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ABSTRACT. This paper presents a robust hybrid solver for linear systems that combines a Krylov
subspace method as accelerator with a Schwarz-based preconditioner. This preconditioner uses an
explicit formulation associated to one iteration of the multiplicative Schwarz method. The Newton-
basis GMRES, which aim at expressing a good data parallelism between subdomains is used as
accelerator. In the first part of this paper, we present the pipeline parallelism that is obtained when
the multiplicative Schwarz preconditioner is used to build the Krylov basis for the GMRES method.
This is referred as the first level of parallelism. In the second part, we introduce a second level of
parallelism inside the subdomains. For Schwarz-based preconditioners, the number of subdommains
are keeped small to provide a robust solver. Therefore, the linear systems associated to subdomains
are solved efficiently with this approach. Numerical experiments are performed on several problems
to demonstrate the benefits of using these two levels of parallelism in the solver, mainly in terms of
numerical robustness and global efficiency.

RÉSUMÉ. Cet article présente un solveur hybride robuste pour des systèmes linéaires. Ce solveur
parallèle construit un préconditionneur de type Schwarz pour accélerer une méthode basée sur les
sous-espaces de Krylov. Le préconditionneur est défini à partir d’une formulation explicite correspon-
dant à une itération de Schwarz multiplicatif. Dans le but de réduire les communications et les dépen-
dences entre les sous-domaines, nous utilisons la version de GMRES qui dissocie la construction de
la base de Krylov et son orthogonalisation. Nous présentons dans un premier temps le parallélisme
qui est obtenu lorsque ce préconditionneur Schwarz multiplicatif est utilisé dans la construction de
la base de Krylov. C’est le premier niveau de parallélisme. Dans la deuxième partie de ce travail,
nous introduisons un deuxième niveau de parallélisme à l’intérieur de chaque sous-domaine. Pour
des décompositions de domaines avec recouvrement, le nombre de sous-domaines doit rester faible
pour fournir un solveur robuste. De ce fait, les systèmes linéaires associés aux sous-domaines sont
résolus de manière efficace avec ce deuxième niveau de parallélisme. Plusieurs tests numériques
sont présentés à la fin du document pour valider l’efficacité de cette approche.

KEYWORDS : domain decomposition, preconditioning, multiplicative Schwarz, Parallel GMRES,
Newton basis, multilevel parallelism
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1. Introduction

In this paper, we are interested in the parallel computation of the solution of the linear
system (1)

Ax = b (1)

with A ∈ Rn×n, x, b ∈ Rn. Over the two past decades, the GMRES iterative method
proposed by Saad and Schultz [25] has been proved very successful for this type of sys-
tems, particularly whenA is a large sparse nonsymmetric matrix. Usually, to be robust,
the method solves a preconditioned system (2)

M−1Ax = M−1b or AM−1(Mx) = b (2)

whereM−1 is a preconditioner operator that accelerates the convergence of the iterative
method.

On computing environments with a distributed architecture, preconditioners based on
domain decomposition are of natural use. Their formulation reduces the global problem to
several subproblems, where each subproblem is associated to a subdomain; therefore, one
or more subdomains are associated to a node of the parallel computer and the global sys-
tem is solved by exchanging informations between neighboring subdomains. Generally,
in domain decomposition methods, there are two ways of deriving the subdomains : (i)
from the underlying physical domain and (ii) from the adjacency graph of the coefficient
matrixA. In any of these partitioning techniques, subdomains may overlap. Overlapping
domain decomposition approaches are known as Schwarz methods while non-overlapping
approaches refer to Schur complement techniques. Here, we are interested in precondi-
tioners based on the first class. Depending on how the global solution is obtained, the
Schwarz method isadditiveor multiplicative[29, Ch. 1]. The former approach computes
the solution of subproblems simultaneously in all subdomains. It is akin to the block
Jacobi method; therefore, the additive Schwarz method has a straightforward implemen-
tation in a parallel environment [8]. Furthermore, it is often used in conjunction with
Schur complement techniques to produce hybrid preconditioners [9, 16, 26].

The multiplicative Schwarz method builds a solution of the global system by alternat-
ing successively through all the subdomains; it is therefore similar to the block Gauss-
Seidel method on an extended system; Thus, compared to the additive approach, it will
theoretically require fewer iterations to converge. However, good efficiency is difficult to
obtain in a parallel environment due to the high data dependencies between the subdo-
mains. The traditional approach to overcome this is through graph coloring by associat-
ing different colors to neighboring subdomains. Hence, the solution in subdomains of the
same color could be updated in parallel[29, Ch. 1]. Recently, a different approach has
been proposed [2, 4]. In that work, the authors proposed an explicit formulation associ-
ated to one iteration of the multiplicative Schwarz method. This formulation requires that
the matrix is partitioned in block diagonal form [3] such that each block has a maximum
of two neighbors; from this explicit formula, the residual vector is determined out of the
computation of the new approximate global solution, and therefore could be parallelized
through sequences of matrix-vector products and local solutions in subdomains.

