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RESUME. Cette contribution vise a développer un modele mathématique d’optimisation acoustique
des trajectoires de vol de deux avions en approche et sans conflit, en minimisant le bruit percu au
sol. Toutes les contraintes de vol des deux avions sont considérées. La dynamique de vol associée
au colt génere un probleme de contrle optimal régis par des équations différentielles ordinaires
non-linéaires. Pour résoudre ce probléme, la théorie des conditions nécessaires d’optimalité pour des
problémes de commande optimale avec contraintes instanées est bien développée. Ceci se carac-
térise par une solution optimale locale lorsque I'approche newtonienne est utilisée en tenant compte
des conditions d’optimalité de Karush-Kuhn-Tucker et la programmation quadratique séquentielle glo-
balisée par région de confiance. Les méthodes SQP sont proposées comme option par KNITRO sous
le langage de programmation AMPL. Parmi plusieurs solutions admissibles, il est retenu une trajec-
toire optimale menant & une réduction du niveau de bruit au sol.

ABSTRACT. This contribution aims to develop an acoustic optimization model of flight paths minimiz-
ing two-aircraft perceived noise on the ground. It is about minimizing the noise taking into account
all the constraints of flight without conflict. The flight dynamics associated with a cost function gen-
erate a non-linear optimal control problem governed by ordinary non-linear differential equations. To
solve this problem, the theory of necessary conditions for optimal control problems with instantaneous
constraints is well used. This characterizes the optimal solution as a local one when the newtonian
approach has been used alongside the optimality conditions of Karush-Kuhn-Tucker and the trust
region sequential quadratic programming. The SQP methods are suggested as an option by com-
mercial KNITRO solver under AMPL programming language. Among several possible solution, it was
shown that there is an optimal trajectory (for each aircraft) leading to a reduction of noise levels on
the ground.

MOTS-CLES : Commande Optimale, Bruit, avions commerciaux, trajectoire, Algorithmes SQP et
TRSQP, Programmation non-linéaire.

KEYWORDS : Optimal control problem, Commercial aircraft, noise levels, SQP and TRSQP algo-
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1. Introduction

Considering the current trend in the field of air transport, economic and environmental
considerations related to the rising cost of oil and the need to preserve the environment,
impose more severe constraints on the next generation of aircraft [1]. One wants to reach
one of the 2020 ACARE objectives [2]. In order to reduce the environmental pollution and
noise impact, ACARE requires a 50% reduction of perceived noise for 2020. This goal
represents a difficult scientific and engineering challenge as this requires aerodynamic
models and mathematical optimization [3, 4]. Some work addressing this problem has
been carried out. The majority of this work addresses the problem of minimization of
aircraft noise around the airport by considering a single plane [5, 6]. The other work
concerns the stochastic conflict detection for airtraffic management [7], the dynamics of
flight [8] and the comprehensive analysis of transport aircraft flight performance [1].

Our aim in this work is the development of a theoretical model of noise optimization
while maintening a reliable evolution of the flight procedures of two commercial aircraft
on approach. These aircraft are supposed to land successively on the same runway. It
is all about the evolution of flight dynamics and minimization of noise for two similar
commercial aircraft to the landing taking into account the energy constraint. This model
is a non-linear and non-convex optimal control. It is governed by a system of ordinary
non-linear differential equations.

For solving this problem, the theory of necessary conditions for optimal control pro-
blems with instantaneous constraints on the control and the state is well developped. That
characterises the optimal solution as a local solution when the newtonian approach and
the sequential quadratic programming are used. The direct optimization methods have
proved to be powerful tools for solving optimal control [9, 10]. The basic idea of di-
rect optimization methods is discretizing the control problem and applying non-linear
programming techniques to the resulting finite-dimensional optimization problem. The
adopted methods use only control and state variables as optimization variables. The nu-
merical algorithms are usually developped on the basis of first-order necessary optimality
conditions. Meanwhile, the second-order sufficient conditions must be checked to ensure
the optimality of solutions. Numerically, the second-order sufficient conditions for conti-
nuous control problems are very difficult to verify. The alternative solution is to do this
for the discretized control problem when using a well-known algebra technique for the
optimization problem. It is also important to know the role of the second-order sufficient
conditions for sensitivity analysis of the optimal control problem. The control problems
are usually subject to disturbances in the data system. Mathematically, the perturbations
are described by some parameters in the dynamics, the boundary conditions or in the
mixed constraints. The behavior of the optimal solution with the respected perturbations
parameters must be analyzed for the stability of the solution.

The new main contribution of this work is the considering of two-arcraft flight dy-
namics when others autors focuse on one aircraft flight dynamic [5, 6]. One trajectory
of a group of two-aircraft is proposed with flight optimal characteristics. Details of the
two-aircraft flight dynamic, the noise levels, the constraints, the mathematical model of
the two-aircraft acoustic optimal control problem, the sequential quadratic and the trust
region sequential quadratic programming method processing are presented in section 2
and 3 while the numerical experiments are presented in the last section.
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2. Modelization of the two-aircraft optimal control problem

2.1. General Formulation

The minimization of the noise generated by the two planes is an optimal control pro-
blem. Let the mathematical general formulation be the following [11, 12] :

min.J(u(.),y(.))

