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RESUME. Une fonction de hachage cryptographique est une procédure déterministe qui compresse
un ensemble de données numériques de taille arbitraire en une chaine de bits de taille fixe. Il existe
plusieurs fonctions de hachage : MD5, HAVAL, SHA... Il a été reporté que ces fonctions de hachage
ne sont pas sécurisées. Notre travail a consisté a la construction d’'une nouvelle fonction de hachage
basée sur une composition de fonctions. Cette construction utilise la NP-completude des tables de
contingence de dimension 3 et une relaxation de la contrainte selon laguelle une fonction de hachage
doit étre aussi une fonction de compression.

ABSTRACT. A cryptographic hash function is a deterministic procedure that compresses an arbitrary
block of numerical data and returns a fixed-size bit string. There exists many hash functions: MD5,
HAVAL, SHA, ... It was reported that these hash functions are no longer secure. Our work is focused
on the construction of a new hash function based on composition of functions. The construction used
the NP-completeness of Three-dimensional contingency tables and the relaxation of the constraint
that a hash function should also be a compression function.

MOTS-CLES : NP-complet, fonction & un sens, Matrice des zéros et des uns, table de contingence
de dimension 3, fonction de hachage résistante aux collisions.

KEYWORDS : NP-complete, One-way function, Matrix of zeros and ones, Three-dimensional contin-
gency table, Collision-resistant hash function.

ARIMA, Vol. 14 - pp. 167-183



168 ARIMA-Volume 14 — 2011

1. Introduction

A cryptographic hash function is a deterministic procedure that compresses an arbi-
trary block of data and returns fixed-size bit string, the hash value (message digest or
digest). An accidental or intentional change of the data will almost certainly change the
hash value. Hash functions are used to verify the integrity of data or data signature.

Let us suppose thédt: X — Y is a hash function without key. The functiaris secured
if the following three problems are difficult to solve.

Problem 1 : First Preimage attack
Instance :a functionh : X — Y and animageg € Y
Query: z € X suchthati(z) =y

We suppose that a possible hasks given, we want to know if there existssuch
thath(xz) = y. If we can solveFirst Preimage attackthen(zx,y) is a valid pair. A hash
function for whichFirst Preimage attaclcan’t be solved efficiently is sometimes called
Preimage resistant

Problem 2 : Second Preimage attack
Instance :a functionk : X — Y and an element; € X
Query: x5 € X suchthate; # x2 andh(x1) = h(z2)

A message; is given, we want to find a message such thates # 7 andh(z;) =
h(x2). If this is possible, therixzs, h(x1)) is a valid pair. A function for whictSecond
preimage attaclcan't be solve efficiently is sometimes call8dcond preimage resistant

Problem 3 : Collision attack
Instance :a functionh : X — Y
Query: x1,xz9 € X suchthate; # a2 andh(x1) = h(zs2)
We want to known if it is possible to find two distinct messagesand x> such that
h(z1) = h(z2). A function for which Collision attack can’t be solve efficiently is some-
times calledCollision resistant.

There exists many hash functions : MD4, MD5, SHA-0, SHA-1, RIPEMD, HAVAL.
It was reported that such widely hash functions are no longer secured [7, 8, 10, 11, 12,
13, 14]. Thus, new hash functions should be studied. The existing hash functions such as
MD4, MD5, SHA-0, SHA-1, RIPEMD, HAVAL... want to achieve two goals at the same
time :

a®) For any inputz, they return a hash af (of fixed length, this length depends on the
hash function choosed)

b°) Preimage resistant, Second Preimage resistant and Collision Resistant.

Our contribution is to separate the two goals defined in paifitandb°). Our hash
function H; is defined as follows :

—H3 = H20H1,
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— H> is a classical hash function such as MD5, SHA-0, SHA-1, RIPEMD, HAVAL,

— Given ay, find z such thatd; (z) = y is NP-Complete,

— Findz, x2 such thatr; # xo andHy(z1) = H;(z2) is NP-Complete,

— For any inpute, the length offH; (x) is not fixed. This is the main difference with
the classical hash functions.

