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RESUME. Haddar and Kress [9] ont étendu I'utilisation de la méthode des applications conformes
[2, 8] pour construire le bord intérieur I'; d’'un domaine doublement connexe a partir de données de
Cauchy sur le bord extérieur d’'une fonction harmonique qui satisfait une condition homogene d’'impé-
dance sur T';. Cependant, I'analyse de la méthode montre la non-convergence de I'algorithme pro-
posé dans [9] dans le cas des faibles impédances. Dans ce travail, nous proposons des modifications
de cet algorithme afin d’obtenir un schéma d’inversion convergent et stable dans ce cas. La mé-
thode est ensuite validée par des exemples numériques qui incluent également le cas d’'impédances
variables.

ABSTRACT. Haddar and Kress [9] extended the use of the conformal mapping approach [2, 8] to
reconstruct the internal boundary curve I'; of a doubly connected domain from the Cauchy data on the
external boundary of a harmonic function satisfying a homogeneous impedance boundary condition
on I';. However, the analysis of this scheme indicates non convergence of the proposed algorithm
for small values of the impedance. In this paper, we modify the algorithm proposed in [9] in order to
obtain a convergent and stable inversion process for small impedances. We illustrate the performance
of the method through some numerical examples that also include the cases of variable impedances.
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1. Introduction

We are interested in an inverse problem for harmonic functions that arises in the ma-
thematical modeling of electrostatic or thermal imaging methods. As examples of applica-
tions we can mention the detection of faults in metal plates via applying electric currents
[3, 4], the monitoring of lung patients [7] or also the evaluation of wood quality both via
electrical impedance tomography in long cylindrical objects [17]. In these applications,
an unknown inclusion within a conducting host medidihwith constant conductivity is
assessed from overdetermined Cauchy data on the accessible part of the bourafary
the medium. We shall consider the cases where the effect of the inclusion on imposed
currents can be modeled by an impedance boundary condition that has be to satisfied on
its boundaryl’;. This model can be viewed for instance as an approximation of the trans-
mission problem in the asymptotic regimes : inclusion with a very high or a very small
conductivity.

In a series of papers, a simple and fast numerical scheme was developed to reconstruct
a perfectly conducting inclusion [2, 14] or a nonconducting inclusion [8], governed by a
homogeneous Dirichlet or Neumann boundary condition on the boulidarfithe inclu-

sion. The approach is based on a conformal mapping3 — D that takes an annulu3
bounded by two concentric circles onta In the first step, in terms of the given Cauchy
data onl’., by successive approximations one has to solve a non-local and nonlinear or-
dinary differential equation for the boundary valukg;, of this mapping on the exterior
boundary circle ofB. Then in the second step, a Cauchy problem for the holomorphic
function ¥ in B has to be solved via a regularized Laurent expansion to obtain the unk-
nown boundary’; = ¥(C,) as the image of the interior boundary circlg.

The application of the conformal mapping method to the inverse impedance problem was
first analyzed in [9]. Since the homogeneous impedance conditidh transforms into

an impedance condition afi, that contains the trace of the derivative of the conformal
map¥ onC,, the method does not completely separate the two steps indicated above. The
analysis of the proposed algorithm indicated the convergence for large impedances (i.e.
when the impedance boundary condition is close to a Dirichlet boundary condition). Ho-
wever, as expected from known results on the Neumann problem, (and as numerically ob-
served) the algorithm does not converge in the opposite regime, i.e. for small impedances.
This paper is devoted to addressing this issue using similar ideas as in the treatment of
the Neumann problem, namely by deriving the nonlinear equation of step 1) associated
with the conjugate harmonic function. The impedance condition is transformed into a ge-
neralized impedance condition (where second order tangential derivative is involved) and
therefore the subsequent analysis requires a special care. The analysis of the algorithm
indicates convergence for sufficiently small impedances. This is confirmed numerically
even in the case of variable impedances. As we shall point out theoretically, the values of
the impedances for which convergence occurs depends on the size of the inclusion. This
is also true in the case of [9]. For other work using conformal mapping ideas in the study
of inverse problems for the Laplace equation we refer to [1, 5, 6, 12, 11]. Concerning
the recovery of obstacles with impedance boundary conditions we also refer to [15, 16]
where a Newton like method based on the use of appropriate integral representation of
the solution is used. Compared to our method, this technique is indeed more general and
allows one to seek both the impedance and the geometry of the obstacle. However, no
convergence proof is available for this technique and as opposed to our algorithm, close
enough initialization is required to ensure convergence.
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The paper is organized as follows. We introduce in Section 2 the inverse impedance
problem and recall the general ideas of the conformal mapping method and the recons-
truction process proposed in [9]. In section 3, we describe the modified algorithm for
small values of the impedance. The convergence of the proposed algorithm is discussed
in Section 4. Finally, we conclude in section 5 with some numerical implementations to
valid our approach both for a constant and variable impedances.

