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RÉSUMÉ. On considère un modèle de transmission de la bilharziose prenant en compte les hétérogé-
néités. Nous calculons le taux de reproduction de base Nous montrons que siR0 < 1, alors l’équilibre
sans maladie est globalement asymptotiquement stable. Si R0 > 1, alors il existe un unique équi-
libre endémique et celui-ci est globalement asymptotiquement stable. Nous considérons ensuite les
applications possibles à des données réelles.

ABSTRACT. We consider an heterogeneous model of transmission of bilharzia. We compute the
basic reproduction ratio R0. We prove that if R0 < 1, then the disease free equilibrium is globally
asymptotically stable. If R0 > 1 then there exists an unique endemic equilibrium, which is globally
asymptotically stable. We will then consider possible applications to real data

MOTS-CLÉS : Bilharziose, modèles de Métapopulations , hétérogénéités spatiales, systèmes forte-
ments monotones, stabilité globale et locale.

KEYWORDS : Bilharzia, Metapopulation model, Spatial heterogeneity, Strongly monotone systems,
Local and global stability.

ARIMA, Vol. 14 - pp. 1-13



2 A R I M A – Volume 14 – 2011

1. Introduction

Schistosomiasis, also known as bilharzia after Theodor Bilharz, who first identified the
parasite in Egypt in 1851, of all the human parasitic infections, is one of the most wides-
pread. It is second only to malaria in terms of socioeconomic and public health impact in
tropical and subtropical areas. An estimated 200 million people in 74 countries are infec-
ted with the disease -100 million in Africa alone. School-age children are most likely to
become infected with this silent, destructive disease because it is easily contracted while
bathing or swimming in water contaminated with the parasite. Children shoulder the ma-
jority of schistosomiasis’ consequences, especially poor growth and impaired cognitive
function. For communities already burdened by poverty and ravaged by scourges such as
malaria and HIV/AIDS, schistosomiasis is especially devastating.

Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the
genus Schistosoma. The cycle of bilharzia is complex.

Figure 1. The cycle of Schistosomiasis (The Carter Centre/Graphic by Al Granberg) [0]

Larval forms of the parasites, cercariae, which are released by freshwater snails, penetrate
the skin of people in the water. In the body, the larvae develop into adult schistosomes,
which live in the blood vessels. The females release eggs, some of which are passed out
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of the body in the urine or faeces. Others are trapped in body tissues, causing an immune
reaction.

In urinary schistosomiasis caused by Schistosoma haematobium, there is progressive da-
mage to the bladder, ureters and kidneys. In intestinal schistosomiasis, caused by Schisto-
soma mansoni, there is progressive enlargement of the liver and spleen, intestinal damage,
and hypertension of the abdominal blood vessels.

Extensive water development has taken place in the north of Senegal over the last decade,
resulting in a large increase in the amount of fresh water for irrigation. New freshwater
habitats for snail intermediate hosts of schistosomes may be created by the construction of
dams and irrigation projects. Greater opportunities for water contact may lead to increases
of both urinary and intestinal schistosomiasis, as has been observed in villages along
the Senegal river basin. We will work on the data obtained by the research NGO EPLS
(Espoir pour la Santé, Saint-Louis, Sénégal, http://www.espoir-sante.org/ ) in a
walo village named Podor, during a campaign in 2004-2005.

Mathematical models are potentially valuable aids to a quantitative understanding of
schistosome epidemiology and to the design of control programs. The first model Barbour
and others [1, 2] and others have pointed to the potentially strong influence of population
and environmental heterogeneities on parasite transmission in endemic communities. This
work is a preliminary study of the collaboration with EPLS. A basic theoretical model,
inspired from [1], is described that is developed to incorporate the impact heterogeneous
transmission rates, and the effects of control measures. We analyze the asymptotic beha-
vior of this model. This work is the first step of the collaboration with EPLS.