The paper is organized as follows : in Section 2, some preliminaries are presented.
Section 3 is devoted to the design of our hash function. Concluding remarks are stated in
Section 4.

2. Preliminaries

Let's define some preliminaries useful for the next section.

2.1. Two-dimensional

Data security in two dimension have been studied by many authors [2, 3, 9, 17]. Let
andn be two positive integers, and |& = (r1,72,...,7y) andsS = (s1, s2,...,s,) be
non-negative integral vectors. Denoted®yR, S) the set of alin x n matricesd = (a;;)
satisfying

a;;j =0o0r 1fori=1,2,...,mand j=1,2,...,n;

n
E ay; =1 for i=1,2,...,m;
=1
m

Zaij:sj for j=1,2,...,n.

i=1

Thus a matrix of 0’s and 1's belongs( R, S) provided its row sum vector i® and
its column sum vector i§. The seRl(R, S) was studied by many authors [1, 4, 5, 6, 16].
Ryser [16] has defined anterchangeto be a transformation which replaces the 2

submatrix :
1 0
B=(4 1)

of a matrix A of 0’s and 1's with th@ x 2 submatrix

0 1
s (Vo)

If the submatrixB, (or B;) lies in rowsk, [ and columns:, v, then we call the interchange

a (k,l;u,v) -interchange An interchange (or any finite sequence of interchanges) does
not alter the row and column sum vectors of a matrix. Ryser has shown the following
result.

Theorem 1 [16] Let A and A* be twom andn matrices composed of 0's and 1's, pos-
sessing equal row sum vectors and equal column sum vectors. AT letmansformable
into A* by a finite number of interchanges.
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Let us consider a matrid € {0,1}"*" € 2(R, S), i.e. its row sum vectoR is such
thatR € {0,1,2,...,n}"™ andits column sum vectdtis such thas € {0,1,2,...,n}".
We define the functiop; from {0, 1}"*" to N2 as follows :

91(A) =R([[RQ)][ ... [|R(n)]]
SIS - -[1S(n)

where|| denotes the concatenation.

2.2. Three-dimensional

Irving and Jerrum [15] have studied the extension of the problem in three dimension
and shown that problems that are solvable in polynomial time in the two-dimensional
case become NP-Complete. Suppose that for a givem x n table D of non-negative
integers, and for eachj, k, the row, column and file sums are denoted®yy, k), C(j, k)
andF (i, j) respectively. In other words :

R(i,k) = ZD(i,j, k)
C(j,k) = D(i,jk)

i=1
F(i,j) = D(i,jk)
k=

1

The following problem is studied by Irving and Jerrum [15] :

Problem 4. Three-dimensional contingency tables (3DCT)
Instance A positive integem, and for each, j, k non-negative integers
valuesR(i, k), C(j,k) andF (i, j)
Question :Does there exist an x n x n contingency tableX of non-negative
integers such that :

> X(i,j, k) = R(i, k)
j=1

S° XG0, k) = €y )

i

Il
-

M=

X(i,4,k) = F(i,j)

B
Il
-

forall 7, j, k ? Irving and Jerrum show the following result :

Corollary 1 [15] 3DCT is NP-Complete, even in the special case where all the row,
column and file sums are O or 1.
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Let us consider a matrid € N™*"*" gych that its row sum matrix is a matrik
such thatR € N"*™ (i.e. R(i, k) € N), the column sum matrix is a matriX such that
C € N**" (i.e.C(j, k) € N) and the file sum matrix is a matriX such thatt’ € N**"
(i.e. F'(i,7) € N). We define the functiop, as follows :

g - NRXnXn _)NBnQ

92(A) =R(LD||R(1,2)[[ ... || R(n, n)|
c, e 2)f...[ICm,n)ll
F,DIIF(,2)]]...]|F(n,n)