"eﬁ F(u(t), y (1)), ¥(0) = yo,u(0) = up, "
KL (u(t),y (1)) <0,
k2(u(t),y(t)) > 0,vt € [0,7T]

whereJ(u(.),y(.)) = /T g(u(t),y(t))dt + ¢(y(T)) is the cost function,

0
y(t) = (y1(t),y2(t))T is the state of the system(t) = (u;(t),uz(t))? the control and
J(u(.),y(.) the cost function (noise of the aircrafl (u(t), y(t)) < 0,k2(u(t),y(t)) >
0 show the mixed constraints. This formulation is general. In the following, we will esta-
blish the explicit and realistic form of all the equations cited above.

2.2. The aircraft dynamic

By the way, the two aircraft motion equations have been established and here are
some considered assumptions [13]. The plane is a solid steel block center of fixed gravity,
modeled with a variable mass and its inertia matrix is symmetric. This model presupposes
that there is no possible conflict between the two A300 aircraft (The threshbld ig
on the horizontal position and 2e+3fts on the vertical one. The landing separation time
varies from45s to 9e+1s). The landing law is First Come First Served (FCFS)[14]. The
motion of each planel;,i := 1,2 is three dimensional analyzed with 3 frames : the
landmark(O, X1,Y1, Z1), the plane framéG,, X4, Yii, Zi;) and the aerodynamic one
(Gi, Xaiy Yai, Zai) [7]. The transition between these three frames is shown easily with
three successive rotations [8, 15]. In general, the equations of motion of each aircraft
are summarized in two basic relations of mechanics and the fundamental relationship of
kinematics :

ZFemt,; - va -

dt 2]
dsy;
Z Methi = J(le Al) dt
The index i = 1,2 reflects the first and second plane. In the system aBpye,re-
present the external forces acting on the aircraftit) the mass of the aircraf¥,; the
airspeed of aircraftML.,¢,, the outside moments of each aircraftG;, A;) the inertia
matrix and(?; the angular rotation. The external forces acting on an airplane in flight

2
are : The thrustF; = Poém»ﬁ(l
Po

2Z ), the weightW; = m;gZ,, the lift
1 1
F, = —§piSiCZiVa2iZ,,,i, the dragF;; = —§piSiCmeiXai and the lateral forces

1 . . .
F, = §piSiCyiVa2iYai. In these expressions described abdveis the reference area,
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Cy:i the coefficient of dragl,; the speed('y; the coefficient of lateral force,; the co-
efficient of lift andp; the density of air. The time derivation is for an observator attached
to frame R, and the equations are written R),. The acceleration is obtained with two
time derivations of the position. The relations between the derivatives in the two frames
are connected by the well known equation

dX dX
E'Ro = E|Ra +Qr, /o x X

dX
where |RO is the derivative with respect to time of the vecXrin the vehicle-carried

dX
normal Earth framéko, — | r, is the derivative with respect to time of the vecl&rin
the frameRi,, €2, is the angular velocity of the aircraft a2l , z, is the angular velocity
of the frameR; relative to the frameR,. After transformations and simplifications, the
system takes the following explicit form :

. 1 . 1 ) .
Vo, = E[—migsm’yai — 5,051"/,,2 Cp + (cosag, + sinag, ) Fy, — miu;],

)

1 1
Qa; = m[migws%i COSfla; — §PSiVa2i Cr, + [cosaq, — sinag, I,
. . 1 2
—miwgy pi = m{ri%(B —C) — Epiq; + §pS7;l‘/(-),iCli}

1
—————{piqi(A — B) — Eriq; + =pSilV? Cyi},
to = g2 il ) = Erigi + 5pSil Vi, Cni}

1
G; = E{_ripi(A —-0) - E(sz - 7"12) + _PSilVaQ,;Cmi}a
E A
ac — gz i ac — gz vl

1 ) )
—Eriq; + §pS¢ZV{i Chi}, X&, = Va,€08Ya,08Xa;, Y&, = Va,008Ya, 51N Xa;

B —0C) + Epiq; + EpSilV(iCli + A—B)

Ty =

Zf; = —V,, $inva,, ¢.$i = p; + g;sing;tand; + ricosp;tanb;,

0; = qicosd; — rising;, b; = sing: qi cose: i,
cosb; cos@iK
. d—pu—2)V/0O
m; = —2.01 x 107° @ —n ) F,

Bl (1 + Mg\ /G + 0.2M2 22X — (1= A)M;
[3]

where the expression$ = I, B = I, C = I,,, E = I, are the inertia moments

of the aircraft, | is the aircraft reference lenggtis the acceleration due to gravityp =

. - l
Cpo + kC3, is the drag coefficient)y; = C, 58+ Cyp— +Cyrr +Cys,61i + Cys, 0ni

. - ¢l .
is the lateral forces coefficier®;,; = CLQ( g —0q0)+Crs,, Omi+Cra M;+ CL,I v is
the lift coefficient,C;; = ClgﬁJrClp % +Clr % +Cwl 01i+Cls,, 0ni is the rolling moment

coefficient,Cy,; = Cio + Cra(a — ) + Cins,, Omi 1S the pitching moment coefficient,

Chi = n56+0np2; +Om7;+0n5l 01i+ Chs,, 0ns IS the yawing moment coefficient,

is the full thrust,p is the atmospheric density at the groudfl= (F,;, Fy,, F>;) is the
propulsive forceV,; = (u;, v;, w;) is the aerodynamic spe€dy;, Y;, Z;) are coordinates
of the center of gravity of the aircraftd,; is the attack angled; is the inclination angle
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, ¥; is the cup,¢; is the roll angle, §;, ¢;, ;) are the aircraft velocity relative to the earth
andm; the mass. The anglegs,,, x.., ita;, COrrespond respectively to the aerodynamic
climb angle, the aerodynamic azimuth and the aerodynamic bank angle. The mass change
is reflected in the aircraft fuel consumption as described by E. Torenbeek [16] where the
specific consumption is

(P —p—;5)V0
Bin(1 T g N) /G + 0.2MP 22X — (1 - \)M;

with the generator functio& :

Csp =2.01x107°

1.01
_ _ K _
G =@ 501~ ——

e
n V(K + )1 -

@mm)

K =uplee V' —1),p=1+1M?