The first purpose of this paper is to present the parallelism that is obtained while using
this explicit formulation to build the preconditioned Krylov basis for the GMRES method.
This is achieved through the Newton basis implementation proposed in [5] and applied in
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[13, 28]. The usual inner products and global synchronizations are avoided across all the
subdomains and the resulted algorithm leads to a pipeline parallelism. We will refer to
this as afirst-level of parallelismin GMRES. The second and main purpose of our work
here is to further use parallel operations when dealing with subdomains. Generally, for
Schwarz-based preconditioners, the number of subdomains are kept small to guarantee the
convergence and consequently, the linear systems associated to subdomains can be very
large. It is therefore natural to introduce asecond-level of parallelismwhen solving those
subsystems. This approach is further motivated by the architecture of the current parallel
computers made from several interconnected nodes and multi-core processors inside each
node. Indeed, these two levels of parallelism use efficiently the compute resources by
dividing tasks across and inside all the allocated nodes of the parallel computer. A similar
approach has been recently used to enhance scalability of hybrid preconditioners based
on the additive Schwarz preconditioner for the Schur complement techniques [15].

The remaining part of this paper is organized as follows. Section 2 recalls the explicit
formulation of the Multiplicative Schwarz preconditioner. After that, a parallel imple-
mentation of the preconditioned Newton-basis GMRES is given. Section 3 provides the
second level of parallelism introduced to solve linear systems in subdomains. As those
systems should be solved several times with different right hand sides, the natural way is
to use a parallel third-party solver based onLU factorization. In section 4, we provide
intensive numerical results that reveal good performance of this parallel hybrid solver.
The matrices of tests are taken either from public academic repositories or from industrial
test cases. Concluding remarks and future directions of this work are given at the end of
the paper.

2. A parallel version of GMRES preconditioned by
multiplicative Schwarz

In this section, the explicit formulation of the multiplicative Schwarz method is intro-
duced. Then we show how to use it efficiently as a parallel preconditioner for the GMRES
method. A good parallelism is obtained due to the use of the Newton-Krylov basis.

2.1. Explicit formulation of the multiplicative Schwarz
preconditioner

From the equation (1), we consider a permutation of the matrixA into p overlap-
ping partitionsAi. We denote byCi the overlapping matrix betweenAi and Ai+1

(i = 1, . . . , p − 1). Here, each diagonal block has a maximum of two neighbors (see
Figure 1.a). Assuming that there is no full line (or column) in the sparse matrixA, such
partitioning can be obtained from the adjacency graph ofA by means of profile reduction
and level sets [3]. We definēAi (resp.C̄i) the matrixAi (resp.Ci) completed by identity
to the size ofA (see Figure 1.b).

If Āi andC̄i are nonsingular matrices, then the matrix associated to one iteration of
the classical multiplicative Schwarz method is defined [4] as :

M−1 = Ā−1
p C̄p−1Ā

−1
p−1C̄p−2 . . . Ā−1

2 C̄1Ā
−1
1 . (3)
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Figure 1. Partitioning of A into four subdomains
This explicit formulation is very useful to provide stand-alone algorithm for the essential
operationy ← M−1x used in iterative methods. However, since dependencies between
subdomains are still present in this expression, no efficient parallel algorithm could be
obtained for this single operation. Now, if a sequence of vectorsvi should be generated
such thatvi ← M−1Avi−1, then a pipeline computation can be setup between all the
vi’s and between all the subdomains for each single vector. This is described in Section
2.2.1. For the preconditioned Krylov method, thevi’s are simply the vectors basis of the
Krylov subspace. If the classical Arnoldi process is used to generate those basis vectors,
then the presence of global communication would destroy the pipelined computation. We
therefore rely on the Newton basis implementation described in the next section.