2. The model

We consider l multiple homogeneous populations sites, i.e., patches and m water contact
sites. We can also differentiate between male and female, simply by considering on the
same location two virtual sites : one with males and another with females. This distinction
is to account that different age and sex classes used different sites and also that there are
different types of activity and the time of day of use. Sex-related patterns vary in relation
to behavioural, professional, cultural, and religious factors [10]. Then a human site can be
a subpopulation of a precise geographical site.

In the sequel we will use, for these water contact sites, for briefness, the term pond. As
said, the human sites can be villages or small clusters of humans. Usually in Senegal, the
access to water is not situated in the village. Then a contact water site can either be a
location in the bank of the river Senegal where villager take water or be a pond or a be a
irrigation channel for rice culture . . .
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Figure 2. Contact with, and contamination of water. (source PDRSL, ministère de la santé,
Sénégal)

We denote, as done in [1], by w ∈ Rl
+ the vector of mean worm burden of human, each

component labelled by its correspondng homogeneous patch and by y ∈ Rm
+ the vector

of the density of infected snails in each water site.

This model is generalization of Macdonald model [3]. MacDonald’s model is for one site
for human and one location for water. In this Macdonald model the population of humans
and snails were assumed to be constant. We assume the analogous hypotheses and denote
by N ∈ Rm

+ the vector of number of snails in each pond.

According to MacDonald [3], the rate of acquisition of egg-laying female schistosomes
by the human host population should be proportional to the size of human population, the
amount of water contact par person and per day, and the density of infected snails. The
human population can usually be supposed to be constant, since the time scale over which
it changes is much longer than any of the time scales in the infection process.

Moreover it is assumed, following MacDonald, that the infection of a snail by more
than one miracidium does not increase the rate of release of cercariæ. This is supported
by experimental studies [2]. This explain why the increase in the worm burden depends
only of the density of infected snails and a matrix A which embodies the transmission
from snails to man.

If we considerer a human patch i, the variation of the mean number of schistosomes per
person is given by

ẇi =
m∑

j=1

aij yj − µj wi.

Where yj is the number of patent infected snails in pond j and aij embodies all the
biological process relating to the transmission from snail to human : release of cercariæ,
probability that a cercarial encounter leads to an adult parasite, rate of exposure to pond
j by a human from site i, the number of snails in pond j. Actually the rate of acquisition
should be proportional to the density of infected snails

yj

Nj
, where Nj is the number of
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snails in pond j, we simply incorporate the constant Nj in aij . The parameter µi is the
death rate of the female schistosomes in the human host population of site i. This is to take
the heterogeneity of each site into account. For example a village, or some subpopulation
of a geographical site can have been treated by Praziquantel.

Similarly, if we consider yj the number of infected snails in pond j, we have

ẏj =
(

1− yj

Nj

) l∑
i=1

bji wi − µj yj

Where bij embodies all the factors relating to transmission from man to snail, from the
release of eggs in feces, which is determined by the relation of human of site i to pond j,
maturation of sporocysts within the snail. The factor 1 − yj

Nj
is simply the proportion of

non infected snails. The parameter µj is the death rate of the infected snails in pond j. This
depends of the pond, since that either some measures of control can be applied in some
ponds (e.g. molluscicide, design of irrigation systems . . .), or the ecological situation of
the ponds is different.

The model of these l + m equations can be “vectorialized " and written in the following
system on Rl+m

+  ẇ = Ay − diag(γ)w

ẏ = diag(1− diag(N)−1 y)Bw − diag(µ) y.
(1)

Where A = (aij) is the nonnegative l × m matrix, which captures the snails to human
transmission, B = (bji) is athe nonnegative m × l matrix, which captures the man to
snails transmission. The vector γ ∈ Rm

+ is the vector of death rates of female schistosome
in each human host population site, and µ ∈ Rm

+ is the vector death rates of infected snails
in each water site.

We also note by 1 the vector (1, · · · , 1)T of Rm.

The notation diag(x) represents, if x ∈ Rn the n × n diagonal matrix, whose diagonal
terms are given by the components of x.