The Nomenclature of engine performance variables are given by G the gas generator
power function, GO the gas generator power function (static, sea level), K the temperature
function of compression procestl; the flight Mach number, T4 the turbine Entry total
Temperature, TO the ambient temperature at sea level, T the flight temperature, while
the nomenclature of engines yieldsris = 0.85 the isentropic compressor efficiency,
na=1- 1.3(%)2(%)2%, the isentropic fan intake duct efficiendythe duct length,
D the inlet diameterZe the Reynolds number at the entrance of the nozzles 0.86 —

—1as2
3.13 x 10~2M; the isentropic fan efficiency, = % the gas Generator intake
2

stagnation pressure ratig,, = 0.97 the isentropic efficiency of expansion process in
nozzle,n, = 0.88 the isentropic turbine efficiency,; = 77y, €. the overall pressure

ratio (compressor), the ratio of specific heats = 1.4, A the bypass ratigy the ratio

of stagnation to static temperature of ambient @ithe nondimensional turbine entry
temperatureb = % ard © the relative ambient temperatuée = Tlo For now, let us
return to the second equation of (1). Considering the aircraft dynamic, one transforms the
system described above according to stg\% = filyi(t),u(t)),7 = 1,2 when

yi : [to,tf] — R,
Yi (t) = (aai (t)7 0; (t)7 ¥ (t)7 ®i (t)7 Va, (t)’ Xa, (t)’ Ye, (t)’ Za, (t)’ (4]
pi(t), ai(t),ri(t), ms(1))

is the state vector where the expressiengt), 0;(t), i (t), ¢:(t), Va, (t), Xa, (t), Ya, (t),

Za, (), pi(t), q:(t), m:(t), m;(t) are respectively the attack angle, the inclination angle,
the cup, the roll angle, the airspeed, the position vectors, the roll velocity of the aircraft
relative to the earth, the pitch velocity of the aircraft relative to the earth, the yaw velocity
of the aircraft relative to the earth and the aircraft mass. The control vector is

u; : [to,tf] — R4, [5]
u; (t) = (517 (t)a 67774‘ (t)» O (t)a Oa, (t))
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where the expressioms, (), 6,,, (1), on, (t), 0z, (t) are respectively the roll control, the
pitch control, the yaw control and the thrust one. The second equation in (1) is then written

by :

_ (Bm@.3 () _ )
)= (Rl aie) ) ¥ € 01110 =yinva0 =y

As the explicit dynamics equation is known, it must be associated with the two aircraft
noise as a cost function for the optimal control problem. In the following, the explicit
formula of the objective function is shown.

2.3. The objective function

: _ _ 1t
The calculation of SEL is described by #L = 10log ™ / 1001 a.ae(®) gt where
o Jt;

t, is the time reference taken equallteand|t;, t»] the noise eventinterval. (f1o,¢1¢]
and[to, t2¢] are the respective intervals in which the noise of the first and second plane
arises, we have :

1 t20
[t10,t20] : SEL; = 10log {—/ 100'1LA1vf“(t)dt]
o Jitio

[tgo,tlf] : SEL12 = SELH + SEL21
1 tif 1 tiy
=10log {—/ 1001 Earar® gy 4 - / 100-1Eaz.ar(®) gy
tio

o o t20

o

1 [t
[tif t2y) : SELy = 10log L— / 1001 Ea2,aet) gy
t20
(too — t10) SEL1 & (t1f — tao) SEL12 @ (tay —t15) SELo

[tlo,tgf] : SELG =

toy — t1o
1 ta0
=10log{ ————[(t20 — tm)/ 100-1Lax(®) gy
752f _ttlo tio .
1f 1f
+(tay - tzo)/ 100t + (t1; tzo)/ 107t
tap t20

taf
+(tay — tiy) / 102154200 g¢]}

t1f
[7]
whereSFE L is the two-aircraft noise angd means the sound adding. In fatty; (¢)
is the A; Aircraft jet noise given by the formula [5] :
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w ‘/e 7.5 2
L41(t) =141+ 10log (p—pl) + 10log (7) + 10log s1 + 3log <71-—212 + 0.5>
1

(1 821}%)4

me )

+5log = + 101og (1 - “—2) t123 W/ 90log R4+ AV
T2

vt (1 T 8—2)3
p \2/ ¢\ °1
s | (-2 (25
[8]

Where one hasw; is the jet speed at the entrance of the nozzlethe speed jet at
the nozzle exity; the inlet temperature of the nozzle, the temperature at the nozzle
exit, p the density of airp; the atmospheric density at the entrance of the nogzles
the atmospheric density at ground,the fully expanded primary (inner) jet areg, the
fully expanded secondary (outer) area jét,the inlet diameter of the nozzle hydraulic
engine,V, = v;[1 — (V/v1) cos(a,)]?/? the effective speed ¢, is the angle between
the axis of the motor and the axis of the aircraftjhfé source observer distanee the

3(‘/6/0)3.5
0.6 + (V./c)35
the exhibiting variable depending on the type of aircrafte. = 1.1\/5; %2 - 29.7,

S1 S1

exponent variable defined by = — 1, ¢ the sound velocity (m / s)p

me = 6.0; 2 > 29.7,the termAV = —15log(Cp(M.,0)) — 10log(1 — Mcost),
S1

means the Doppler convection whéfy (M., 0) = [(1 + M.cosf)* + 0.04M2], M the

Mac Number aircraff/. the convection Mac NumberM, = 0.62(v1 — Veos(ayp))/c,

0 is the Beam angle.