2.2. Background on GMRES with the Newton basis

A left preconditioned restarted GMRES(m) method minimizes the residual vector
rm = M−1(b − Axm) in the Krylov subspacex0 + Km wherex0 is the initial ap-
proximation andxm the current iterate. Ifr0 is the initial residual vector, thenKm is
defined as

span{r0, M
−1Ar0, . . . , (M

−1A)m−1r0}. (4)

The new approximation is of the formxm = x0 + Vmym whereym minimizes the eu-
clidian norm||rm||2. The most time consuming part in this method is the construction of
the orthonormal basisVm of Km; the Arnoldi process is generally used for this purpose
[24]. It constructs the basis and orthogonalizes it in the same time. The effect of this is
the presence of global communication between all the processes. Hence, no parallelism
could be obtained across the subdomains with this approach. However, synchronisation
points can be avoided by decoupling the construction ofVm into two independent phases:
first the basis is generateda priori then it is orthogonalized.

Many authors proposed different ways to generate thisa priori basis [5, 31, 11]. With
shiftsλj and scaling factorsµj (j = 1, . . . , n), Bai and Reichel [5] define the Newton
basis as :

V̂m+1 = [µ0r0, µ1(M
−1A− λ1I)r0, . . . , µm

m∏

j=1

(M−1A− λjI)r0]. (5)
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The valuesλj are chosen as approximate eigenvalues ofM−1A and ordered with the
modified Leja ordering[5] to get a well-conditioned basis. From a chosen initial vector
v0 = r0/||r0||, a sequence of vectorsv1, v2, . . . , vm is generated as follows: Ifλj ∈ R:

vj = σj(M
−1A− λjI)vj−1 (6)

If λj ∈ C:

vj = σj(M
−1A−Re(λj)I)vj−1 (7)

vj+1 = σj+1(M
−1A− λjI)(M−1A− λ̄jI)vj−1 (8)

where
σj = 1/||(M−1A− λjI)vj−1||. (9)

To avoid global communication, the vectorsvj are normalized at the end of the process.
Hence, the scalarsµj from the equation (5) are easily computed as the product of scalars
σj . These steps are explained in detail in sections 2.2.1 and 2.2.2. At this point, we get a
normalized basisVm such that

M−1AVm = Vm+1Tm (10)

whereTm is a rectangular matrix formed with the scalars1/σj and λj . Vm+1 is be
orthogonalized using aQR factorization :

Vm+1 = Qm+1Rm+1. (11)

As we show in section 2.2.1 and following the distribution of vectors in Figure 2.(b),
thevis are distributed in blocks of consecutive rows between all the processors; However,
their overlapped regions are not duplicated between neighboring processors. Thus, to per-
form theQR factorization, we use an algorithm introduced by Sameh [27] with a parallel
implementation provided by Sidje [28]. Recently, a new approach called TSQR has been
proposed by Demmel et al. [12] which aims to minimize the communications and better
use the BLAS kernel operations. Their current algorithm used in [19] is implemented
with POSIX threads and is used when a whole matrixVm is available in the memory of
one SMP node.

So far, at the end of the factorization, we get an orthogonal basisQm+1 implicitly
represented as a set of orthogonal reflectors. The matrixRm+1 is available in the memory
of the last processor. To perform the minimization step in GMRES, we derive an Arnoldi-
like relation [24, Section 6.3] using equations (10) and (11)

M−1AVm = Qm+1Rm+1Tm = Qm+1Ḡm. (12)

Hence the matrix̄Gm is in Hessenberg form and the new approximate solution is given
by xm = x0 + Vmym where the vectory minimizes the functionJ defined by

J(y) = ||βe1 − Ḡmy||, β = ||r0|| e1 = [1, 0, . . . , 0]T ∈ R
m. (13)

The matrixḠm is in the memory of the last processor. Sincem << n, this least-square
problem is sequentially and easily solved using aQR factorization ofḠm. More details
on the form ofTm and the algorithm to computēGm can be found in [5, 28]. The outline
of the GMRES algorithm with the Newton basis is in [13].
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2.2.1. Parallel processing of the preconditioned Newton basis

In this section, we generate the Krylov vectorsvj , (j = 0, . . . , m) of Vm+1 from the
equation (6). Consider the partitioning of the Figure 1 with a total ofp subdomains. At
this point, we assume that the number of processes is equal to the number of subdomains.
Thus, each process computes the sequence of vectorsv

(k)
j = (M−1A− λjI)v

(k)
j−1 where

v
(k)
j is the set of block rows from the vectorvj owned by processPk. The kernel compu-

tation reduces to some extent to two major operationsz = Ax andy = M−1z. For these
operations, we consider the matrices and vector distribution on Figure 2. On each process
Pk, the overlapping submatrix with the processPk+1 is zeroed to yield a matrixBk for
the matrix-vector multiplication. In Figure 2.(b), the distribution for the vectorx is plot-
ted. The overlapping parts are repeated on all processes. Hence, for each subvectorx(k)

on processPk, x(k)u

andx(k)d

denote respectively the overlapping parts withx(k−1) and
x(k+1). The pseudocode for the matrix-vector productz = Ax follows then in Algorithm
1.

