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RESUME. Lanalogie entre équation intégrale de Abel et I'intégrale d’ordre fractionnaire d’une fonc-
tion donnee, j* f(t), est discutée. Deux méthodes numériques différentes sont présentées et une
formule d’approximation pour j< f(¢) est obtenue. La premiére approche considere le cas quand la
fonction f(t) est lisse et une formule quadrature est obtenue. Une formule modifiée est congue dans
le cas ou la fonction a un ou plusieurs pdles simples. Dans la seconde approche, une procédure
est présentée pour affaiblir les singularités. Les deux approches peuvent étre utilisées pour résoudre
numériquement équation intégrale d’Abel. Quelques exemples numériques sont donnés pour illustrer
nos résultats.

ABSTRACT. Analogy between Abel’s integral equation and the integral of fractional order of a given
function, j*f(t), is discussed. Two different numerical methods are presented and an approximate
formula for j* f(t) is obtained. The first approach considers the case when the function, f(¢), is
smooth and a quadrature formula is obtained. A modified formula is deduced in case the function
has one or more simple pole. In the second approach, a procedure is presented to weaken the
singularities. Both two approaches could be used to solve numerically Abel’s integral equation. Some
numerical examples are given to illustrate our results.
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1. Introduction

Many problems of mathematical physics and engineering lead to the \olterra
integral equation ( VIE) of the first kind

/0 k(. $)p(s)ds = £(t)

where f(t) and k(t, s) are two given functions and(¢) is an unknown function. The
function k(¢, s) is called the kernel of this IE. As a special case of this IE is the linear
Abel operator

Jap(t) = ! ] /Ot(t —8)*k(t, s)¢(s)ds, 0<t<1, O0<a<l.

()

In the case:(t, s) = 1, the operatol,, is the classical Abel integral operator.
Theorem 1 : The solution of the classical Abel IE

Lo g
F(Oé)/a (x—t)adt_f(x)’ 0<a<l b>z>a

is given by

g(x) = ﬁ % /Om(ff —u)* ! f(u)du.

Moreover, if f(x) is absolutely continuous ja, b] then the solution is uniquely defined
in Ly[a, b]. For treatises on the theory and applications of Abel IE we refer to [1].
Definition : Let f(z) € L1([a, b]), we define the fractional integral of order1 > o >

0, of the functionf (x) over the intervala, b] as

o R T A ()
J f(x) = o) /a o dt, x> a,
b
T f(x) = F(la) /I G ! it))la dt,  w<b

For completion, we defing® = I (identity operator), i.e. we meaH f(z) = f(x). Fur-
thermore, byJ%, f(t) we mean the limit (if it exists) of & asc — a.

This definition is according to Riemann-Liouville definition of fractional integral of arbi-
trary ordera.

For simplicity, we define the fractional integral by the equation

1" f@)
J = dt 0 1 1
f(x) F(a)/a TR <a< (1)
where we dropped™.
Example :
r 1
Joit? = ﬂt”a, 1>a>0, ~v>-1, t>0.

F'y+1+a)
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Abel's integral equation 3

We see from this brief introduction that there is some analogy between Abel’s IE and
integral of a function of fractional order. In fact, the fractional integral of a funcfian)
of ordera is just the Abel operatay,, f(¢). Also, the operator

feY d l—o
Df(a) = —J'""f(x)

denotes the fractional derivative ¢{x) of ordera.
And so, any numerical treatment for the evaluation of such fractional integral will work
nicely for solving Abel’s IE.
The theory of fractional calculus, by Liouville in 1832, is a branch of mathematics which
deals with the investigation of integrals and derivatives of arbitrary order, is considered
as an old topic as the theory of Abel's IE, in 1826 by Abel. Recently, many scientists
have remodeled some physical problems in terms of fractional integrals and fractional
derivatives and a better result has been obtained, see a review article by Metzler and
Klafter [4].
In this paper, we present two different approaches for approximating the classical Abel
IE. In the first approach, we use Gaussian quadrature while in the second method, we use
a well known method for removing singularities.
In section two, the first approach is presented and a quadrature formula is obtained for
approximating the fractional integrd* f (¢) where the integrand is a smooth function and
then a modified formula is obtained when the integrand has one or more simple singular
point.
In section three, we describe a method to weaken the singular points of the integrand.
In section four, a numerical example is presented to illustrate our results and to compare
between these two approaches.