Let us consider the following matrice$ and B. We define the element product of
matricesA and B as follows :

Definition 1 Element Product of Matrices of dimension 2
Let A, B € R"*"2 we define the Element product of matriceand B as follows :

C = A .x B; where ¢;; = a;; x b;j for i, j such that

1<i<mnjand1<j<ng

Definition 2 Element Product of Matrices of dimension 3
Let A, B € Rm*m2xns we define the Element product of matriceand B as follows :

C = A.x B; where ¢;j, = ajjr X by, fori, j, k such that

1<i<m,1<j<ngand1<k<ng

3. Design of the hash function

Before the construction of our hash function, let us explain the main idea.

3.1. Explanation of the idea by an example

In page 175 of paper [1], Brualdi gives the example of the following five matrices :

1 10 1 10 1 10
Al = 1 1 0 5 A2 = 1 0 1 3 A3 = 0 1 1
0 0 1 010 1 00
011 1 0 1
A= 110 |;4=[(110
1 00 010
which belong ta((R, S) whereR = S = (2,2, 1). Let us notdV the following matrix :
1 4 9
W=|2 8 18
3 12 27
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Based on theElement Product of Matrixlefined in the previous subsection, it is easy to
verify that :

1 4 0 1 4 0 1 4 0
A W = 2 8 0 i Ag x W = 2 0 8 Az x W = 0 8 18
0 0 27 0 12 0 3 0 0

04 9 0 9
A« W=1_2 8 0| ;:A45.5 W= 8 0
300 12 0

By computation, we evaluate that :
g1(Ay . x W) = 5]]10(|27||3|]12||27 g1(Az . % W) = 5||20||12]|3||16]|18
91(As .+ W) = 5][26]|3[[4][12[[18 91(Aq .+ W) = 13][10[|3[[5][12[[9
91(As .+ W) = 10[[10[12][3[|20[[9

—_

O N =

It is easy to verify thatd;(2,2) # A3(2,2), A1(2,3) # A2(2,3) , A1(3,2) #
As2(3,2) and A, (3, 3) # As(3,3). All these differences imply that

— the second term afy (4, . « V) is not equal to the second term@f(As . « W),
— the third term ofy; (4; . * W) is not equal to the third term @f (As . x W),

— the fifth term ofg; (4, . * W) is not equal to the fifth term af; (A . « W),

— the sixth term ofj; (A; . x W) is not equal to the sixth term @f (As . x W).

More formally, from the construction of;, we can deduce easily that (i, j) #
B(i,7), then:

¢®) the i-th term ofg; (A . « W) would probably be different from the i-th term of
g1(B.x W),

d°) the (n+j)-th term ofg1 (A . + W) would probably be different from the (n+j)-th term

From the fact thaB DC'T" which is related tay, (this is an extension o) is NP-
Complete, we deduce that :

€°) Giveny and a matriX¥/, find a matrixA such thag,(A .* W) = y is NP-Complete.
Our idea is to build a new hash functidéfy such thatiHs = HooH; where
— Hs is a classical hash function such as MD5, SHA-0, SHA-1, RIPEMD, HAVAL,...
— H; is a function which exploits the ideas presentedn, d°) ande®).

Let us denotd”Ones(n) the vector such that Ones(n) € {0,1}" and each of its
elements is equal to 1. Also, let us dendf®nes(n) the matrix such that/ Ones(n) €
{0,1}™*™ and each of its elements is equal to 1. in other words :

VOnes(n); = lwherel <i<n

Mones(n);; = 1wherel <i,j<n

We denoteV, the set of strictly positive natural number defined as follows :

Ny =N\{0} ={1,2,3,4,.. }
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In the next sub-section, we formalize the observation made in pgihndd°) and
we take into account the NP-Completeness of 3DCT to build a new hash function.