The expressiorl. 42(t) is the noise of the aircraftl; and it is written as above. By
injecting the equation (8) into (7), we have the objective function
Jai2(y(.),u(.)) = SELg = [, g(y(t),u(t),t)dt. SELc means the two-aircraft noise.
The first relation of equation (1) is then written :

mip Jona(y():u() = [ oy(e).u(O)e+ o(y(T))

when the functionay = SELq. If ¢(y(T')) = 0, the cost function becomes

Jan(y()u() = / g (8), wi (8), £)dt

0

4 / 7 gia(ya(6), w (), y2(t), ua(t), t)dt
t20

+/t2f gg(yg(t),llg(t),t)dt.

20
The functiong;2(t) above reflects the coupling between the two-planes noise levels.

Returning to the third equation of system (1), one has the constraints. In the following
section, the exact formulation of this equation will be shown.
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2.4. Constraints

The considered constraints concern aircraft flight speeds and altitudes, flight angles
and control positions, energy constraint, aircraft separation, flight velocities of aircraft
relative to the earth and the aircraft mass. Some constraints are shared for the two aircraft,
others are not.

1) The vertical separation given 8¢, = = Z¢, — Z¢ whereZg ,Z¢, are res-
pectively the altitude of the first and the second aircraft Zad, the altitude separation.
2) The horizontal separatiokig, , = Xg, — Xg, [17, 18, 19] whereXg, , X¢,
are horizontal positions of the first and the second aircraft and their separation distance.
3) The aircraft speedt,, must be bounded as followis3V, < V,, < V;y where
Vs is the stall speed;; is the maximum speed arld, = 1.3V, the minimum speed of
the aircraft4; [20, 16]. The roll velocity of the aircraft relative to the eagthe [p;o, pif],
the pitch velocity of the aircraft relative to the eagthe [¢;0, ¢;¢] and the yaw velocity
of the aircraft relative to the earth € [r;o, ;¢ are also considered .

4) On the approach, the ICAO standards and aircraft manufacturers require flight
angle evolution as follows : attack angle, € [w,, o], the inclination angl®; <
[0i0, 0;¢] and the roll angle; € [¢io, dif].
5) The aircraft controla(t) = (i, (t), 9, (t); On, (1), 0z, (t)) keeps still between
the positiony;;o andd; ¢ for the roll control,d,,,,0 andé,,.; ¢ for the pitch controlg,,;o and
Oniy for the yaw control and;o andd,;s for the thrust.

6) The massn; of the aircraftA; is variable :m;o < m; < m;s. This constraint
results in energy consumption of the aircraft [13, 21].

On the whole, the constraints come together under the relationship :

kli : R12 X R4 — R16; kll(y7(t)7u1(t)) S O’ [9]
kgi : R12 X R4 — RIG, k21(y1(t)7uz(t)) >0

where

ki (yi(t),ui(t)) = (oi(t) — aug, 05(t) — Osp,0i(t) — ig, di(t) — dig, Va, (t) — Vaiy,
X&) = X&ip, YE, () = Y&ip, 28, (1) — Z2i5,pi(t) — Dig, ai(t) — dif,
7i(t) = Tif,01,(t) = 01, f O, (£) = Omif, Ony () = Onif, 0z, (8) — Oip, mi(t) — miy)
k2z(y (t),u;(t)) = (ai(t) — o, 0i(t) — io, Yi(t) — Vio, 9i(t) — dio, Va, (t) — Vaio,
&, () = X0, Y&, (8) — Yios 2, (t) — Z&i0: pi(t) — Pio, ¢i(t) — dio,
7“1'(75 — 740, 01, (t) — 01,05 Om; (£) — Omio, On, (t) — Onio, O, (t) — Ozio, mi(t) — mio).
[10]
The digital applications considered for the two-aircraft [5, 8, 13, 16] are confined in
Table 1 in appendix.
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2.5. The explicit formula of the two-aircraft optimal control problem

In this section, by combining relations (3), (6), (7) and (9), the problem (1) takes the
following form

tiy t1y tay
min Jg12(y(.),u(.)) = / g1dt +/ g12dt —|—/ godt,
ueu ) ) ¢10 120 £20

y(t) = f(u(?),y(t)),y(0) = yo,u(0) = uo, [11]
ki (yi(t),ui(t)) <0,
kgi(yi(t), ui(t)) > O,Vt S [tlo, tgf],

where

a(y1(t),us(t)) = (tay —ti0) *(ta20 — t10)1001Ear(®)
gia(y(t),u(t)) = (tay — t10) " (t1y — tap)100-1EarOFLaz(t))
g2(y2(t), ua(t)) = (tay —ti0) " (tay — tay)100 b4 ("),

For the two-aircraft optimal control problem as posited in relation (11), several possi-
bilities exist for its resolution. In the literature, we find firstly a theory based on direct
methods and non-linear programming, secondly a theory based on indirect methods. In
this paper, one tests the first theory based on the newton method approach and SQP me-
thods. The main advantage of Newton’s method is its quadratic convergence and as for all
other recurring methods, just one starting point is needed to initialize the whole iterative
process [22].