The factor diag(1− diag(N)−1 y)Bw represents the transmission from man to snails. It
is linked to the worm burden w in human sites, and the vector of densities of uninfected
snails in the different water sites, which is 1−diag(N)−1 y. This link is carried out by the
matrix B, which embodies the relation of human with water and the biological processes
of transmission from man to snails.

To a n × n matrix M is classically associated a directed digraph G(M) with n vertices
[7] : The graph has n vertices. There is an arc from vertex i to vertex j if, and only if the
entry of row i and column j of the matrix M , M(i, j) 6= 0. Conversely to a graph G of
order n is associated its adjacency matrix adj(G).

The symmetry of contact snail-human implies that we have the relation

adj(G(A)) = adj(G(B))T
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The matrix adj(G(A)) is the adjacency matrix of the digraph associated to A. This is a
matrix whose entries are 0 or 1. Then this relation simply says that if there is a connection
between a human site and a pond, the humans of the site infect the snails and conversely.
The intensity of this connection is given respectively by A ∈ Rl×n

+ and B ∈ Rn×l.

The graph of relation between human patches and ponds is then a bipartite graph. Then
we can just consider the undirected graph associated to the digraph.

This a consequence of biology, this relation says simply that if a human has contact with
water, he can contaminate the pond and also get contaminated.

We will assume, without loss of generality, that the graph of the relations between human
and snails, which is given by the following adjacency block matrix[

0 adj(G(A))
adj(G(B)) 0

]
is irreducible :

The nodes of this l+m order graph are the patches and the ponds. There is an arc between
a patch and a pond and between a pond and the patch if the humans of the patch visit the
pond.

This irreducibility hypothesis is not a loss of generality. Indeed, by symmetry, we can
consider the associated undirected graph. For this graph, the connected components coin-
cide with the strong connected components. Then we can just consider the separate connec-
ted components of the graph, whose behaviors are independent. Hence our hypothesis is
not restrictive.

3. Elementary properties of the model

Hereafter we denote x ≤ y if, for any index i, xi ≤ yi ; x < y if x ≤ y and x 6= y ; x� y
if xi < yi for any index i ;

Since we consider only ponds inhabited with snails (otherwise the pond can be discarded
in the model), we have N � 0.

Proposition 3.1 The set

K =
{

(w, y) ∈ Rl+m
+ | 0 ≤ w ≤ diag(γ)−1N ; 0 ≤ y ≤ N

}
is an absorbing compact set on Rm+l

+ , positively invariant for the system (1).

The proof is straightforward. The model is well posed. The domain K is the biological
domain of the model.

Proposition 3.2
System (1) is a strongly monotone system on the open set K̊ (open set relatively to Rm+l

+ )

K̊ =
{

(w, y) | 0 ≤ w � diag(γ)−1N ; 0 ≤ y � N
}
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Proof
The Jacobian of the system, computed at (w, y), is given by

J(w, y) =

 −diag(γ) A

diag(1− diag(N)−1 y)B −diag(µ)− diag(Bw) diag(N)−1


This matrix is a Metzler matrix (i.e. the off-diagonal terms are nonnegative) and is irredu-
cible, which proves the proposition.

�

4. The basic reproduction ratio

We use the results and the notations of [4], with the exception that we change the sign V .

The disease free equilibrium (DFE) is (0, 0). The part of the Jacobian, computed at
the DFE, coming from the disease transmission is denoted by F and the remaining part is
denoted by V (note this is −V in [4]).

F =

 0 A

B 0

 V =

−diag(γ) 0

0 −diag(µ)


The next generation matrix is given by N = −F V −1 The basic reproduction is the
spectral radius of the next generation matrixR0 = ρ(−F V −1) = ρ(−V −1 F ). Then

R0 = ρ

 0 diag(γ)−1A

diag(µ)−1B 0


Proposition 4.1
The basic reproduction ratio is the square root of the spectral radius of a m×m matrix

R2
0 = ρ

(
diag(µ)−1B diag(γ)−1A

)
This is simply a consequence of the structure of the next generation matrix, and the use
of a Cayley reduction.