3.2. Construction of the new hash function

For any integers andp such thatd < a < —1 + 2P, let us denotéin(a,p) the
decomposition of the integerin base 2 o positions. In other words :

p—1
bin(a,p) = xp—1Tp—2 ... 179 and E ;X 2" =a
i=0

Let us also define the following function :
fo(n) = [loga(n +1)]

fo(n) represents the number of bits necessary to represent any integer betwebnin
base 2.

We also define the following functions :

f1(4) = max ZZA(i,j,k) 1<i<n p,
j=1k=1

fa(4) = max{ A, j, k) :1<j<n}7
=1 k=1

fg(A):maw{ZZAzy, :1<k<n}7
i=1 j=1

fa(A) = maz { f1(A), f2(A), f3(A) } .

fa(A) represents the maximun of sum of amyconsecutive elements of the matrik
belonging to the same row, or to the same column or to the samghlg.(A) represents
the number of bits necessary to representin base 2 the sum af@msecutive elements
of the matrixA belonging to the same row, or to the same column, or to the same file.

Subsequently, in the aim to be more precise, we redefire follows :
92(A) =bin(R(1,1), foofs(A))[|bin(R(1,2), foofs(A))| ... |[bin(R(n,n), foofs(A))]|

bin(C(1,1), foofa(A))|[bin(C(1,2), foofs(A))Il. .. |[bin(C(n, n), foofs(A))ll
bin(F(1,1), foofa(A))|[bin(F(1,2), foofs(A))]| ... [|bin(F(n,n), foofs(A))

Let us define the following problem :

Problem 5:
Instance A positive integem, two binary stringsc andy
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two matricesV, W e Nnxnxn
Query :Find two matricesA, B € {0, 1}"*"x"
such that:

A+#+B
g2(A.x V)=ga(B.x V)=2z
G(A .« W)=go(B.x W)=y

Let us characterize the complexity Bf-oblem5.
Proposition 1 Problem 5 is NP-Complete.

Proof Idea of Proposition 1 :

We want to show how to transform a solution of 3DCT to a solution of Problem 5 .
Without loss of generality, we work in dimension 2. Let us suppose that we want to find a
matrix A € {0, 1}3*3 such that:

> AG,j) = R(i) (1a)
3
> Al j) = C() (1b)

whereR = (3,2,1) andC = (2,3,1).
It is easy to see that the determination of the matrix {0, 1}3*3 which verifies Equa-
tions (1) is also equivalent to determining the mafsixc {0, 1}%*6 such that :

6
> B(i,j) = Rd(i) (2a)
j=1

6
> BGi.j) = Cd(j) (2b)

whereRd = (3,2,1,3,2,1)andCd = (2, 3,1,2,3,1).
Remark 1 : Rd ( respectivelyC'd ) is a duplication ofR ( respectivelyC' ).
It is easy to see that from the matrix :

which verifies Equations (1), we can associate the two following matfsesnd B3
111000

110000
B_(A om)_ 01 000 0
27\ 0343 A “looo0o 111
000110
000010
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000111
000110
B_(om A)_ 0000O0T10
37 A 033/ | 11100 0
110000
010000

which verify Equations (2). This is the idea of the transformation which associates to one

solution of the problem defined in Equations (1) two distinct solutions of the problem

defined in Equations (2).
Before the proof, let us introduce the function duplic (which is pseudo-duplication ) of x.
We note :