3. SQP methods and KKT-optimality conditions

3.1. The optimality conditions for the optimal control problem

In System (11), one has a problem of optimal control with mixed constraints. By
puttingx = (y, u), the problem can be transformed in the following system :

min Jg12(x(.))
y=f(x)
n;(x) <0,j €2 [12]
n;j(x)>0,7€T
The expressions, I" are the sets of equality and inequality indices. The Lagrangian of
the system (12) is defined by the functidiix, \) = Japi2(x) + AT[b(y, %) + n(x)]
where the vectoh is the Lagrange multiplier anilly, x) =y — f(x) = 0.
— An inequality constraint; is active at poing = (y*, u*,t*) if n;(y*,u*,t*) = 0.
I(y*,u*, t*) = I'* is the set of indices j corresponding to active constraintg,in
I'f ={j e [.(\p); > 0}

I = {j e T.|(\}); = 0} [13]

where the constraints of indéxX" are highly active and those &¥ weakly active.

— An elemeng € I'* verify the condition of qualifying for the constraintsif the
gradients of active constrairnz=(y), Vnr(y) are linearly independent. This means
that the Jacobian matrix of active constraintsginis full.
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— An elemeng € I'* satisfies the qualification condition of Mangasarian-Fromowitz
for constraintsn in y if there exists a direction d such that

Vnz(¥)Td =0
Vn;(y)'d < 0Vj € T(¥) [14]

where the gradienfVnz=(y)} are linearly independent.

The Karush-Kuhn-Tucker optimality conditions : Consider that/¢12, n functions of
C! class andy a solution of the problem (14) which satisfies a constraints qualification
condition. So,there exists* such that :

nr(y) <0 [15]
A >0
e (3) = 0.

The (15) equations are called the conditions of Karush-Kuhn-Tucker(KKT). The first
equation reflects the optimality, the second and third the feasability conditions . The other
two reflect the additional conditions and Lagrange multipliers corresponding to inactive
constraints:j(y) are zero. The couplgr, A*) such that the KKT conditions are satisfied

is called primal-dual solution of (12). Sg,is called a stationary point.

The necessary optimality conditions of second ordef23] : Takingy a local solution

of (13) and satisfying a qualification condition, then there exist multip(i&t$ such that

the KKT conditions are verified . So we haV€ | L(g, \*)d.d > 0Vh € C, whereC., is

a critical cone.

The sufficient optimality conditions of second order[23] : Suppose that there exits
(A*) which satisfy the KKT conditions and such that, L(y, \*)d.d > 0Vh € C.\{0}.

Soy is a local minimum of(13).

3.2. SQP Method

The system (11) results in the following equations :

min Jc(;lg)(x())

y=1/f(x

nj(x) <0,j€& [16]
nj(x) > 0,j el

The expressions, I' are the sets of indices of equality and inequality. An SQP method
solves a succession of quadratic problems :

1
min VJ(Xk, tk)dk + §dngdk

va(y]Ca xk)dk + b(Yk, Xk) =0 [17]
Vnz(xk, tr)dg + nz(xk, tr) <0,
nr(Xk, tr)dr + nr(xg, tg) > 0.
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To solve this problem listed above, choose some subsets of indicesl’, =, € =. So,
the system becomes only system with equality constraints :

1
min VJ(Xk, tk)dk + §d£dek

VT b(yk, xk)dk + b(yr, xx) =0 [18]
Vnz, (XK, te)di + nz, (Xk, te) =0,
Vngk (Xk, tk)dk + ng, (Xk, tk) =0.

The vectoly is a primal-dual displacement aiif), the Hessian matrix of the Lagrangian.
We used a method of Newtonian approach[24].

3.3. SQP algorithm and added transfomations

1) Choose the eligible initial conditions for the optimal solution of the problem

2) Problem approximation with a quadratic programming problem with linear
constraints at timeé,,.

3) Solve the problem for an eligible descent direction at tine

4) Verify the arrest conditions, {id? = 0), write the solution. Otherwise, proceed
to the evaluation of the Hessian matrix, the primal and dual variables, do a linear search
to find it.

5) Increment the solution vector at timg, ; and return to Step 2.

This algorithm above must be transformed because the two-Aircraft problem is non-
convex. For improving the robustness and global convergence behavior of this SQP al-
gorithm, it must be added with the trust radius of this form :

IDAXk|l, <A, p € [1,00] [19]

where D is uniformly bounded and;, = Axj . The relations (18) and (19) form a
guadratic program whem= oc.

So, the trust-region constraint is restated-ase < Dz < Ae,e = (1,1,1,...,1)T.

If p = 2, one has the quadratic constraikk? DT DAx;, < AZ. In the following, we
develop the convergence theory for any choice pfst to show the equivalence between
the||.||, and]|.||2. By the combination of some relation of (17) and the relation (19), all
the components of the step are controlled by the trust region. The two-aircraft problem
takes the following form

. 1
min[Qc1a (k)] = V7 Ja1a (xk) Axie + 5 (Ax) T Hi Ax
Xk

Vb (v, xk)Axk, + b(¥r,xx) =0
Vnz(xp)Axy, + nz(xk) <0
VTnr(xp)Axy 4+ nr(xg) > 0
[[DAxk|[, < A,p € [1,00]

[20]

In some situations, all of the components of the step are not controlled by the trust region
because of some hypotheses on D. There is an other alternative which allows the practical
SQP methods by using the merit function or the penalty function to measure the worth of
each point x.