2. Method one : Quadrature formula for approximating Jef(x)

2.1. Case 1: f(x) is a smooth function

Let PMY) (z),n = 0,1,2,... denote the Jacobi polynomials of degreghich
form an orthonormal system over the inter{all, 1) with respect to the weights function
1—2) 1 +2), \v>—1;

_Pn+A+1)
oA+ 1)

The zeros oP ™) (x), say{xz\}7, are real, distinct and lie of-1, 1).
An n-point Gauss-Jacobi quadratic formulais given by, (see [2], Eq. (7.1.2) and Eq.(7.3.3))

1 n
/ (1—2) 1 +z)p(z)dx ~ ZAk(b(:z:k) (2)
-1 k=1
where the weightsl are given by :
1 A\v)
Ay = / (1 =21 +2)” - (E\xu))/ dx
~1 (x —xp).Pa™" (z1)
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MV (AN +n+ DIy +n+1)
T+ v 41+ 1D).PM (2x)]2(1 — 22)
Equation (2) is exact for all polynomials of degree u@to— 1. This quadrature formula
is valid if ¢(x) possesses no singularities[inl, 1], except for integrable singularities at

the end pointst1.
Settingr = 0 and\ = a — 1 in equation (2), we have

ECCO NN NP - 20 )
/1 (1 _x)lfad ~ Gn((b) - ; (1 —xi)[P,gail’O)l(xk)]Q (b( k) (3)

and the error term is

E%(9) =/1(1f($dx—cz<¢>.

If ¢(z) has a continuous derivatives of ordeon the segmerjt-1, 1] then the reminder
is
EL(¢) = ¢ () 22"t (nh)? [L(n + o))
S 2n)! 2n4a) T@2n4a))2
From definition ofA;, we deduce the following relation for Jacobi polynomials

1 . P () 90
1—x2)¢ - dx = - 4
L( ) (z — ). P () (1 —22) [P ()2 )

On the other hand by transforming the segnjent] into the segmerit-1, 1], the integral
[2 LY __dt can be written as

a (z—t)I—«
z—a\® [P ¢(s)ds
( 2 ) /4 (1—s)t=e

o) =1 (5D s+ (5.

This transformation allows us to rewrite the fractional integh®f (z) as

1 z—a\* [! o(s)
@ = —_— 7d .
1=y (570) [t
Using the Gauss-Jacobi quadrature (3), we obtain our first result

Theorem 2 :If f(z) € C™]a, b], then
JUf(x) = GL(f)+ ER(f) ()

where

where

o (@ —a) §~ _F(CF) 2+ (552))
G = /
T ; (1= ad) [P ()2
and the error term is given by
(—a)® @ ((Z59) n+ (252)) 220 () [D(n + )]
I(a) (2n)! (2n+a) [[(2n + )2’

EL(f) =
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2.1.1. The error E%(f)

To prove thatE%(f) — 0 asn — oo, we refer to the following theorem :
Theorem 3 : (for the proof see [2], page 248) :
Let [a, b] be a finite segment. If (x) is an analytic function which is holomorphic in a
certain region, [a,b], containing the s&t(a,b), in its interior then for any functionthe
interpolatory quadrature process defined by Eq.(5) converges.

2.2. Case 2: f(x) has a finite number of singular points

In this section, we consider an analytic functigfz) = = x + iy, within a closed
contour C containing the interval 1, 1] in its interior, except at some finite number of
simple poles.

Let{z}7, be those poles with corresponding resid{ies 7" , . We also assume that no
one of the poles af(z) coincides with the zeros ap ) (x), otherwise, we use different

value of n.

Applying the Cauchy residue theorem to the contour inte%a![c

we obtain

___9x
P (@) ()

n 2 ) P10 (o m e 7(La—1,0) T
o) = 37— P ) g P )

= PCT @)) @ —a) o PO () — )

P (@) 6(2)
+ ; : (a—1,0)
2mi c Py (2)(z —x)
Multiplying both sides of the last equation by — z)*~!, we have

@) N~ o) P ()
a0 = 2 (B gy G e 27

dz.

1 ple—to (zx) (@—z) A=) 2mi (1-2)'=>" Jo P,Sail"o)(z)(z — )
Integrating this equation over a path containing the intepydl, 1] with a small semi

circular indentation of radius above each of the polgz;, }7*, and lettinge — 0 then
using Eq.(3) and Eq.(4), we obtain

1 s)as
e % — G2(6) + HE . (6) + R2(9)

where

m 1 (a—1,0)
@ _ Tk Pn (‘T)
Hn,m(¢) - Z Pr(lafl.,()) (Zk) PV/_l (.CC _ Zk)(l _ I)lfoc dl’,

. 1 () 1 [ Pl (2)de
Ry (¢) = E/cm{i /4 (z—x)(l—x)l—adZ}'