x(1)

x
(2)

x(3)

x(4)

x
(1)d

= x
(2)u

x(2)d

= x(3)u

A1

A2

C2

A3

C3

A4

C1

Figure 2. Distribution of the matrices and vectors for the operation y ←M−1x

Now we consider the matrix distribution in Figure 2.(a) for the second operation
y = M−1z. According to relation (3), each processk solves locally the linear system
Akt(k) = z(k) for t(k) followed by a producty(k)d

= Ckt(k)d

with the overlapped matrix
Ck. However, the processPk should receive first the overlapping part ofy(k−1)d

from
the processPk−1. Algorithm 2 describes the application of the preconditionerM−1 to
a vectorz. The form of theM−1 operator produces a data dependency between neigh-
boring processes. Hence the computation of a single vectorvj = (M−1A − λjI)vj−1 is
sequential overall the processses. However since thevj are computed one after another,
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Algorithm 1 z = Ax

1: /* ProcessPk holdsBk, x(k) */
2: k ← myrank()
3: z(k) ← Bkx(k); /* local matrix-vector product */
4: if k < p then
5: Sendz(k)d

to processPk+1

6: end if
7: if k > 1 then
8: Receivez(k−1)d

from processPk−1

9: z(k)u

← z(k)u

+ z(k−1)d

10: end if
11: /* Communication for the consistency of overlapped regions */
12: if k > 1 then
13: Sendz(k)u

to processPk−1

14: Receivez(k+1)u

from processPk+1

15: z(k)d

← z(k+1)u

16: end if
17: return z(k)

a process can start to compute its own part of the vectorvj even if the whole previous
vectorvj−1 is not available. We refer to this as apipeline parallelismsince the vectors
vj are computed across all the processes as in a pipeline. This would not be possible
with the Arnoldi process as all the global communications introduce synchronizations
points between the processes and prevent the use of the pipeline; see for instance the data
dependencies implied by this process in Erhel [13].

Algorithm 2 y = M−1z

1: /* ProcessPk holdsAk, z(k) */
2: k ← myrank()
3: if k > 1 then
4: Receivey(k−1)d

from processPk−1

5: z(k)u

← y(k−1)d

6: end if
7: Solve local systemAky(k) = z(k) for y(k)

8: if k < p then
9: y(k)d

= Cky(k)d

10: Sendy(k)d

to processPk+1

11: end if
12: /* Communication for the consistency of overlapped regions */
13: if k > 1 then
14: Sendy(k)u

to processPk−1

15: end if
16: if k < p then
17: Receivey(k+1)u

from processPk+1

18: y(k)d

= y(k+1)u

19: end if
20: return y(k)
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To better understand the actualpipeline parallelism, we recall here all the depen-
dencies presented in [30]. For the parallel matrix-vector product in Algorithm 1, if we
setz = h(x) = Ax, thenz(k) = hk(x(k−1), x(k), x(k+1)) and the Figure 3.(a) illus-
trates these dependencies. For the preconditioner applicationy ← M−1z as written in
Algorithm 2, we sety = g(z) = M−1z, theny(k) = gk(y(k−1), z(k), z(k+1)) and de-
pendencies are depicted on Figure 3.(b). Finally, for the operationy ← M−1Ax, if
y = f(x) = AM−1x = h ◦ g(x), theny(k) = fk(y(k−1), x(k), x(k+1), x(k+2)) and we
combine the two graphs to have the dependencies on Figure 4.a. Hence the dependency
x(k−1) is combined with that ofy(k−1). In the pipeline flow computationvj = f(vj−1),

the dependencyx(k+2) in Figure 4.b delays the computation of thev
(k)
j until the subvec-

tor v
(k+2)
j−1 is available. If there is a good load balancing between all the subdomains and

if τ denotes a time to compute a subvectorx(k) including the time of all the required MPI
communications, then the time to compute one vector is

t(1) = pτ (14)

and the time to computem vectors of the basis follows

t(m) = pτ + 3(m− 1)τ. (15)

Finally, the first vector is available afterpτ and then, a new vector is produced every3τ
(see Figure 5). The efficiencyep of the overall algorithm is therefore computed as :

ep =
mt(1)

pt(m)
=

pτm

p(pτ + 3(m− 1)τ)
=

m

p + 3(m− 1)
. (16)

Hence, the efficiency grows with the value ofm but is limited by the Amdhal law to1/3
whenm tends to the infinity.

z
(2)x(2)

z
(1)x(1)

z
(4)x(4)

z(3)x(3)

y
(2)z(2)

y
(1)z(1)

y
(4)z(4)

y
(3)z(3)