2. The inverse problem and the conformal mapping method

Let D be a doubly connected bounded domairRif with a smooth boundargD that
consists of two disjoint closed Jordan cundesand 'y, that isoD = I'; U I, with
I'; N T, = ( such thafl’; is contained in the interior df .. By v we denote the outward
unit normal toT',. For a given functionf € H'/?(T'.) and a positive constant we
consider the impedance problem for the Laplace equation

Au=0 in D, [1]
with boundary conditions
@ —Au=0 on Ty, [2]
v
and
u=f on I'.. [3]

Note that the positivity of ensures existence and uniqueness of a solutient/! (D).
The inverse problem we are interested in, is to determine the shape of the interior
boundary curvé’; from one or many pairs of Cauchy data

g (22

assuming that the impedance is known a priori. We shall use for that purpose the confor-
mal mapping method introduced in [2, 8]. We shall first describe the principle of this
method and the setting used in [9] to solve the case of large values of

: (4]
r.

Principle of the conformal mapping method : Let B := {z € C : p < |z] < 1}
denotes the annulus bounded by the two cirdlgs:= {z € C : |z| = p} andC; :=

{z € C: |z| = 1}. SinceD is a doubly connected domain, then by using the conformal
mapping theorem (see [11]), there exists a uniquely determined radind a bijective
holomorphic functiont : B — D that conformally maps3 onto D such that the
boundariesC, and C; are mapped ontd'; and I, respectively. Denoting by, the
length of ", and lety : [0, L] — T'. be a parametrization df. in terms of the arc
length. The mappin@ is uniquely characterized by prescribifg1) = ~(0).

The inversion algorithm is based on the determinatiop and ¥. To this end, we intro-
duce the two functionsy : [0, 27] — C andy : [0, 27] — [0, L] defined by

X(t) = W(pe') and o(t) := 7" (¥(e")). [5]

The functiony is injective and parametrizes the interior boundary cuirvel he function
 is strictly monotonically increasing and bijective, and roughly speaking it describes how
¥ maps arc length o@'; onto arc length oi'.. Obviously, determining the mapsolves
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the inverse problem. The main idea behind setting up the conformal mapping method is
the derivation of a non linear differential equation satisfied by the boundary mabis
equation is then solved iteratively to determimnéhen obtainy.

Iterative operator for large impedances (see [9]) : The derivation of the non linear
differential equation used in [9] for large impedances is done as follows. We associate
the impedance problem (1)-(3) ib with an impedance problem posed in the annuBus

More precisely, ifu solves the impedance problem (1)-(3) therr= u o ¥ is a harmonic
function

Av =0 in B [6]
satisfying the boundary conditions
ov, 4, it it
9, (Pe") = mpu(pe)v(pe”) =0, 0<t<2m, [7]
and
v = foWU on(C, [8]
where Ny \
=2 ZW(pet)| = Z |y <t<2m.
tp,u (pe') 5 | (pe") p|x1@)h 0<t<2m [9]

