analysis

In order to check the convergence of our algorithm for small impedances we shall
restrict ourselves to the simple case where the geometry is a small perturbation of an
annulus. Moreover we shall assume that the exact value for the radius is known (and
therefore, in particular̃µ = 1/λ). The analysis is then reduced to evaluating‖T̃ ′(0)‖
where

T̃ψ := Tmod
ρ,1/λ(ψ). [37]

Following [8], one has

d

dt
T̃ ′(0)h = Ũ ′(0)h−

1

2π

∫ 2π

0

Ũ ′(0)h dτ. [38]

where

Ũ ′(0)h =
ℜ
[

g̃ Ãρ,1/λ(h f̃
′)− h g̃ ′ g̃

]

|g̃|2
[39]

We shall further restrict the analysis by choosing three pairs of Cauchy data(fi, gi), 1 ≤
i ≤ 3, associated to

f1(γ(t)) = cosmt, f2(γ(t)) = sinmt, f3(γ(t)) = 1, [40]

wheret ∈ [0, 2π] andm ≥ 1.
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For abbreviation, bycn, sn anden we denote the trigonometric functions given by

cn(t) := cosnt, sn(t) := sinnt and en(t) := eint

for n = 0,±1,±2, . . . . Then one easily check that

Ãρ,1/λen = γnen [41]

with

γn = |n|
1− bn
1 + bn

and bn =
λρ− |n|

λρ+ |n|
ρ2|n|,

while for n 6= 0,
Aρ,λen = γ̃nen

with

γ̃n = |n|
1 + bn
1− bn

.

We therefore conclude that

ĝ1(γ(t)) = g1(γ(t)) = γ̃mcm(t), and ĝ2(γ(t) = g2(γ(t)) = γ̃msm(t).

Consequently,

f̃1(t) =
1

m
γ̃msm(t), and f̂2(t) = −

1

m
γ̃mcm(t).

and
g̃1(t) = msm(t), and ĝ2(t) = −mcm(t).

After simple manipulations, and using̃γm/m2 = 1/γm, the expression ofU ′(0) simpli-
fies into

Ũ ′(0)h =
m

γm
ℑ
(

emAρ,1/λ(hem)
)

. [42]

We are now in a situation similar to the convergence proof in [8, Theorem 3.1]. We
conclude that

Ũ ′(0)sn =
m

2γm
[γn+m − γn−m]cn

and consequently, by integration,

T̃ ′(0)sn =
m[γn+m − γn−m]

2nγm
sn

for n ∈ N. Analogously,U ′(0)(cn − 1) = −
m

2γm
[γn+m − γn−m]sn and

T̃ ′(0)(cn − 1) =
m[γn+m − γn−m]

2nγm
(cn − 1)

for n ∈ N. We therefore deduce that the eigenvalues of the compact and self-adjoint
operatorT̃ ′(0) are

βn(λ, ρ) =
m[γn+m − γn−m]

2nγm
[43]
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Forn > 0 andρ < 1, we notice that asλ→ 0

βn(λ, ρ) → βn(0, ρ) [44]

whereβn(0, ρ) are the eigenvalues of the iterative operator in the case of an inclusion
with a homogeneous Dirichlet boundary condition. Using the result of [8, Theorem 3.1]
we conclude thatsupn |βn(0, ρ)| < 1 and,

lim
λ→0

‖T̃ ′(0)‖ < 1. [45]

We therefore can state the following theorem :

Theorem 4.1 Assume thatD = B and that the pairs of data correspond to (40). Then
the sequence(ψn) defined by the successive approximationsψn+1 = T̃ψn whereT̃ is
defined by (37) converges to0, provided thatλ is sufficiently small

In practice it is desirable to a quantification of the value ofλ for which convergence occur.
This question was not studied in [9]. We shall indicate in the following that the values ofλ
for which convergence holds depends onρ. This means in particular that the convergence
in (44) is not uniform with respect toρ for all n. To see this it is sufficient to consider the
case of

βm(λ, ρ) =
γ2m
(2γm)

=
(1− b2m)(1 + bm)

(1− bm)(1 + b2m)
.

Forλ > 0, we easily see that

lim
ρ→1

βm(λ, ρ) → βm(λ, 1) = 2.

This implies for instance that for any value of0 < λ < m there exists a radiusρ close to
1 such that‖T̃ ′(0)‖ > 1 and therefore the algorithm is not converging for that radius.

We conclude this section by indicating that the ”non convergence region” for small values
of λ is confined in a neighborhood ofρ = 1 whose width exponentially goes to 0 as
λ → 0. Computing the derivative ofγn with respect ton indicates thatn → γn is
decreasing for

n2 ≥ n20 := (λρ)2 − (λρ)/ ln(ρ) [46]

Therefore, following the similar procedure as in the proof of [8, Theorem 3.1], one can
prove :

Theorem 4.2 Let βn(λ, ρ) be defined by (43) forλ > 0 and0 < ρ < 1 and letn0 be
defined by (46). Then

0 < βn(λ, ρ) < 1 for all {m ≥ 1 and|n−m| ≥ n0} or {n = m andn+m ≥ n0}.

In particular we see that ifn0 ≤ 1 then,

0 < βn(λ, ρ) < 1 for all n ≥ 1.