x=2z(1)x(2)...2(p) 3)
wherez(i) € {0,1} andp = 3 x n? x [loga(n+1)]. We define the functionas follows :
t(i,n) =i xn X [loga(n+1)]; 0<1i< 3n. 4)
The function duplic is defined as follows :
duplic(z,n) =dcopy(z, 1,n)||dcopy(x,2,n)|| ... ||dcopy(z,n,n)||
dcopy(x,1,n)||decopy(x,2,n)|| ... ||dcopy(x,n,n)||
dcopy(xz,n + 1,n)||dcopy(xz,n + 2,n)|| ... ||dcopy(x,2n,n)||
dcopy(xz,n + 1,n)||dcopy(x,n + 2,n)|| ... ||dcopy(x,2n,n)||
dcopy(x,2n + 1,n)||dcopy(x, 2n + 2,n)|| . . . ||dcopy(x, 3n, n)||
deopy(z, 2n + 1,n)||dcopy(z, 2n + 2,n)||. . .||dcopy(z, 3n,n)
wheredcopy(z,i,n) is defined as follows :
dcopy(x,i,n) = strcopy(x,i,n)||strcopy(x,i,n)
and
streopy(x,i,n) = x(1+t(i — 1,n))z(2+t(i — 1,n))...x(t(i,n))
For illustration,duplic(x, 3) is defined as follows :
duplic(z,3) =x(1) ... z(6)z(1)...2(6)z(7)...x(12)z(7) ... z(12)x(13) ... z(18)x(13) ... x(18)||
z(1)...z(6)z(l)...2(6)z(7)...2(12)z(7) ... 2(12)x(13) ... 2(18)x(13) . . . (18)]|
x(19)...2(24)2(19) ... 2(24)x(25) ... 2(30)x(25) . .. 2(30)x(31) ... 2:(36)x(31) . .. 2:(36)||
x(19) ... 2(24)z(19) ... 2(24)x(25) ... 2(30)x(25) ... £(30)x(31) ... (36)x(31) . . . 2(36)|
x(37) ... x(42)x(37) ... x(42)x(43) ... x(48)x(43) .. . £(48)x(49) . . . z(54)x(49) . . . x(54)||
x(37) ... x(42)x(37) ... 2(42)x(43) ... x(48)x(43) .. . £(48)x(49) . . . (54)x(49) . . . x(54)

Remark 2 : In the definition ofstrcopy(x,i,n), theterme(1+t(i—1,n))x(2+ (i —
1,n))...z(t(i,n)) means the concatenation of all the elements betweemt(i—1,n))
andz(t(i,n)). In otherwords x(1 +t(i — 1,n))x(2+t(i —1,n) ... z(t(i,n)) = (1 +
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ti—1,n)z2+tii—1,n)...2(j) ... x(—1+t(i,n)z(t(i,n)) wherel +¢t(i —1,n) <
j < t(i,n).

Proof of Proposition 1 : It suffices to show thaDC'T <! Problem 5.

Let us suppose that the proced@eneralizesolves Problem 5 and we want to show
how to build a procedur8ol3DCTwhich solves 3DCT.
The procedur&ol3DCTtakes as input a binary string X, an integer n and returns as output
the matrixA of sizen such that;(A) = x. The procedur&eneralizeakes as input :

— p the dimension of the matrices
— two binary strings: andy
— two matriced” andW
and returns as output :
— two matriceg” and D such that :
—q2(C.x V)=go(D.x V)=zxzandg(C .x W)=ga(D.x W)=y
We show in the procedure below how to Useneralize as a subroutine to solI3DCT'.

ProcedureSol3DCT( n : integer, x : string , var A : matrix ) ;
V, W, C, D : matrix
p,i,j,k:integer

Z : string
begin
1: V «— MOnes(2n)
2: W «—— Mones(2n)
3: z «—— duplic(z,n)
4: p—2Xn
5: Generalize(p, z, 2, V,W,C, D)
6: Fori=1tondo
7. Forj=1tondo
8: Fork=1tondo
9: A(i, j, k) «— C(i,4,k) + C(i,5 + n, k)
10: Endfor
11: Endfor
12: Endfor

end

Remark 3 : In the procedureSol3DCT, the matrixA belongs to the sef0, 1}7>™>™,
whereas the matrices, D belong to the sef0, 1}2nx2nx2n,

The stringz of the procedureSol3DCT (see instruction 3) is constructed such that
g2(A) = z if and only if the matrice€” and D defined in Equations (5) and (6) are the
solutions of Problem 5 with the following entries :

— 2n the dimension of the matrices,
— two binary stringg andz,
— two matricesd” andW such thal’ = Mones(2n) , W = Mones(2n).