Denote byA, , : H'/2(Cy) — H~1'/2(Cy) the Dirichlet-to-Neumann operator for the
impedance problem (6)-(8). It maps functiohs ¥ € H'/2(C}) onto the normal deriva-
tive Ov/0v on C of the solution of (6)-(8).
Using the Cauchy-Riemann equations, we get the following non-local differential equa-
tion

aﬁ — APv#(fO’YOSD) [10]

ot goyop
for the boundary mapping which has to be complemented by the boundary conditions

©(0) =0 and ¢(27) = L. [11]
In order to rewrite (10)-(11) as a fixed point equation we introduce the affine opé&fator

(V)(t) = ;—;t +(t), te]0,2n]. [12]

Then, for a pair of Cauchy datd, g¢), after setting

u(fOWOVﬂ))
goyoVi

we define an operatdr, , : H}[0,2n] — H}[0, 2] by

A
Up.,/d«¢ = P

Tp)0)i= [ W) = 5 [ W)@ 8] ar, te o2l 3

Finally, if o € H'[0,27] is a solution of (10)-(11) thepr = V~1p € H}[0, 27] is a fixed
point of T}, ,,.
The scheme proposed in [9] is mainly based on solving the fix point equgfion =
1) using successive approximations. However, in order to completely describe the scheme
and obtain a convergent one we omitted three steps 1) stabilization of the divisidn by
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(10) by combining the use of two Cauchy data 2) derivation of an equation for the radius
3) regularization of the mapping — x. One obtains a convergent algorithm for large im-
pedances mainly because,)as+ oo the operatord, , "converges” to the DtN operator
associated with a homogeneous Dirichlet boundary condition on the interior circle. One
can also show that the algorithm is non convergent for sufficiently small impedances since
in that cased,, ,, is close to the DtN map associated with a homogeneous Neumann boun-
dary condition on the interior circle. To obtain a convergent scheme in the latter cases, we
shall modify the right hand side of (10) using a DtN map associated with the conjugate
harmonic. As\ — 0 this operator has a similar behavior.4s,, when\ — cc.

3. The new scheme for small impedances

If w is a harmonic function iD with Cauchy datd f, g) on ', satisfying the impe-
dance condition (3) then from the Cauchy-Riemann equations it follows that a conjugate
harmonici of u satisfies

Au =0 inD [14]
with the "generalized” impedance condition
ou 10%
$+X@ =0 onl}; [15]
and the Cauchy data
ot
7 T 1
D5 g onle, [16]
ou  Of
W= s on I.. [17]

We observe in particular, from integrating (16) o¥er that the existence of single valued
conjugate harmonic functiom is subjected to the condition

L gds = 0. [18]

Let us assume for the moment that this condition is verified and ke the (unique)
solution to (14)-(16). Theé := @ o ¥ satisfies

A =0 inB [19]

with the following generalized impedance boundary conditiogn

%(ﬂe”) + :7% (ﬂ(ﬂiﬂ(pe”)) =0 telo,2n] [20]

and the Dirichlet boundary condition of
o(e') = F(e') te|o, 27, [21]
where we have set :

a(t) = and  F(e') := fop(t), t €10, 27], [22]
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with f denoting the function defined with respect to the arc length.oby

f(s) = /Osg o (t) dt, s €0, Ly]. [23]

LetA, ; : H'/?(Cy) — H~'/2(C,) be the Dirichlet-Neumann operataF:— 95 /9;|c, ,
associated to the impedance problem (19)-(21). Similarly to above, using the Cauchy-
Riemann equations, one get the following non-local differential equation

6790 _ Ap,ﬂ(fOSD)
ot goyp [24]

for the boundary mapping, which are complemented by the boundary conditions
©(0) =0 and ¢(27) = L. [25]

The functionf is given by (23) whereais defined in terms of the arc length ba by
9(s)=—(fon(s)),  s€l0, L] [26]

3.1. Combination of three Cauchy pairs

In order to get a stable reconstruction algorithm, the fungjishould have no zeros.
Moreover, the assumption (18) is not satisfied in general for some Dirichletfddta
remedy to these problems, we use three different pairs of Cauchyflaga), 1 < i < 3.