5. Stability Analysis

The following theorem gives the complete stability analysis of system (1)
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Theorem 5.1
IfR0 < 1 the DFE is globally asymptotically stable. IfR0 > 1 then the DFE is unstable,
there exists a unique endemic equilibrium p � 0 in K̊, which is globally asymptotically
stable.

Proof
The proof follows from a theorem of Hirsch [4] improved by Smith [5] combined with
the results of Diekmann et al. [6].

From [6] if R0 < 1 the DFE is locally asymptotically stable and if R0 > 1 the DFE is
unstable. The theorem of Smith says

Theorem 5.2 Let F be a C1 vector field in Rn, whose flow φ preserves Rn
+ for t ≥ 0

and is strongly monotone. Assume that the origin is an equilibrium and that all forward
trajectories in Rn

+ are bounded. Suppose that the matrix-valued mapDF : Rn −→ Rn×n

satisfies

x� y � 0 =⇒ DF (x) < DF (y).

Then either all trajectories in Rn
+ tend to the origin, or else there is a unique equilibrium

p� 0 which is globally asymptotically stable on Rn
+ \ {0}.

The Theorem is also true for the set K̊, by adapting easily the Hirsch’s proof to K̊.

The hypotheses of Hirsch-Smith theorem 5.2 are satisfied , for our system, by propositions
(3.1) and (3.2). The Jacobian given in the proof of proposition (3.2) satisfies clearly the
condition

(w1, y1)� (w2, y2)� 0 =⇒ J(w1, y1) < J(w2, y2).

We assume that there exists, in K̊, an endemic equilibrium p > 0. Then p = (w̄, ȳ)
satisfying the equations A ȳ = diag(γ) w̄

diag(1− diag(N)−1 ȳ)B w̄ = diag(µ) ȳ
(2)

Then

diag(1− diag(N)−1 ȳ)B diag(γ)−1A ȳ = diag(µ) ȳ

Equivalently, using the matrix R = diag(µ)−1B diag(γ)−1A, we have, using the com-
mutativity of diagonal matrices.

ȳ = diag(1− diag(N)−1 ȳ)R ȳ < Ry

The strict inequality comes from diag(N)−1 ȳ � 1.

It is a simple consequence of irreducibility, that R is a nonnegative irreducible matrix.
Then we have y < Ry, from [7] Theorem 3.31, we deduce R2

0 = ρ(R) > 1. The
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DFE is unstable. By a theorem of Varga, this implies that the Jacobian, computed at the
DFE is unstable, with the stability modulus positive. The Jacobian at the DFE is given by
J = F + V . If we denote the stability radius of J by s(J), by Perron-Frobenius theorem
we deduce that there exists v � 0 such that

J v = s(J) v

Then when R0 ≤ 1 there is no endemic equilibrium. Hence by Smith result the DFE is
globally asymptotically stable.

When R0 > 1 then the DFE is unstable, and there exists an unique endemic equilibrium
p = (w̄, ȳ)� 0 in K̊, which attracts all the trajectories.

Moreover, since K is absorbing, this proves the global stability of p.

�

6. Stability of the DFE when R0 = 1

During the CARI conference the question of “what happens when R0 = 1" has been
posed. We address in this section this issue

Theorem 6.1
If the network is strongly connected, the DFE is globally asymptotically stable on the

domain Rm p+n × [0, 1]n, whenR0 = 1.

Proof
We use the equivalence between R0 = 1 and s(J) = 0, where s(J) denotes the spectral
bound of the matrix J , i.e., the largest real part of the eigenvalues of J (see for example
[8, 4]. But J is an irreducible Metzler matrix.

Hence there exists a positive vector v = (α, β)� 0 such that JT v = s(J) v = 0 [9].