Several approaches like Byrd-Omojokun and Vardi approaches exist to solve the sys-
tem (12) [25]. It can also be solved with the KNITRO, the SNOPT and other methods
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[26]. In the latter case, we have an ordinary differential system of non-linear and non-
convex equations. The uniqueness of the solution of the quadratic sub-problem is not
guaranteed. It therefore combines the algorithm with a merit function for judging the
quality of the displacement. The merit function can therefore offer a way to measure all
progress of iterations to the optimum while weighing the importance of constraints on
the objective function. It is chosen ig norm particularly the increased Lagrangiap
because of its smooth character. So, in the equation above, one replacds; LThwus,

this transforms the SQP algorithm in sequential quadratic programming with trust region
globalization 'TRSQP’. Its principle is that each new iteration must decrease the merit
function of the problem for an eligible trust radius. Otherwise, we reduce the trust radius
Ax e for computing the new displacement. A descent direction is acceptable if its reduc-
tion is emotionally positive. The advantages of the method are that the merit function will
circumvent the non-convexity of the problem. This approach shows that only one point is
sufficient to start the whole iterative process [24, 27, 28].

Meanwhile, we use an algorithm called feasibility perturbed SQP in which all iterates
x, are feasible and the merit function is the cost function. Let us consider the perturbation
Ax;, of the stepAx; such that

1) The relation }
X+ Ax € F [21]
whereF is the set of feasible points for (12),
2) The asymptotic exactness relation

1A% — Axll2 < ¢(||Ax[2)]|Ax]]2 [22]

is satisfied where : R™ — R™ with ¢(0) = 0.
These two conditions are used to prove the convergence of the algorithm and the effec-
tiveness of this method. The advantages gained by maintaining feasible iterates for this
method are :

— The trust region restriction (19) is added to the SQP problem (18) without concern
that it will yield an infeasible subproblem.

— The objective functio/¢2 is itself used as a merit function in deciding whether to
take a step.

— If the algorithm is terminated early, we will be able to use the latest itetatas
a feasible suboptimal point, which in many applications is far preferable to an infeasible
suboptimum.

4 The TRSQP algorithm and convergence analysis

Assume that for a given SQP steyx;, and its perturbatiom\x;, the ratio to predict

decrease is ~

_ Jai2(xk) — Jaiz(xx + Axy)
—Qac12(Axy)

The two-aircraft acoustic optimal control TRSQP algorithm is written as :

Tk [23]

1) Letxo(k = 0) a given starting pointA > 1 the trust region upper bound,
Ao € (0, A) aninitial radius,e € [eg, €7) andp € [1, 0]
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2) CalculateAx;, by solving the system

. 1
IAH)lcn[QGm(Xk)] = V7T Jg1a(xk) Axy, + E(Axk)THkAxk

VIbfb(ye, xk) Axk + b(yi, x) = 0
VTTLE (Xk)AXk + n= (Xk) <0
VInr(xp)Axy 4+ nr(xg) > 0
||DAX1€||;D <Ape [1’00]

Seek alsa\x;, by using the system

X + A;(k cF
[[Ax — Axpll2 < o(]|Axk|2)|[Axk][2

This algorithm consists to find the zero of the derivative of a cost function using Newton’s
method (the hessian is approximated by BFGS) as the direction of Newton brought down
the cost and seek a direction by the trust region method otherwise. The cost function is a
local quadratic model in a trust region.

3) If no such for the perturbed counterpatt,, is found, the following affectations
are considered.

1
AXpy1 — (§)||DkAXk||p
Xk41 < X Dpg1 < Di;

Jar2(xx) — Jara(xp + Axy) |

4) Otherwise, calculate, = = :
—Qc12(Axy)

. 1
ifry <ep, Apyr < (§)||DkAXk||p?
else If’l“k > apg X € and”DkAXka = Ak
Ak+1 — min(2Ak, A) )
elseAy11 — Ag;

5) If rj, > € X1 < Xi + Axy ; Choose the new matriy, ., ; ;
elsexy 1 « Xp; Dyy1 < Dy;

6) end.

At each major iteration a positive definite quasi-Newton approximation of the Hessian of
the Lagrangian function, H, is calculated using the BFGS method, whetre= 1, ..., m,
is an estimate of the Lagrange multipliers.

Hyor = Hy + 8% HisiseH
ay sk sT Hysy,

where
Sk = Xk+1 — Xk,
ar = (VJgiz(Xp41 + Z?’zl A Vn(xgt1) + b(Xk41))

—(VJaiz2(xk + Y A;.Vn(xg) + b(xy))
=1

A positive definite Hessian is maintained providigfjs;, is positive at each update and
that H is initialized with a positive definite matrix. This algorithm is implemented by
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AMPL language programming and the KNITRO solver [29, 30].

Analysis of the algorithm and its convergence Let us define the sdiy as follows :

Fo = {x|VTb(y,x)Ax + b(y,x) = 0, VI nz(x)Ax + nz(x) = 0,
VTnr(x)Ax + nr(x) > 0, Joi2(x) < Jai2(x0)} € F

The trust-region bounlDAx ||, < A, p € [1, oo] specifies the following assumption.