We assume that at least one of the three pairs does not satisfy (18), for example the pair
number 3. We then build two pairs of Cauchy d@fa gi), © = 1, 2, verifying (18) by
setting :

fi = fi —0; fsandg; := g; — 0; g3.

o ([ (] o0)

We definef; andg; as in (23) and (26) wherg¢ andg are respectively replaced with
andg;. It is then clear from 24 that
% o Ap,ﬂ(fi o 99) o (gz o @)Ap,ﬁ(fi o 90)
_ Api - )20 [27]
ot gioy |G o ¢
for ¢ = 1, 2. To shorten the notation, we introduce the complex-valued functions (which
have therefore different meaning from those introduced above)

where

f=Fh+ifs and §=g +ig
and observe that (27) implies that one also have

dp %{@O‘P) Ap,ﬁ(f‘)@)}
dt g0 |2 '

(28]

In order to write (28) as a fixed point equation, we define the ope‘l‘gjfgf‘ : HE[0,27] —
H0,27] by

mod o ! mod _i o mod T .
(T2)(t) .—/0 {(Up’ﬂ )(7) 27r/0 s )(G)dQ}d, t e [0,2n]. [29]
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where
R{(@ve) A, (Vo)
GV [?
Here, the operatov is still given by (12). Obviously, if> € H'[0,27] is a solution of
(28) satisfying (25) thew = V 1y € H{ [0, 27] is a fixed point of 794, that is

Pt

mod, ) .__
Up,ﬂ T

v =T ) [30]
is satisfied. Note that if ;"9 is a contraction, then (28)-(25) and (30) are equivalent.

3.2. Equations for p

The fixed point equation (30) has to be coupled with an equation for the unknown
radiusp. We shall adopt a similar procedure as in [9]. lkuebe a harmonic function i3
satisfying the generalized impedance boundary condition (21 pmwith i as defined
by (22). Moreover, we assume that= F; onC; for a givenF; € H'/?(C}). Then, we
introduce the functioriiy : (0,1) — R given by

Halp) = [ Fop s 31]

Applying the Green’s theorem ®© = @ o ¥ andw in the annulusB, and since the two
functions satisfy the same generalized impedance condition on the interior bodngdary

/ PR N L / "Gt (B F (1) dt
0

Therefore, we have

27
Hy(p) = / G20 (0) ' (O F (t) d. [32]

To compute an approximate solution of (32) via Newton iterations, we need the derivative
of Hg. This in turn requires to calculate the derivativeof the functionuw.

w’ is a harmonic function i vanishing orC . To derive the boundary condition satisfied

by w’ onC,,, we indicate the dependencewfn the radiug by writing w, and expand,

3wp+5 1 g - 8wp+5
o)+ g (s ) (04

1 (o (. 0w, o (., 0w, o (. 0w,
+p2{8t <up 5 )(p)+at (up By >(p)+at (””mm) (p)}é

5 0+ 52 0 - 22 (122 (0} s+ o)
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In view of the boundary condition (21) far,, s andw, and after dropping the subscript
p, we have

ow’ o ([ _ow
or 0s H Os

L Qw20 (0w 0 (0w 0 (00w .

02 pos K os 9s \/' 05 as \"'s or -
Therefore, using the Laplace operator in polar coordinates and once again the boundary
condition (21) forw, the derivativew’ satisfies orC,

ow 0 (o _ 10w Ow 20 (0w 3
or 9s \/' 95  pOr  0s2  pOs K os

L0 (e 0 (L5 (o
0s 88 ~ Os M882 M@s

o) = [ 0% [34]

Finally, the derivative offy is

wherew’ is a harmonic function irB which vanishes oi’; and satisfies the boundary
condition 33 orC,,.