ARIMA Vol. 14 - pp. 167-183



Collision-resistant hash function 177

The terms of the matriX’ are :

C(i,j, k) = A(i, J, k), if 1 <i4,5,k < n;
C(i,j+n,k)=0, if 1 <i4,5,k < n;
Cli+mn,j,k)=0, if 1 <4,5,k < mn;
Cli+n,j+nk)=A®,75k), If 1 <45k <n; (5)
C(i,j,k+n)=0, if 1 <i4,5,k < n;
Ci,j+nk+n)=A®,5,k), if 1 <i,jk < n;
Cli+n,j,k+n)=A(,7k), If 1 <45k <n;
Cli+n,j+n,k+n)=0, if 1 <id,j,k<n.
The terms of the matrix0 are :

D(i,j,k) =0, if 1 <4,5,k <mn;

D(i,j+mn, k)= A(i, 4, k), if 1 < 14,5,k < n;

D(@i+n,j, k)= A(, 4, k), if 1 < 14,5,k < n;

D(i+mn,j+n,k)=0, if 1 <4,5,k < mn; (©)

D(i,j, k+n) = A(, 4, k), if 1 <i,5,k < n;

D(i,j+n,k+n)=0, if 1 <4,5,k < mn;

D(i+mn,j,k+n)=0, if 1 <i,5,k<mn;

D@GE+n,j+nk+n)=A3,5k), if 1 < ik < n.

The main idea of the design of the Collision-resistant hash funéfipis that :
— the hash functio{; is the composition of two functiond; andH-,

— the functionH; is a function for whichProblem 1 Problem 2andProblem 3can't
be solved efficiently andf; is not a compression function.

— Hs is a hash function such as SHA-256, RIPEMD, or HAVAL, ....

Notation 1 Let us consider two vectofg andV;. We say thal; is not a linear combi-
nation ofV, and we notd/ is NLC ofV4 if and only if A« € R such thatl; = aVs.
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Two matricesF, G € N """ verify the hypotheses (7) if and only if :

F#£G (7a)
Vi, 7 such that 1 <14, j < n, the vector F(i, ], ) is NLC of the vector G(i, ], *)
(7b)
V4, k such that 1 < j, k < n, the vector F(x, j, k) is NLC of the vector G(x, j, k)
(7¢)
Vi, k such that 1 <4,k < n, the vector F(i, *, k) is NLC of the vector G(i, , k)
(7d)
Vi, 7 such that 1 <4,j < n, the vector F(i,j, *) is NLC of the vector VOnes(n)
(7e)
V4, k such that 1 < j, k < n, the vector F(x, ], k) is NLC of the vector VOnes(n)
(79)
Vi, k such that 1 <4,k <mn, the vector F(i, *,k) is NLC of the vector VOnes(n)
(79)
Vi, j such that 1 <4,j < n, the vector G(i, j, *) is NLC of the vector VOnes(n)
(7h)
V4, k such that 1 < j, k < n, the vector G(x,],k) is NLC of the vector VOnes(n)
(7)
Vi, k such that 1 <4,k < n, the vector G(i, *, k) is NLC of the vector VOnes(n)
(71

The matrices and W used as entries in the proceduiés and H3 below verify
the hypotheses defined by Equations (7). We rdtee empty chain. Let us define the
functionVect M at which takes as input a vectbfect of sizen? and returns as output an
equivalent matrixA of sizen x n x n.