Thus, as we have done in the previous section, the following theorem is proved :
Theorem 4 : If f(x) is an analytic function in the intervéd, b] except at one or more
simple poles in the intervakh, b), say{z}}", then

JOf(z) = G} ,,.(f), 0<ac<l
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where

Gom(f) = Go(f) + Hy . (f),
Gy (f)is given by Eq.(2), andi? () is given by
o 2 r—a T qn ’0)(zk)
Tl = 1o (55 ) S )

=1 n 2k)

where, see [7]

1 1 —a)et P ()
(=10 (z) = —P.V./ B da.
an (2) =3 B @=2 x

The error term in this rule is
(a—1,0)

B = 1 [ o e

Itis easy to show that the erréio (f) — 0 asn — oc.

3. Method two : Weakening the singularities of the integrand

In this section we follow a well known approach to weaken the singularities of
the integrand of Eq.(1).

3.1. Case 1: f(x) is a smooth function

Assume thaff (x) has derivatives up to certain orderin the interval[a, b] and
that f () does not vanish. Hence, the integral

1 ¥ t
J”f(x)zr(a)/a (xf(t))ladt’ x> a, 0<axl

is singular at the point = z. We weaken the singularity of this integral by splitting its
integrand into two parts as follows :

F(t) = (x = t)*7 f(t) = Fi(t) + Fa(t)

where,
k—1 1Y £(8) z
R = @-ne > ETE 0y gem)
1=0
k—1 1\i (z) T .
B0 = -0 - S ey
1=0
Thus
Jo‘f(x)—ll —|—IQ
where ) N ) N
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The integrall; can be calculated exactly by elementary calculations. In fact,

k-1 i i
I

i+a
AT (o +1) a)™e.

Since the functiorf; () is differentiablek more times tharf (z). Therefore,

k—1

v _ 1) £ (g .
b= [ w-io -y SO e g a

i=0

can be evaluated with a greater accuracy thayfi(¢) by a quadrature formula (Simpson
rule for example).

3.2. Case 2 : f(x) has a finite number of singular points in [a, b]

Assume thatf(x) has singularities at several points in the interivab], say
T2, X3, ..., T, With multiplicity 8;,¢ = 2,3, ...,n. A similar procedure can be carried out
in this case.
In fact, let

F(x) = ¢(x)(x — 1) .(x — 22)2 ... — ) Pn
wherez; = z, 81 = a — 1 and¢(z) is a smooth function. Define

F(x)

j=12..n.

Expanding the functiot’; (¢) in a Taylor power series at; gives

k=1 (i)
Fy(t) = Z JZ., t—=z;)" J=1,2,..,n.
i=0 :

As before, we can split the integral into two parts

T f(x) = ﬁ(h + D)

where

n

I = /I[F(t) =Y Fi(t)dt.

i=1

The first integral is exactly evaluated. The integrand of the second integral has higher
order derivatives thayfi(t) and so a quadrature formula may be applied.
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4. Example

If £(t) = 5, @ < 2, thenJ* f(z) = Wim 2Fi(1,1,14d; 2).
In Table (1), we list the results of evaluatid§ f (x), « = 0.75 for different values of:.
Column one gives the exact value. Column three and four gives the errors resultant from
applying method one faV = 4, 18 and these errors are denotedBy, E1, respectively
whereN is the the degree of Jacobi polynomial. In the last two columns, the errors resul-
tant from applying method two fdr = 2, 3 and they are denoted Wy2, E? respectively
wherek is the number of terms in Taylor expansion of the integrand. Table (2) is the same
as Table (1) except we take= 0.5.