3.3. Regularization of the mapping ¢ +— x

The nonlinear equations fgrandp (which use in particular the impedanggas well
as the reconstruction &%, requires a (stable) determinatiompin terms of¢ andp. More
precisely, knowing the radiysand ¥ (e?*) = (v o V¢)(t), we need to solve the Cauchy
problem for determining the holomorphic functidnfrom its values orC;. Expanding
in a Fourier series

(Yo Vap)(t) = €™ Z ape'® t €0, 2m],

k=—o0

we obtain¥ by the Laurent series

(2) ==z i apz". [35]

k=—o00

The severe ill-posedness of the Cauchy problem inherited from the ill-posedness of our
inverse problem is clearly illustrated, since small errors in the Fourier coefficignts

k < 0, will be amplified by the exponentially increasing factpfs Hence, we incorporate

a Tikhonov-type regularization and replace (35) by

z _
szakz +zZa k L—||Z|2k k 0<|z] <1, [36]

wherea > 0 serves as a regularization parameter. We therygad x = For its choice
via a discrepancy principle we refer to [8]. To simplify notation, in the sequdl bye
denote the map that takésinto ¥, as defined by (36).
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3.4. The inversion scheme

Now, we can summarize our inversion process in the following iteration scheme. Gi-
ven an initializatiom)y = 0 (see Remark 3.1) for the boundary map and an arbitrary
choice for the initial radius by, (we usedpy = 0.3 in the numerical examples), the
iteration algorithm is slitted into the following steps

1) Compute the mapping,, = L., and the corresponding(t) = ¥, (p,e').

2) ComputeHy_ given by (31) and its derivative, by evaluatingandw’ associa-
ted with a chosen functiofi; on the unit circle.

3) Update the radius using one Newton iteration via

Hu (pn) = Jy" GO0 YOV ) (F1 () dt

Pn = Pn —
+1 H&/a (Pn)
4) Update the impedance functign, .; = p”,“ :
Al (@)l

5) Update the mapping,,.1 = V1,1 by solving the differential equation asso-
ciated with the iteration

¢n+1 = T;:iaf»ﬁn+1 (wn)

Remark 3.1 A natural initial guess fory would be the one that corresponds with
being the conformal mapping that transforms the unit disk onto the domain enclosed by
T';. Since in our experiments we choose the to be the unit disk, this initial guess coincides

4. Convergence Analysis

In order to check the convergence of our algorithm for small impedances we shall
restrict ourselves to the simple case where the geometry is a small perturbation of an
annulus. Moreover we shall assume that the exact value for the radius is known (and
therefore, in particulafi = 1/)). The analysis is then reduced to evaluatjfig (0)||
where

Ty = T, (). [37]
Following [8], one has
d - -, 1 27 -,
LT (Oh =0/ (0)h— o /0 0 (0)h dr. [38]
where - ) B
i R[5 4,000 ) =153
U'(0)h = [39]

|g[?
We shall further restrict the analysis by choosing three pairs of Cauchy flatg), 1 <
1 < 3, associated to

fi(y(#)) = cosmt,  fo(7(t)) = sinmt,  f3(7(t)) =1, [40]

wheret € [0,27] andm > 1.
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For abbreviation, by,,, s,, ande,, we denote the trigonometric functions given by
cn(t) :=cosnt, s,(t):=sinnt and ey,(t) =™

forn =0,+1,42,.... Then one easily check that

Ap71/>\6n = Ynén [41]
with
o |’I’L‘ 1- bn _ Ap - |TL| 2|n|
n 1+ 0, n Mo+ |n| )
while forn #£ 0,
Ap7/\en = Yn€n
with
o = |1l 1+ 0,
Yn = 10,

We therefore conclude that

91(v(1)) = g1(7(t)) = Fmem(t), and ga(y(t) = g2(¥(t)) = Ymsm(t)-
Consequently,

Fi0) = —msm(t), and fo(t) = =)

and
g1(t) = msp,(t), and ga(t) = —me,,(1).