For sufficiently smallλ, n0 ≤ 1 for all 0 < ρ ≤ ρ0(λ) whereρ0 satisfies

ρ0 = exp(−(λρ0)/(1− (λρ0)
2)).
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One observes thatρ0 → 1 asλ→ 0 exponentially fast.
We also remark that the ordern0 can be used to quantify the term “small impedance”

for a given value of the radiusρ : these small values should correspond withn0 ≤ 1. For
example forρ = 0.3, n0 is smaller than1 if the value of the impedance is smaller than
2.25.

We finally notice that this non uniform behavior with respect toρ is not restricted
to the case of small impedances. We expect that similar results hold in the case of high
impedances.

5. Numerical Results

In this section, we provide some numerical examples to illustrate the convergence of
our algorithm. In these examples, we consider the casem = 1 (for the data (40)), the unit
circle as the exterior boundary and different parametrization of the interior boundary. The
simulation of the data and the evaluation of the DtN map in the iteration procedure is done
after reformulating the boundary value problem into an integral equation on the boundary
of the domain. The corresponding integral equation is discretized using a Nyström method
[13]. For the case of a generalized impedance boundary condition (which is needed to
evaluateT̃ ), the second order tangential derivative is discretized using a standard finite
difference method.

Figure 1. Exact (red) and reconstructed (green) geometries after 2 iterations (left) and 6
iterations (right). λ = 0.01 and the Cauchy data to f1 = sin t , f2 = cos t and f3 = 1. No
added random noise.
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Figure 2. Exact (red) and reconstructed (green) geometries after 10 iterations (left) and
15 iterations (right). λ = 0.01 and the Cauchy data to f1 = sin t , f2 = cos t and f3 = 1. No
added random noise.

Figure 1 and Figure 2 respectively correspond to the two following parameterizations of
the inetrior boundaryΓi :

x1(t) = −0.2 + 0.4 cos t, x2(t) = 0.4 sin t+ 0.2 sin t, t ∈ [0, 2π], and

x1(t) = 0.4 cos t+ 0.2 cos 2t, x2(t) = 0.8 sin t+ 0.2 sin 2t, t ∈ [0, 2π].

As shown in Figure 1 and Figure 2, we find forλ = 0.01 and after only 2 iterations a
geometry close to the exact one.

Figure 3. Exact (red) and reconstructed (green) geometries after 10 iterations for λ = 0.1
and three Cauchy data corresponding to f1 = sin t , f2 = cos t and f3 = 1. Reconstruction
done for different levels of added relative random noise : 1% (left), 10% (right).
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Figure 4. Exact (red) and reconstructed (green) geometries after 10 iterations for λ =
0.001 and three Cauchy data corresponding to f1 = sin t , f2 = cos t and f3 = 1. Recons-
truction done for different levels of added relative random noise : 1% (left), 10% (right).

As shown in Figure 3 and Figure 4, even with the presence of noise, we find a good
reconstruction of the interior geometry.

The case of variable impedances In previous examples we considered the case of an in-
clusion with constant impedances. In some cases, this impedance would model the rough-
ness of the inclusion boundary which implies that the impedance may be variable. Even
though not supported by the convergence analysis, we shall numerically test our algorithm
in the case of variable impedances. The only needed modification in our algorithm is to
change the expression of the impedanceµ̃ into

µ̃(t) =
1

λ(arg(χ(t))

ρ

|χ′(t)|

wherearg denotes the argument of the complex number associated with a given vector.
We have tested the algorithm in the caseλ(t) = 0.001(sin(t) − 1.001) for dif-

ferent geometries and obtain convergent and stable reconstructions as attested by Fi-
gures 5 and 6.

Figure 5. Exact (red) and reconstructed (green) geometries after 9 iterations (left) and
15 iterations (right) for λ = 0.001(sin(t) − 1.001) and three Cauchy data f1(e

it) =
cos t, f2(e

it) = sin t and f3(e
it) = 1.
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Figure 6. Exact (red) and reconstructed (green) geometries after 9 iterations (left) and
15 iterations (right) for λ = 0.001(sin(t) − 1.001) and three Cauchy data f1(e

it) =
cos t, f2(e

it) = sin t and f3(e
it) = 1.

Conclusion

We have studied the problem of determining the shape of a simply connected obs-
tacle inside a simply connected domain, from the knowledge of Cauchy data associated
with an electric potential, using the conformal mapping method. The potential satisfies
the Laplace equation with an impedance boundary condition on the boundary of the obs-
tacle. Our investigations focus on the case of small impedances as being an extension
of the work proposed in [9]. We explained how a modification of the algorithm in [9]
using conjugate harmonic functions provides a convergent iterative scheme. The conver-
gence proof of the proposed algorithm is done in the simple case where the domain is a
small perturbation of an annulus. Extending our approach to general geometries would
be desirable, but is not obvious, since it is based on evaluating the spectral radius of the
derivative of the iterative operator. The expression of this operator is very complex and
hardly exploitable in the general case. We also pointed out, in the convergence analysis,
that for a given value ofλ, the algorithm is not convergent for all possible values of the ra-
diusρ. We gave a precise quantification of this behavior for the case of an annulus. These
theoretical considerations have been validated by means of some numerical tests. Those
tests have been conducted for different configurations (that are not small perturbations
of an annulus) and small impedance values, demonstrating the efficiency of the proposed
algorithm. A perspective of the present work would the extension of this approach to the
case of inclusions with small conductivities, which would be complementary to the work
initiated in [10].
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