ProcedureVectMat (Vect : Table[1.3] of bit; Var A : Table[1..n, 1..n, 1..n] of bit)
Vari, j, k, t:integer
Begin
t—1
Fori=1tondo
Forj=1tondo
Fork=1tondo
A(i, 4, k) « Vect(t)
t—t+1
endfor
endfor
endfor
End

The functionH; is defined as follows :
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Function H; :
Entry. M, the initial message
V : Table[1..n, 1..n,1..n] of integer
W : Table[1..n, 1..n,1..n] of integer
n :an integer
Output. M5 : an intermediate message
Vari, p : integer
Begin
1. PadM, with one bit equal to 1, followed by a variable number of
zero bits and a block of bits encoding the length\éf in bits,
so that the total length of the padded message is the smallest
possible multiple of?. Let M, denote the padded message
2. CutM; into a sequence of3-bits vectors
By,Bs,...,B;,... B,
3. M2 — €
4.Fori=1topdo
4.1VectMat(B;, A)
4.2My — My || g2(A. %« V) || g2(A. x W)
Endfor
5. returnMs
End

Our hash functiorf/; is defined as the composition of the functiin and H,, where
H, is a hash function such as SHA-256, RIPEMD, HAVAL... The matricendV used
as entry in the hash functiafi; must verify the hypotheses defined in Equations (7). To
obtain the hash of the messabg by H3, we proceed as follows :

— we obtain the intermediate messalye by application of the functiorf; to the
messagé/,

— by application of the hash functidii, to M5, we build the hash of the initial mes-
sage.

Formally, the hash function is defined as follows :

Procedure H; :
Entry. M, the initial message
V : Table[1..n, 1..n,1..n] of integer
W : Table[1..n, 1..n,1..n] of integer
n @ an integer
Output. Result : the hash of the messagé,
Begin
M2 — Hl(MO, V, VV,?”L)
Result «— Hy(Ms)
End

Comment :

We can represent roughly the functiéh as follows :
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(1 (2)

92(A*V) g2(A*W)

3) (4)

()

92(A.*V)||g2(A*W)

(6)

Figure 1. Roughly Representation of the function H,

In the Figure 1:

— the aim of the branches (1) and (2) is to make that the Problem 2 and Problem 3 are
difficult to solve efficiently for the functiots

— the aim of the branch (6) is to make sure that Problem 1 is difficult to solve efficiently
for the functionH;

During some attacks, an adversary is needed to solve the following problem :

Problem 6 :
Instance :Matrices A, V, W
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Binary strings g2 (A . x V) andga(A .« W)
Query :Find a matrixB such thatd # B and :

g2(A.x V)=go(B.x V)
g2(A.x W) =go(B.x W)
Based on Problem 5, we deduce tatblem 6 is NP-Complete.

Second Preimage attack and Collision of the funcfifynare difficult because :

— Problem 5 and Problem 6 are NP-Complete,

— From the fact that” andW verify the hypotheses (7), we deduce that if we take two
matricesd andB such thatd # B, then we would probably havg (A . V)||g2(A . *
W) # g2(B.x V)|[g2(B . x W).

First Preimage attack of the functidfy is difficult because the 3DCT is NP-Complete.

Truncated differential attack df; is possible, but the differential attack & is difficult
because 3DCT is NP-Complete and also Problem 5 is NP-Complete.

4. Numerical Simulation

Let's consider the two messages x1 and x2 :

1 =d131dd02c5e6eecd693d9a0698a f f95¢
2 fcabb8712467eabd004583eb8 b7 f89
55ad340609 f4b30283e488832571415a
085125e8 f7cdc99 f d91dbdf 280373c5b
d8823e3156348 f5baebdacd436¢919c6
ddb3e2b487da03 f d02396306d248cda0
€99 133420 f577ee8ce54b67080a80d1e
c69821bcb6a8839396 f9652b6 f f72a70

22 =d131dd02c5e6eecd693d9a0698a f f95¢
2 fcabb0712467eab4004583eb8 fb7 f 89
55ad340609 f4630283e4888325 f1415a
085125e8 f 7cdc99 fd91dbd7280373c5b
d8823e3156348 f5baebdacd436¢919c¢6
ddb3e23487da03 f d02396306d248cda0
€99 33420 f577ee8ce54b67080280d1e
c69821bcb6a8839396 f965ab6 f f72a70
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We have MD5(x1)=MD5(x2)= EFE502F744768114B58C8523184841F3
after applying our hash function on these messages usiag, V[i|[j][k] = i+85 +64k,
Wil[j][k] =700 — (j + 8 x k + 64 *7) for 1 < i < n we obtain :
H;3(x1)= 5fe0e56f9ad4ab66a47d73ce660a2cdeb and
H3(x2) = 620e2f3cfe0afc403c0a8343173526fc.
It follows that M D5(z1) = M D5(x2) whereasHs(x1) # Hs(x2).