(a): Graph for the matrix-vector (b): Graph for applying M−1

Figure 3. Dependency graphs

2.2.2. Computation of shifts and scaling factors

So far, we have not yet explained how to compute the shiftsλi and the scaling factors
σi of the equation (6) and (9).
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Figure 4. Dependency graph for y = M−1Ax
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Figure 5. Double recursion during the computation of the Krylov basis
In order to get a well-conditioned Krylov basis, Reichel [23] and Bai and Reichel

[5] suggest the use of approximate eigenvalues ofM−1A as the shiftsλj in the Newton
basis polynomials. After one cycle of the classical GMRES(m) with the Arnoldi process,
these shifts are obtained cheaply by computing them eigenvalues of the leadingm×m
principal submatrix of the output Hessenberg matrix. These values, known as the Ritz
values ofM−1A, are sorted using the modified Leja ordering [23] grouping together the
complex conjugate pairs. Recently, Philippe and Reichel [22] proved that, in some cases,
roots of the Chebychev polynomials can also be used efficiently as shifts for this Newton
basis.

The scalarsσi used to normalize the vectors ofV̂m+1 are determined without using
global reduction operations. Indeed, such operations introduce synchronisation points
between all the processes and consequently destroy the pipeline parallelism. The Algo-
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rithms 1 and 2 compute in some extent the sequencevj = (M−1A − λiI)vj−1. We are

interested in the scalarsσj = ||vj ||2. For this purpose, on processPk, we define bŷv(k)
j

the subvectorv(k)
j without the overlapping part. In the Algorithm 2, after the line 8, an

instruction is therefore added to compute the local sumσ
(k)
j = ||v̂

(k)
j ||

2
2. The result is sent

to the processPk+1 at the same time as the overlapping subvector at line10. The next
processPk+1 receives the result and adds it to its own contribution. This is repeated until

the last processPp. At the end, the scalar
√

σ
(p)
j gives the 2-norm ofvj . An illustration

is given in the Figure 5 during the computation of the vectorv3.

3. Enhancing the parallelism in subdomains.

In this section, we propose two levels of parallelism to enhance the robustness and the
efficiency of the method.

3.1. Motivations for two levels of parallelism

Preconditioners based on domain decomposition do no scale very well, particularly
when the coefficient matrix of the linear system is nonsymmetric or symmetric indefinite
or when the underlying PDE is far from elliptic. In those cases generally, the number of
iterations of the preconditioned GMRES increases very fast with the number of subdo-
mains and consequently the total time to converge is also increased. It becomes essential
to keep constant and small the global number of subdomains in order to provide a robust
iterative method.

In the particular case of the multiplicative Schwarz preconditioner, the startup time
pτ of the pipeline parallelism introduced in section 2.2.1 and the identity 16 shows that
the efficiency is limited byp, the number of subdomains. Thus the method should be
more efficient if the number of vectorsm to compute is large enough to annihilate this
startup time. In other words,p should not be very large compared tom. Figure 6 gives
a theoretical efficiency of the method with different values ofp andm. It can be seen
that the more the subdomains are, the morem should be large in order to get a significant
efficiency; usually, no assumption should be made on the value ofm as it depends on
the problem difficulty. It is therefore essential to act more onp in order to enhance the
parallel efficiency of the method.

If one subdomain is assigned to only one processor on modern supercomputers, then
using a small number of subdomains as suggested by the above discussion could be a
limitation of the method. If there are more processors than subdomains then a logical
approach is to assign one subdomain to several processors and then to define several
groups of processors, one for each subdomain. This distribution of data follow naturally
the architecture of present parallel computers made with several interconnected nodes
and with several processors inside one node. Hence all processors in one node deal with
data inside the memory of this node. The next section shows how this second level of
parallelism is used within the subdomains.
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Figure 6. Theoretical efficiency of GPREMS 1

3.2. Practical implementation

Tasks to parallelize inside the subdomain are mainly the solution of linear systems
induced by the application of the preconditionerM−1. As those systems should be solved
several times with the same coefficient matrix, it is natural to use a direct method. This
approach is usually known as hybrid direct/iterative technique. The parallelism inside the
subdomains relies on the message passing paradigm instead of a shared-memory model.
The motivation for this choice is that many high-performant and public domain solvers
are based on MPI [1, 17, 18]. Note that with the message passing model, a subdomain
can be distributed on more than one node if the physical memory is small on that node.