We have then the following relations for α� 0 and β � 0 AT α− diag(µ)β = 0

−diag(γ)α+BT β = 0.
(3)

We now consider, on the attracting compact K defined in proposition 3.1, the follo-
wing radially unbounded Lyapunov function

V (w, y) = 〈w|α〉+ 〈y|β〉 =
〈[
w
y

]
|
[
α
β

]〉
We write system (1) “vectorially”[

ẇ
ẏ

]
= M(w, y)

[
w
y

]
.

Where the matrix M(w, y) is defined by
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M(w, y) =

 −diag(γ) A

diag(1− diag(N)−1 y)B −diag(µ)

 .
We observe that this matrix is related to the Jacobian M(w, y) = J(0, y).

The derivative V̇ of V along the trajectories of system (1) is given by

V̇ =
〈
M(w, y)

[
w
y

]
|
[
α
β

]〉
=
〈[
w
y

]
|M(w, y)T

[
α
β

]〉
Then

V̇ = 〈−diag(γ)α+BT β −BT diag(N)−1 diag(y)β|w〉 + 〈AT α− diag(µ)β|y〉

Using the relations (3)

V̇ = −〈BT diag(N)−1 diag(y)β|w〉 = −〈diag(N)−1 diag(y)β|Bw〉 ≤ 0

This proves the stability of the DFE. To prove the global stability we will use Lasalle’s
invariance principle on K.

We consider the largest invariant set L contained in the set E

E = {(w, y) ∈ K | V̇ = 〈diag(N)−1 diag(y)β| Bw〉 = 0}

We assume first that y � 0, with (w, y) ∈ L. Since β � 0, then we deduce immedia-
tely that diag(N)−1 diag(y)β � 0.

Then to be in L, with y � 0, implies Bw = 0. The system for y reduces to

ẏ = −diag(µ) y,

which is an asymptotically stable linear system. Any trajectory followed backward
from an initial point (w, y) with y � 0 will leaves any compact K. Then no point (w, y),
with y � 0, can be in L.

Then we assume y 6� 0. Let j an index such that yj = 0. Since y ∈ L and yj = 0 we
have, by invariance,

ẏj =
l∑

i=1

bj,i wi = 0

This implies that wi = 0 for any bj,i 6= 0. In other words this means that the indi-
viduals from the patch of index i (ranging from 1 to l), which are excreting in patch j
(because bj,i 6= 0), necessarily are not infected (i.e. wi = 0) This is intuitively evident.

Now for a wi = 0, in L, we have

ẇi =
m∑

k=1

aj,k yk
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We have, again by invariance, that yk = 0 for any aj,k 6= 0. In other words, all the
ponds, which are visited by the individuals of patch whose index is j, must be without
infected snails. This is again intuitively evident.

By abuse of language, we identify the node of the graph and the value yj or wi. Now
by irreducibility, starting from a yj = 0 we can access, following a directed path on the
graph, any yk. Then we have proved that for all index k, we have yk = 0, i.e., y = 0.
Again, by irreducibility any wi is accessible from a yj . From what is preceding, this
proves w = 0.

Then L = {0}. By Lasalle’s invariance principle the DFE is globally asymptotically
stable on K. Since K is an attracting set this proves the global stability on the biological
domain.

�

7. Numerical simulation

We conduct some numerical simulations, with 8 patches and 3 ponds, using SCILAB.
The connectivity matrix are

A=

0.0001389 0.0002778 0.

0.0016667 0.0020833 0.

0.0018056 0.0022222 0.

0.0013889 0.0013889 0.

0. 0.0002778 0.0000694

0. 0.0020833 0.0008333

0. 0.0022222 0.0013889

0. 0.0013889 0.0011111

and

B =

0.0076 0.0912 0.0988 0.076 0. 0. 0. 0.

0.0152 0.114 0.1216 0.076 0.0152 0.114 0.1216 0.076

0. 0. 0. 0. 0.0038 0.0456 0.076 0.0608

For exposition we assume that the mortality for worms and snails is always the same,
equal to 0.0092593 for the worms and for the snails to 0.038. The ponds 2 and 3
have been cleaned from their infected snails.