5. Conclusion

From a classical hash functidifi,, we have built a new hash functidifi; from which
First Preimage attack, Second Preimage attack and Collision attack are difficult to solve.
Our new hash function is a composition of functions. The construction used the NP-
completeness of Three-dimensional contingency tables and the relaxation of the constraint
that a hash function should also be a compression function. The complexity of our new
hash function increases with regard to the complexity of classical hash functions.

6. Bibliographie

[1] R. A. Brualdi, Matrices of Zeros and Ones with Fixed Row and Column Sum Vedtiioesar
Algebra and its Applications33, 1980, pp. 159-231.

[2] L. Cox, Suppression methodology and statistical disclosure canitohmer. Statist. Assoc.,
75(1980), pp. 377-385.

[3] I. P. Fellegi,On the question of statistical confidentiallity, J. Amer. Statist. Assoc., 67, (1972),
pp. 7-18.

[4] D. R. FulkersonAn upper bound for the permanent of a fully indecomposable md&agific
J. Math.,10, 1960 , pp. 831-836.

[5] D. Gale,A Theorem on flows in networks, Pacific J. Math1957 , pp. 1073-1082.

[6] R. M. Haber,Minimal term rank of a class of (0,1)-matriceSanad. J. Math15, 1963 , pp.
188-192.

[7] Hongbo Yu, Xiaoyun WangMulti-Collision Attack on the Compression Functions of MD4 and
3-Pass HavallLecture Notes in Computer Sciend&17, Springer 2007, pp. 206-226.

[8] Hongbo Yu, Gaoli Wang, Guoyan Zhang, Xiaoyun Waiidie Second-Preimage Attack on
MD4, Lecture Notes in Computer Scien@810, Springer 2005, pp. 1-12.

[9] M. -Y. Kao, D. Gusfield Hongbo YuEfficient detection and protection of information in cross
tabulated tables : Linear invariant seé6IAM J. Disc. Math., 6 (1993), pp. 460-473.

[10] Xiaoyun Wang, Hongbo Yu, Yiqun Lisa YirEfficient Collision Search Attack on SHA-0
Lecture Notes in Computer Scien@§21, Springer 2005, pp. 1-16.

[11] Xiaoyun Wang, Yiqun Lisa Yin, Hongbo Ywinding Collisions in the Full SHA-1Lecture
Notes in Computer Sciencg621, Springer 2005, pp. 17-36.

[12] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Cheng, Xiuyuan Quyptanalysis of the
Hash Functions MD4 and Ripemdecture Notes in Computer Scien@#94, Springer 2005,
pp. 1-18.

[13] Xiaoyun Wang, Hongbo YuHow to Break MD5 and Other Hash Functigrieecture Notes in
Computer Science494, Springer 2005, pp. 19-35.

ARIMA Vol. 14 - pp. 167-183



Collision-resistant hash function 183

[14] Bert den Boer, Antoon Bosselae@pllisions for the compression functions of MD&®cture
Notes in Computer Sciencé65, Springer 1994, pp. 293-304.

[15] R. W. Irving, M. R. JerrumThree-Dimensional Statistical Data Security Proble@KM J.
Comput., Vol.23, No 1, pp. 170-184, 1994.

[16] H.J. RyserCombinatorial properties of matrices of zeros and gr@anad. J. Math., VoB,
pp. 371-377, 1957.

[17] G. SandeAutomated cell suppression to preserve confidentiality of business statistics, Statist.
J. United Nations ECE 2 (1984) pp. 33-41.

Vol. 14 - pp. 167-183 ARIMA