5. Conclusion

From our computations of the numerical results of this examples and others, we
can conclude the following :
1- Both the presented methods could be used to evaluate integral with fractional order.
2- Method one has many difficulties : finding the values of the function at some points,
evaluating its residues and evaluating the inte@féTl’O) (z). Moreover, asV gets larger,
the roots of the orthogonal polynomial get very close to each other and with computer
rounding they become equal and hence the result gets worst for Mrde fact, this
situation is solvable either by the appropriate choic&'afr the formula Eq¥?) has to be
modified using Hermit interpolation formula instead. Yet, method one has the advantages
of being sum ofV terms and so a rough estimate could be obtained easily.
3- Method two splits the fractional integral into two parts, the first one can be evaluated
exactly and the second one is easily calculated using any known method of humerical
integration since the integrand will be smoother than the origifia] and so the obtained
formula is left to the user. Of course the accuracy of this method will depend on the user
choice.
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X exact value E} Eig E32 E3
0.5 || -0.3802310877422% .84986194e-5 .55642852e-9|| .20e-19| .30e-19
0.6 || -0.4528066030704¢ .97462973e-5 .64086822e-9| .20e-19| .20e-19
0.7 || -0.5292629603333Y .10952637e-4| .72269666e-9|| .20e-19| .20e-19
0.8 || -0.61086171417269 .12156905e-4| .80247367e-9|| .40e-19| .70e-19
0.9 || -0.69905686130528 .13473413e-4| .88060123e-9| .10e-19| .70e-19
1.0 | -0.79564036203954 .15267997e-4| .95738049e-9| .40e-19| .30e-19
1.1 || -0.90293824041614 .18708546e-4 .103304455e-§ .80e-19 .0
1.2 | -1.0241118543254|| .27492834e-4) .110777854e-§ .0 .0
1.3 || -1.1636630846827| .53397159e-4 .118173264e-§ .10e-18 .0
1.4 | -1.3283504049108| .13489144e-3 .125503083e-§ .0 .0
15| -1.5290022523089| .40408217e-3 .132777692e-§ .10e-18| .20e-18
1.6 | -1.7845314222064| .13539972e-2| .140006173e-§| .20e-18 .0
1.7 || -2.1323233670477| .50895380e-2 .147256970e-§ .10e-18| .20e-18
1.8 | -2.6624729819275| .22898574e-2| .180913911e-§ .0 90e-17
1.9 || -3.6953991620052| .15017889485 .490172941e-6 .15e-17| .5e-17
Table (2): = 0.5
X exact value E; Ei, EZ 2
0.5 | -0.48240083637052040.62115253e-1 .874090e-14| .20e-19| .20e-19
0.6 | -0.55277602012174696.68044050e-7 .940872e-14| .10e-19| .10e-19
0.7 | -0.62650228039198733.73498070e-1 .997543e-14| .60e-19 .0
0.8 | -0.705304969996999233.78590277e-7 .145624e-13 .0 .0
0.9 | -0.79110079140524638.83482152e-1 .135621e-13| .50e-19| .50e-19
1.0 | -0.88622692545041249.88786282e-7 .108610e-13 .0 .60e-19
1.1 | -0.99373557331290618.97728830e-1 .114874e-13 .0 .0
1.2 | -1.1178450040268358 .12773757e-g .122170e-13| .10e-18| .10e-18
1.3 | -1.2647088583999714 .27291811e-6§ .259846e-12 .0 .0
1.4 -1.4438487639150942 .10527540e-5 .381792e-12 .0 .10e-18
15| -1.671085515592729(0 .54998706e-5 .320808e-09| .40e-18 .2e-18
1.6 | -1.975290712524878% .33224852e-4 .129948e-07|| .10e-18| .520e-18
1.7 | -2.4167307171846061 .23516697e-3 .849982e-06G| .42e-17| .15e-17
1.8 | -3.15149634670076071 .21928576e-4 .849982e-0¢| .22e-16| .344e-16
1.9 | -4.7993070810190729 .37731535e-1 .161578e-03| .27e-15| .13989e-15

2. Bibliographie

[1] H.BRUMNER, P.J.vAN DER HOUWEN« The Numerical Solution of Volterra Equations,
North-Holland » 1986.

[2] V.I.LKRYLOV Approximate Calculation of Integrals » The Macmillan Company, New York :

translated by A.Stroud, 1962.

ARIMA Journal



10 ARIMA Journal — Volume 15 — 2012

[3] F-MAINARDI« Fractional Calculus : Some Basic Problem In Continum And Statistical Me-
chanics, In Fractals And Fractional Calculus In Continuum Mechanics » A. Carpinteri and
F.Mainardi eds., Wien, Springer, 291-348, 1997.

[4] R.METzZLER, J.KLAFTER« The resturant at the end of the random walk : recent develop-
ments in the description of anomalous transport by fractional dynamics » J.phys. A 37, 161-208,
2004.

[5] L.NIsHIMOTO« Tables of fractional differitegrations of elemantary functions »J., coll. Engng.
Nihon Univ., B-25,41-46, 1984.

[6] H.SUGIURA, T. HASEGAWA« Quadrature rule for Abel"s equation : uniformly approximating
fractional dervaives » BIT 46, 195-202, 2006.

[7] G. SzEG&« Orthogonal Polynomials, Amr. Math. Soc., Colloquim Publications, Vol. XXIII,
Providence, R.1., (third edition) 1967.

[8] J.WALDVOGEL« Fast construction of the Fejér and Clenshaw - Curtis quadrature rule, BIT
43, 1-18, 2004.

ARIMA Journal