1) There exists a constaftsuch that for all points € F¢ and all matrix D used
in the algorithm, we have for anfx satisfying the following equations

VIb(y,x)Ax + b(y,x) = 0, VInz(x)Ax + nz(x) = 0, VInp(x) Ax + np(x) > 0

that
B7H|Ax]|2 < ||DAX]|, < Bl|Ax||s [24]

2) The level seF is bounded and the functiong;;2, b, n are twice continuously
differentiable in an open neighborhodd(Fy) of this set.

Under certain assumptions as shown in [31], this algorithm is well defined.

In this paragraph, one wants to prove that the algorithm has a convergence to stationary
point of (13). If we consider that all assumptions hold for each feasible pdimt (12),
the Mangasarian-Fromowitz are satisfied for constraints. After all, the KKT optimality
conditions are specified and that shows that there is at least a local convergence. With
other added conditions as shown in [31], the global convergence is held.

4. Numerical experiments and results

The following result are obtained with AMPL (A Mathematical Programming Mode-
ling Language) and KNITRO as a solver. Matlab is requested as the graphic visualization
programming language.

Figure 1, 2 and 3 are plotted without considering optimization. These show noise le-
vels around the airport inside to explain why our model is very important and which gain
is carried when compared with the actual situation. One considers the following zone :
x = —2500 : 250 : 2500,y = —2500 : 250 : 2500, h = 0. As the meshing step is 250m,
we have For each meshing point, a vector of N values on noise level as the discretization
shows. For each observation point, one has a vector of N noise level values as the discre-
tization shows. It is better to take the maximum value among the N values of noise level
matched with the shortest distance between the observer and each plane. On the runway,
the touch down position (m) i, 0, 0). The difference between these noise leves on floor
for the first aircraft and the second is that when the first plane hit the ground, the second
is still at six hundred meters of altitude as shown by the sepation constraints.

The optimal solution is found with the following KNITRO output optimality conditions :

Multistart stopping, found local optimal solution.
MULTISTART : Best locally optimal point is returned.
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The first—Aircraft noise levels (dB(A)) around the airport.
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Figure 1. Al aircraft noise levels
The second—Aircraft noise levels (dB(A)) around the airport.
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Figure 2. A2 aircraft noise levels
EXIT : Locally optimal solution found.
Final objective value = 5.07801676962590e+01
Final feasibility error (abs / rel) = 1.95e-07/5.11e-09
Final optimality error (abs / rel) = 6.52e-07 / 6.52e-07
Number of iterations = 56
Number of CG iterations = 114
Number of function evaluations = 61
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The two Aircraft noise levels (dB(A)) around the airport.
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Figure 3. Two-aircraft global noise levels

Numberof gradient evaluations = 57

Number of Hessian evaluations = 56

Total program time (secs) = 150.33360 ( 150.289 CPU time)
Time spent in evaluations (secs) = 125.97791
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Figure 4. Aircraft optimal noise levels
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Figure 4 shows the noise levels when the optimization is applied and the solutions
obtained. The observation positions &€0000 m, —20000 m, 0 m) for ON Ly,
(—19800 m, —19800 m, 0 m) for ON Lo, ..., (=200 m, —200 m,0 m) for ONLy,. In
this figure, the legen@ N L means optimal noise level. As specified, noise level increases
and is maximum when the observation point lies below the aircraft. Noise levels decrease
gradually as the aircraft moves away from the observation point. This is confirmed by
Khardi analysis [32]. By comparison, this result is also close to standard values of jet noise
on approach as shown by Harvey [6, 33]. To conclude, numerical calculations carried out
in this paper are efficient and fitted with experimental and theoretical researches related
to acoustical developments.

Figure 5 shows the trajectories which reflect a path in one level flight followed by
a continuous descent till the aircraft touch point. The aircrafts’ landing procedures are
sufficiently separated. It is obvious that each aircraft follows its optimal trajectory when
considering the separation distance. Constraints on speeds described in the previous table
are considered, allowing a subsequent landing on the same track. Thus, as recommended
by ICAQ, the security conditions are met and flight procedures are good as shown by the
presented results. The maximum altitudes consideregb@fiern and4100 m for the first
and the second aircraft. The duration approadiiss for the first aircraft an@90 s for
the second. This figure shows that after some time, we have obtained the same optimal
trajectory for the two-aircraft even the procedures are different. This shows the aircraft
trajectory resulting from the two trajectories combination. This figure also shows aircraft
speed evolution during landing. For the first, the aircraft speed decreasezfdony s to
140 m/s and keeps a constant position till the end of the aircraft landing. This evolution
remains the same for the speed of the second aircraft.

Figure 6 shows the aircraft flight angles as recommended by ICAO during aircraft
landing. As specified by this figure, the aircraft roll angles oscillate around zero, the
flight-path angles are negative and keep the recommended position for aircraft landing
procedures. This is the same for the attack angles. Angular variations confirmed the air-
craft aerodynamic stability and the flight safety.

Processing calculation provided that the aircraft throttle position is kept congtént (
during the landing procedures. The two-aircraft roll velogity p-, pitch velocityq:, ¢-
and yaw velocity;, r2, both related to earth frame, are obtained and they have a constant
behavior. The behavior of the finesse also confirms the stability of the aircraft flight and
reflects the flight procedures characteristic as shown by figures 5 and 6.