So far with the two levels of data distribution on compute units, the solver goes through
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all the following steps

1) Initialization : During the first step, the global matrixA is permuted in block
diagonal form by the host process (see Figure 1). After that, the local matricesAk and
Ck should be distributed to other processes. If a distributed solver is used in subdomains,
then the processors are dispatched in multiple communicators. Figure 7 shows a distri-
bution of four nodes with four processes each around two levels of MPI communicators.
The first level is intended for the communication across the subdomains. Hence in this
communicator, the submatrices are distributed to thelevel 0 processes (i.ePk,0 where
k = 0 . . . p− 1 andp the number of subdomains). For each subdomaink, a second com-
municator is created between thelevel 1 processes to manage communications inside
the subdomains (i.ePk,j wherej = 0 . . . pk − 1 andpk the number of processes in the
subdomain k).

Level 0 MPI  COMM.

                        

Level 1
MPI  COMMs.

P0,0 P0,1

P1,2 P1,3P1,1

P0,2 P0,3

P1,0

P3,1 P3,3P3,2P3,0

P2,1 P2,3P2,2

D1

D0

D4

D3 P2,0

Figure 7. MPI communicators for the two levels of parallelism

2) Setup : In this phase, the symbolic and numerical factorization are performed
on submatricesAk by the underlying local solver. This step is purely parallel across all
the subdomains. At the end of this phase, the factorsLk andUk reside in the processors
responsible for the subdomaink. This is totally managed by the local solver. Prior to this
phase, a preprocessing step can be performed to scale the elements of the matrix.

3) Solve : This is the iterative phase of the solver. With an initial guessx0, the
solver computes all the equations (6-13) as outlined here:

a) Perform one cycle of GMRES with the Arnoldi process to compute the shiftsλj .

b) Pipeline computation ofVm+1

c) ParallelQR factorizationVm+1 = Qm+1Rm+1

d) Sequential computation of̄Gm such thatM−1AVm = Qm+1Ḡm on the process
Pp−1,0.

e) Sequential solution of least-square problem (13) forym on the processPp−1,0.
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f) Broadcast the vectorym to processesPk,0

g) Paralle computation ofxm = x0 + Vmym

The convergence is reached when||b − Ax|| < ǫ||b|| otherwise the process restarts with
x0 = xm. When two levels of parallelism are used during the computation ofVm, level
1 processors perform multiple backward and forward sweeps in parallel to solve local
systems. After the parallelQR factorization in step 3c, the explicitQ factor is never
formed explicitly. Indeed, only the unfactored basisV is used to apply the new correction
as shown in step 3g. Nevertheless, a routine to form this factor is provided in the solver
with the courtesy of Sidje [28].

4. Numerical experiments

In this section, we perform several experiments to give the numerical robustness of
GPREMS and the benefits of using two levels of data distribution. We start by giving the
software architecture of the solver in subsection 4.1 and the test cases in subsection 4.2.

4.1. Software and hardware framework

The solver is named GPREMS1 (GMRES PRECONDITIONED BY MULTIPICATIVE

SCHWARZ). It is intended to be deployed on distributed memory computers that com-
municate through message passing (MPI). The parallelism in subdomains is based either
on message passing or threads model depending on the underlying solver. The whole
library is built on top of PETSc (Portable, Extensible Toolkit for Scientific Computation)
[6, 7]. The motivation of this choice is the uniform access to a wide range of external
packages for the linear systems in subdomain. Moreover, the PETSc package provides
several optimized functions and data structures to manipulate the distributed matrices and
vectors. Figure 8 gives the position of GPREMS in the abstraction layer of PETSc. We

BLAS LAPACK SCALAPACK BLACS MPI
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Figure 8. GPREMS library in PETSc

give only the components that are used by GPREMS. For a complete reference on PETSc

1. A public license will be released soon
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environment, please refer to [6]. Although GPREMS uses the PETSc environment, it is
not distributed as a part of PETSc libraries. Nevertheless, the library is configured easily
once a usable version of PETSc is available on the targeted architecture.

All the tests in this paper are performed on the IBM p575 SMP nodes connected
through the Infiniband DDR network. Each node is composed of 32 Power6 processors
sharing the same global memory. A Power6 processor is a dual-core 2-way SMT with a
peak frequency at 4.7 GHz. A total of 128 nodes is available in this supercomputer named
Vargas2 which is part of the French CNRS-IDRIS supercomputing facility.