We have two groups of 4 villages. The first group uses ponds 1 and 2 and the se-
cond group uses ponds 2 and 3. The basic reproduction ration is obtained readily by the
SCILAB command

R02=max(real(spec(inv(diagMU)*B*inv(diagGAMMA)*A)))

ans =

4.4419854
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We obtain the following curves
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Figure 3. Simulation of 8 sites and 3 ponds

Now we treat with PZQ the 3 villages during one month, increasing by 10 the death rates
of worms. The basic reproduction ratio is then divided by 10 and R2

0 = 0.44. We obtain
the following curves on 150 days, starting from the same initial point as the example of
the preceding curves. We represent only patches 1-4, since the curves are analogous for
the patches 5-8.
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Figure 4. Simulation of a one month treatment

8. Discussion

The chemotherapy of population acts on diag(γ), a biological control will acts on diag(µ).
With the value ofR0

R2
0 = ρ

(
diag(µ)−1B diag(γ)−1A

)
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and the properties of nonnegative matrices, augmenting the vector γ will reduce R0. But
the relation is far from linear, if we differentiate the intervention on the patches. We have
now to explore numerically the most effective way to reduceR0.

This suppose that the intervention, in this case chemotherapy of some population, is
continuous. In reality the intervention are discontinuous. The model must be extended
to “pulse" chemotherapy. This will be addressed elsewhere.

We thanks the Carter Center and The ministère de la santé du Sénégal for granting per-
mission to include the graphics in figure 1 and 2.

9. Bibliographie

[0] http ://www.cartercenter.org/health/schistosomiasis/index.html

[1] BARBOUR, A. D., « Macdonald’s model and the transmission of bilharzia. », Trans R Soc Trop
Med Hyg, vol. 78, no 1, pp 6–15, 1978.

[2] WOOLHOUSE, M E, « Mathematical models of transmission dynamics and control of schisto-
somiasis. », Am J Trop Med Hyg, vol. 55, no 5 Suppl, pp 144–148, 1996.

[3] MACDONALD, G, « The dynamics of helminth infections, with special reference to schisto-
somes. », Trans R Soc Trop Med Hyg, vol. 59, no 5 Suppl, pp 489–506, 1965.

[4] VAN DEN DRIESSCHE, P. AND WATMOUGH, J., « reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission », Math. Biosci., vol. 180,
pp 29–48, 2002.

[4] HIRSCH, M.W., « The dynamical system approach to differential equations », Bull. AMS,
vol. 11, no 1, pp 1–64, 1984.

[5] SMITH, H. L., « Cooperative systems of differential equations with concave nonlinearities »,
Nonlinear Anal., vol. 10, no 10, pp 1037–1052, 1986.

[6] DIEKMANN, O. AND HEESTERBEEK, J. A. P. AND METZ, J. A. J., « On the definition and
the computation of the basic reproduction ratio R0 in models for infectious diseases in hetero-
geneous populations », , vol. 28, no 4, pp 365–382, 1990.

[7] BERMAN, A. AND PLEMMONS, R. J., « Nonnegative matrices in the mathematical sciences »,
, SIAM, Classics in Applied Mathematics 1994.

[8] KAMGANG,J.C. AND SALLET,G., « Computation of threshold conditions for epidemiological
models and global stability of the disease free equilibrium.,0 », Math. Biosci., vol. 213, no 1,
pp 1–12, 2008.

[9] SMITH,H.L., « Monotone dynamical systems. An introduction ot the theory of competitive
and cooperative systems. », AMS, 1995.

[10] GRYSEELS AND POLMAN, K. AND CLERINX, J. AND KESTENS, L. , « . Human schistoso-
miasis », Lancet, vol. 368, no 9541, pp 1106–1118, 2006.

A R I M AVol. 14 - pp. 1-13