After simple manipulations, and usifg, /m? = 1/~,,, the expression df/’(0) simpli-

fies into m

U'(0)h = P S (€m Ap 1 a(hen)) - [42]

We are now in a situation similar to the convergence proof in [8, Theorem 3.1]. We
conclude that

m
U/(O)Sn = W h/n-l-m - 771—771]6”

and consequently, by integration,

n

T’(O)Sn _ m['Vner - 'anm]
2NYm
m

for n € N. AnalogouslyU’(0)(¢, — 1) = —F [Vnt+m — Yn—m]sn and

- m ’Yn—f—’m — Tn—-m
T/(0)(en — 1) = Pl =l o,y

for n € N. We therefore deduce that the eigenvalues of the compact and self-adjoint
operator?”(0) are

R T 4]
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Forn > 0 andp < 1, we notice thatag — 0

Bun(A, p) = Bn(0,p) [44]

where,, (0, p) are the eigenvalues of the iterative operator in the case of an inclusion
with a homogeneous Dirichlet boundary condition. Using the result of [8, Theorem 3.1]
we conclude thatup,, |3,,(0, p)| < 1 and,

. T
lim [ 77(0)]] < 1. [45]

We therefore can state the following theorem :

Theorem 4.1 Assume thaD = B and that the pairs of data correspond to (40). Then
the sequencéy,,) defined by the successive approximations, = 7, whereT is
defined by (37) converges@poprovided that\ is sufficiently small

In practice it is desirable to a quantification of the value &r which convergence occur.
This question was not studied in [9]. We shall indicate in the following that the values of
for which convergence holds dependswiThis means in particular that the convergence
in (44) is not uniform with respect tofor all n. To see this it is sufficient to consider the

case of (1 = o) (1 + )
- ,yzm B — 02m + m
Bm(A p) = (2vm) (1= bm) (1 + bom)’

For A > 0, we easily see that
lim B, (A, p) = Bm(A, 1) = 2.
p—1

This implies for instance that for any value@k A\ < m there exists a radiysclose to
1 such that|T”(0)|| > 1 and therefore the algorithm is not converging for that radius.

We conclude this section by indicating that the "non convergence region” for small values
of X\ is confined in a neighborhood @f = 1 whose width exponentially goes to O as

A — 0. Computing the derivative of,, with respect ton indicates thatn — ~,, is
decreasing for

n? > ng = (Ap)* — (Ap)/In(p) [46]

Therefore, following the similar procedure as in the proof of [8, Theorem 3.1], one can
prove :

Theorem 4.2 Let 3, (), p) be defined by (43) fok > 0 and0 < p < 1 and letng be
defined by (46). Then

0<Bn(A p) <1 forall {m>1land|n—m|>ne}or{n=mandn+m > ng}.
In particular we see that #i; < 1 then,
0<Bn(X,p) <1foralln>1.

For sufficiently small\, ng < 1 forall 0 < p < po(A) wherep, satisfies

po = exp(—(Apo)/(1 = (Apo)?))-

Revue ARIMA, vol. 13 (2010), pp. 47-62



58 F. Ben Hassen, Y. Boukari and H. Haddar

One observes thay — 1 asA — 0 exponentially fast.

We also remark that the ordep can be used to quantify the term “small impedance”
for a given value of the radiys: these small values should correspond wigh< 1. For
example forp = 0.3, ng is smaller tharl if the value of the impedance is smaller than
2.25.

We finally notice that this non uniform behavior with respecipte not restricted
to the case of small impedances. We expect that similar results hold in the case of high
impedances.

5. Numerical Results

In this section, we provide some numerical examples to illustrate the convergence of
our algorithm. In these examples, we consider the pase1 (for the data (40)), the unit
circle as the exterior boundary and different parametrization of the interior boundary. The
simulation of the data and the evaluation of the DtN map in the iteration procedure is done
after reformulating the boundary value problem into an integral equation on the boundary
of the domain. The corresponding integral equation is discretized using a Nystrom method
[13]. For the case of a generalized impedance boundary condition (which is needed to
evaluateT’), the second order tangential derivative is discretized using a standard finite
difference method.