4.2. Test matrices

Table 1. General properties of the four test matrices
Matrix Size Entries Source

PARA_04 153,226 2,930,882 UFL
CASE_04 7,980 2,930,882 FLUOREM
CASE_07 233,786 11,762,405 FLUOREM
CASE_09 277,095 30,000,952 FLUOREM
CASE_17 381,689 37,464,962 FLUOREM

In Table 1, the main characteristics of the test cases are listed. The first matrix PARA-
4 arises from 2D semiconductor device simulations and is taken from the University of
Florida (UFL) Sparse Matrix Collection [10]. The remaining test cases are provided by
FLUOREM [14], a software editor in fluid dynamics simulations. They correspond to
linearized Navier-Stokes equations.

4.3. Numerical robustness of GPREMS

The main motivation of using the multiplicative Schwarz method is its robustness
compared to the additive Schwarz implementation. There are some cases where the latter
fails. In this case, the former can be a good alternative. We illustrate such situation on
FLUOREM problem CASE_04. It is worth to note that previous work has been done
to test similar problems on other hybrid solvers based on Schur complement techniques.
Here we compare the multiplicative Schwarz in GPREMS with the restricted additive
Schwarz (ASM) method used as a preconditioner for GMRES. The implementation pro-
vided in PETSc release 3.0.0-p2. In the latter, the Krylov basis is built with the modified
Gram-Schmidt (MGS) method and the input matrix is partitioned in 4 subdomains us-
ing ParMETIS. With ASM, we note in Figure 9 that GMRES(16) stagnates from the first
restart (the plain line). It is necessary to form 32 Krylov vectors at each restart in order
to achieve a fair accuracy (dash curve). For GMRES(m), the sizem of the Krylov sub-
space is critical. Generally, it is a trial and error process to get a good value ofm. When
GPREMS is used, a stagnation is less likely to occur. In this test case, a good convergence
is obtained in a few number of iterations with the two values ofm. For instance, the rela-
tive residual norm drops to10−8 in less than 100 iterations (dot and dash-dot lines).

2. http://www.idris.fr/su/Scalaire/vargas/hw-vargas.html
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Figure 9. The multiplicative Schwarz approach (GPREMS) compared to the restricted ad-
ditive Schwarz (ASM) on CASE_004; 16 and 32 vectors in the Krylov subspace at each
restart; 4 subdomains (block diagonal partitioning in GPREMS and Parmetis for ASM); LU
factorization on local matrices with MUMPS package
4.4. Benefits of two levels of parallelism

In this part, we give the gain of using two levels of data distribution. We first con-
sider the problem CASE_017 listed in Table 1. The geometry of this 3D case is a jet
engine compressor. This test case is difficult to solve as shown in a short comparative
study involving some distributed linear solvers [21]. From this study, solvers based on
overlapping Schwarz decomposition provide an efficient way to deal with such problems.
However, the number of subdomains should be kept small to provide a good convergence.
In Table 2, We keep 4 and 8 subdomains and we increase the total number of processors.
As a result, almost all the steps in GPREMS get a noticeable speedup. Typically, with
4 subdomains, when only one processor is active, the time to setup the block matrices is
almost 203 s. and the time spent in the iterative loop (under Time/Iter) is 622 s. Moving
to 8 active processors decreases these times to 59 s. and 181 s. respectively. The same
observation can be done when using 8 subdomains, in which case the overall time drops
from 540 s. to 238 s. Note that the overall time includes the first sequential step that
permutes the matrix in block-diagonal form and distributes the block matrices to all ac-
tive processors.Intranode speedup and efficiencyare reported in the last two columns of
Table 2 . This is different from the ones computed with only one level of parallelism. The
main objective here is to evaluate if it is worthy to add more processors in a subdomain. If
d is the number of subdomains,sp = Td/Tp andep = sp/p whereTp is the CPU time on
p processors. For 4 subdomains, using 8 processors in each subdomain gives a speedup
of 2.88. This speedup is 2.28 when 8 subdomains and 64 processors are used. The major
speedup is observed for the setup phase thanks to the direct solver MUMPS [1]. The solve
phase shows a noticeable speedup as well. The overall efficiency is decreasing very fast
due to the fact that all the processors in one subdomain are scheduled in one SMP node.
During the computations, all the processors share the same memory bandwith and access
irregularly data in the global memory. With the low granularity and the irregular access of
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data in sparse matrix computations, the efficiency is determined mostly by the size of the
memory bandwith rather than the clock rate of processors. Nevertheless, the two levels
of parallelism help to keep busy the processors in the SMP node as they would be idle
otherwise.