5. Conclusion

We have developed a numerical computation of two aircraft optimal control issue.
An algorithm for solving the optimal control model has been developed. The algorithm
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Figure 5. Aircraft optimal flight paths and speeds

minimizes a sequence of merit function using a sub-problem of the quadratic problem at
each step for all active constraints to generate a search trust direction for all primal and
dual variables. An optimal solution to the discretized problem is found through a local
convergence. This solution show a noise reduction during the approach by considering
the configuration of several observers. The results obtained present more interesting and
acoustically efficient trajectory characteristics and performances.
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Figure 6. Aircraft flight angles

Further research is needed to generalize the model by combining the perceived noise
levels and the fuel consumption by aircraft as objective function using the goal program-
ming technique. This work can also be extended to the case when the second aircraft is
delayed 90 s while the two-aircraft flight paths arise the same.
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Appendix

In this appendix, we present the technical elements, but useful for understanding the
paper. We report here the complete equations to describe the two-aircraft dynamics. All
the coefficients in these equations are already defined in this paper. The first aircraft dy-
namics equations are :

: 1 , 1 , .
Vo, = m—l[—Trngsm'ya1 — §pSiVa21 Cp + (cosag, + sinag, )Fy, — myuq],
1

1 .
m[mlgcos%lcosual — 5/)5’1‘/51 Cr, + [cosaq, — sinag, | Fy,
aq al

Qg =

. ) 1
—rwi], p1 = {rna(B-0C) - Epig1 + 5/)51”/(31011}

s AC — E? /

+m{p1Q1(A —B)—Eriq1 + 5,0;%“/% Chn1},

@ =pglnp(d-0) - E(p} —1¥) + §P51Wa,210m1},
1 9 A

= J0 — g2 na(B = O) + Epigr + 5pS1lVe, O + m——5 {na(4 - B)

1 . . .
—FEriq; + EpsllVan Cn1}s X&, = Va,€08Ya,€08Xay, Y&, = Va,€05Ya, 8iNXa,,

71

Z¢, = —Va, 8inYa,, q51 = p1 + qi1sing1tanby + ricospitanbdy,

. . . stngy coSP1

th = qicospr — r1singy, Y1 = 1 1,
cost costy

(¢ —p—1)VO
Bl (L+ i)y G+ 0.2ME 24\ — (1= A)M,

The second aircraft dynamics equations are :

myp = —2.01 x 1072 F;.

[25]

. 1 ) 1 . .
Vo, = m—[—mggsm%2 — §pSQVaQZCD + (cosaq, + sinag, ) Fy, — maus],
2

1
yy = [Ma2gcosya, cospia, — EpSinz CL, + [cosag, — sinag,|Fs,

ma Vg, c080q,

. . 1
—1haws], P2 = 5172¢2(B — C) — Epaga + 505'2”/@22012}

B AC - E .
t g —pe P2a2(A = B) — Eraqa + 3PSV, Cna},

. 1 A E _1 V
. B{ Ty 2( C) (p% T%) + 5 pSol anCmQ}a
f2

. 1 —A
Fy = m{qu(lg — C) + Epago + §pSQZVa22012 + 5 {pag2(A — B)

—FErogs + 5,052“/{32 Ch2}, be = V4,€08%4,C08X as YC‘;’Q = V4, C08Yay SiNXay,
Zg;z = Vo, 8iMYay, G2 = P2 + qasingatanby + rocospatants,

: . . sin coS
02 = q2cospa — Ta5iNGa, Y2 = b2 Q2 b2 T2,

costs cosf(g /6

®—pu—£)/6
me = —2.01 x 107° ( ) F.
511 (14175 0) /G + 0.2MF 2N — (1 — \) Mo
[26]
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The limit numerical values for the two-aircraft flight dynamiare confined in the
following table :

Maximum value Minimum value

Valf = Vagf = 200 m/s ValO = Vag() = T73.45 m/s
Zglf=35><102m Zéo=0m

28y = 41 x 102 m Z800 = 0m

Si1p = Oy = 0.0174 Ji10 = O30 = —0.0174
Omif = Omay = 0.087 0m10 = Om20 =0

5n1f = 5n2f =0.314 0n10 = On20 = —0.035
Op1f = 02 = 0.6 0210 = dz20 = 0.2

Qq1f = Qgap = 12° 010 = Q20 = 2°

Oarf = Oaoy = 7° Oa10 = Oa20 = —7°

Yalf = Yazy = 0° Ya10 = Ya20 = —5°

Half = Ma2f = 3° Hal0 = Ha20 = —2°

Xalf = Xa2f = 5° Xa10 = Xa20 = —5°

Galf = a2y = 1° $a10 = Gaz0 = —1°

Ya1f = Yazp = 3° Ya10 = Pa20 = —3°
t1f26005,t2f:6455 tl():OS, t20=455

mio ~ 1.1 x 10° kg, mis ~ 1.09055 x 10° kg,
mao ~ 1.10071 x 10° kg may ~ 1.09126 x 10° kg
A =5.555 x 10° kg m? B =9.72 x 10° kg m?

C = 14.51 x 10% kg m? E = —-3.3 x 10* kg m?
pif =pof =171 P10 = p2o = —1°s71

qif = qof = 3.6°s7! qi0 = q20 = 3°s7!

rip =Top =12°s71 rip = roo = —12°s7 L,
Ziop >2x10% ft ~6x 102 m | Z120 =2 x 10® ft ~ 6 x 102 m
XG12f25NM29><103m XGro =D NM ~9x 103 m

Tablel. Limit digital values for the two-aircraft flight dynamic
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