Figure 1. Exact (red) and reconstructed (green) geometries after 2 iterations (left) and 6
iterations (right). A = 0.01 and the Cauchy data to f1 = sint , fo = cost and f3 = 1. No
added random noise.
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Figure 2. Exact (red) and reconstructed (green) geometries after 10 iterations (left) and
15 iterations (right). A = 0.01 and the Cauchy data to f; = sint , fo = cost and f3 = 1. No
added random noise.

Figure 1 and Figure 2 respectively correspond to the two following parameterizations of
the inetrior boundary’; :

x1(t) = —0.24+ 0.4 cost, xo(t) =0.4sint+ 0.2sint, ¢ € [0, 2], and

x1(t) = 0.4cost + 0.2cos2t, xo(t) =0.8sint + 0.2sin2t, t € [0, 27].

As shown in Figure 1 and Figure 2, we find far= 0.01 and after only 2 iterations a
geometry close to the exact one.

Figure 3. Exact (red) and reconstructed (green) geometries after 10 iterations for A = 0.1
and three Cauchy data corresponding to f1 = sint , f» = cost and f3 = 1. Reconstruction
done for different levels of added relative random noise : 1% (left), 10% (right).
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Figure 4. Exact (red) and reconstructed (green) geometries after 10 iterations for A =
0.001 and three Cauchy data corresponding to fi = sint , fo = cost and f3 = 1. Recons-
truction done for different levels of added relative random noise : 1% (left), 10% (right).

As shown in Figure 3 and Figure 4, even with the presence of noise, we find a good
reconstruction of the interior geometry.

The case of variable impedances In previous examples we considered the case of an in-
clusion with constant impedances. In some cases, this impedance would model the rough-
ness of the inclusion boundary which implies that the impedance may be variable. Even
though not supported by the convergence analysis, we shall numerically test our algorithm
in the case of variable impedances. The only needed modification in our algorithm is to
change the expression of the impedafdeto

N 1 p
A = N ars (@) O]

wherearg denotes the argument of the complex number associated with a given vector.
We have tested the algorithm in the casg) = 0.001(sin(t) — 1.001) for dif-

ferent geometries and obtain convergent and stable reconstructions as attested by Fi-

gures 5 and 6.

Figure 5. Exact (red) and reconstructed (green) geometries after 9 iterations (left) and
15 iterations (right) for A = 0.001(sin(t) — 1.001) and three Cauchy data file™) =
cost, fa(e'") =sint and f3(e') = 1.
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Figure 6. Exact (red) and reconstructed (green) geometries after 9 iterations (left) and
15 iterations (right) for A = 0.001(sin(t) — 1.001) and three Cauchy data fi(e™) =
cost, fa(e'') =sint and f3(e') = 1.

Conclusion

We have studied the problem of determining the shape of a simply connected obs-
tacle inside a simply connected domain, from the knowledge of Cauchy data associated
with an electric potential, using the conformal mapping method. The potential satisfies
the Laplace equation with an impedance boundary condition on the boundary of the obs-
tacle. Our investigations focus on the case of small impedances as being an extension
of the work proposed in [9]. We explained how a modification of the algorithm in [9]
using conjugate harmonic functions provides a convergent iterative scheme. The conver-
gence proof of the proposed algorithm is done in the simple case where the domain is a
small perturbation of an annulus. Extending our approach to general geometries would
be desirable, but is not obvious, since it is based on evaluating the spectral radius of the
derivative of the iterative operator. The expression of this operator is very complex and
hardly exploitable in the general case. We also pointed out, in the convergence analysis,
that for a given value of, the algorithm is not convergent for all possible values of the ra-
diusp. We gave a precise quantification of this behavior for the case of an annulus. These
theoretical considerations have been validated by means of some numerical tests. Those
tests have been conducted for different configurations (that are not small perturbations
of an annulus) and small impedance values, demonstrating the efficiency of the proposed
algorithm. A perspective of the present work would the extension of this approach to the
case of inclusions with small conductivities, which would be complementary to the work
initiated in [10].
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