Table 2. Benefits of the two-levels of parallelism for various phases of GPREMS on
CASE_17 with a restart of 64 and MUMPS direct solver in subdomains

#D #Proc. Iter. CPU Time (s.)
Init Setup Solve Time/Iter Total sp ep

4 4 128 70.78 203.67 622.94 4.87 897.39 - -
8 128 70.77 125.77 411.42 3.21 607.96 1.48 0.74
16 128 69.79 73.15 280.41 2.19 423.35 2.12 0.53
32 128 70.77 59.44 181.45 1.42 311.66 2.88 0.36

8 8 256 69.91 71.73 399.34 1.56 540.98 - -
16 256 70.36 42.99 343.25 1.34 456.59 1.18 0.59
32 256 71.61 28.72 206.7 0.81 307.02 1.76 0.44
64 256 71.85 20.85 144.79 0.57 237.49 2.28 0.28

We further point out the benefits of adding several processors in each subdomain for
the problems PARA_4, CASE_07 and CASE_09. The CPU times for the main phases
in the solver are reported in Table 3 and 4: the setup time, the Iterative loop time (under
Solve), the mean time spent in each iteration (under Time/Iter). The total time includes
the time for the preprocessing step which is not reported. The size of the Krylov basis
is 32 for PARA_4, and 40 for CASE_07 and CASE_09. MUMPS[1] is used as direct
solver in each subdomain. The iterative process stops when the relative residual norm
||b−Ax||/||b|| is less than10−8. The statistics show a good improvement with two levels

Table 3. CPU Time of GPREMS on PARA_4
#Proc. #D PARA_4

Setup Solve Time/Iter Total
4 4 11.75 58.31 0.40 72.84
8 4 8.28 58.68 0.41 69.74

8 3.79 46.40 0.24 52.97
16 4 5.79 40.55 0.28 49.11

8 2.86 31.64 0.16 37.26
16 1.12 41.85 0.17 46.09

32 4 4.57 33.80 0.23 41.15
8 1.78 20.94 0.11 25.47
16 0.86 31.10 0.13 35.09

64 8 1.51 17.97 0.09 22.25

of parallelism. As noted before, the major improvement is in the setup phase but the
iterative phase benefits from this approach as well. It is worth to note the time spent for
each singe iteration. Indeed, this time decrease, although not fast, as more processors are
added in subdomains.
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Table 4. Setup and solve phase of GPREMS on CASE_07 and CASE_09
#Proc. #D CASE_07 CASE_09

Setup Solve Time/Iter Setup Solve Time/Iter
4 4 19.05 77.38 0.64 57.00 121.85 1.52
16 4 10.27 47.86 0.40 24.94 60.18 0.75
48 12 1.95 28.49 0.09 4.72 51.99 0.22
96 12 1.67 21.75 0.07 3.45 38.08 0.16

5. Concluding remarks

In this paper, we give an implementation of a parallel solver for the solution of linear
systems on distributed-memory computers. This implementation is based on an hybrid
technique that combines a multiplicative Schwarz preconditioner with a GMRES accel-
erator. It is known that the multiplicative formulation of the Schwarz method does not
have a natural parallelism. Thanks to the Newton basis GMRES implementation, a good
pipeline parallelism can be obtained through the subdomains. It is also admitted that
Schwarz-based preconditioners do not scale very well with the number of subdomains.
In this work, we implement two levels of data distribution to limit the number of sub-
domains. To this end, we define two levels of parallelism during the computation of the
orthonormal basis needed by GMRES : The first level is expressed through pipeline op-
erations across all the subdomains. The second level uses a parallelism inside third-party
solvers to build the solution of subsystems induced by the domain decomposition. It is
obvious that even with these two levels of parallelism, the proposed approach can not
compete with multilevel methods based on Schur complement techniques. Nevertheless,
there are some problems where Schwarz preconditioners offer more robustness.

The experimental tests have pointed out this robustness on tests cases arising from
linearized Navier Stokes equations. This robustness is enhanced with a direct solver for
linear systems in subdomains. We have shown that the gain of using a parallel solver
inside the subdomains is two-fold: the convergence is guaranteed when the number of
processors grows as the number of subdomains remains the same. The global efficiency
increases as we add more processors in subdomains. For large block matrices, the use
of a direct solver in subdomains implies to access the whole memory of a SMP node.
Therefore, this approach keeps busy all the processors of the SMP node and enables a
good usage of allocated computing resources.

However, more work needs to be done to achieve very good scalability on massively
parallel computers. Presently, an attempt to increase the number of subdomains up to 32
increases the number of iterations as well. So we are investigating ways to maintain the
latter as small as possible. A first attempt is to use more than two levels of splitting but
the efficiency of such approach is not always guaranteed, specifically if the linear system
arises from non-elliptic partial differential equations. An ongoing work is to keep the
two-levels of splitting for the preconditioner operator and then to further accelerate the
GMRES method with spectral informations gathered during the iterative process.
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