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ABSTRACT. Recently, Azari et al (2006) showed that (AIC) criterion and its corrected versions cannot
be directly applied to model selection for longitudinal data with correlated errors. They proposed two
model selection criteria, AICc and RICc, by applying likelihood and residual likelihood approaches.
These two criteria are estimators of the Kullback-Leibler’s divergence distance which is asymmetric.
In this work, we apply the likelihood and residual likelihood approaches to propose two new criteria,
suitable for small samples longitudinal data, based on the Kullback’s symmetric divergence. Their
performance relative to others criteria is examined in a large simulation study.

RÉSUMÉ. Récemment, Azari et al. (2006) ont montré que le critère (AIC) ainsi que ses versions
corrigées ne peuvent pas être directement appliqués aux données longitudinales avec des erreurs
corrélées. Ils ont proposé deux critères, AICc et RICc, en utilisant la notion de vraisemblance et
de vraisemblance résiduelle. Leurs critères sont des estimations de la distance asymétrique de di-
vergence de Kullback-Leibler. Dans ce travail, nous proposons deux nouveaux critères adaptés aux
échantillons de petites tailles de données longitudinales en se basant sur la divergence symétrique
de Kulback et les approches de maximum de vraisemblance et de vraisemblance résiduelle. Les
performances de ces critères sont examinées dans une étude de simulations.

KEYWORDS : Model selection, AIC, KIC, Longitudinal data analysis, Kullback’s symmetric diver-
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1. Introduction

Model selection criteria play an important role in applied statistical data analysis espe-
cially in parametric and non parametric regression, mixture models, time series analysis...
The most known is the Akaike Information Criterion (AIC) which is applicable in differ-
ent arrays of modeling, see Akaike [1]. The AIC criterion was designed as an unbiased
estimator of a variant of the Kullback’s directed divergence between the model which
presumably gave rise to the data and a fitted approximating one.
The directed divergence, also known as the Kullback-Leibler information, is a measure
of separation between two statistical models. It is asymmetric, meaning that an alternate
directed divergence can be obtained by reversing the roles of the two models in the defini-
tion of the measure. The sum of the two directed divergences is the Kullback’s symmetric
divergence, which combines the information in both measures. Therefore, it functions as
gauge of model disparity which is arguably more balanced than either of individual di-
rected divergences. Model selection criteria based on the symmetric measure was first
investigated by Cavanaugh [5]. He proposed an Akaike type criterion, named KIC, as an
asymptotically unbiased estimator of the symmetric divergence in the case of large sam-
ple data.
When the sample size is small or the number of fitted parameters is large to moderate frac-
tion of the sample size, both AIC and KIC criteria suffer from a negative bias and result in
a serious overfitting. In order to overcome this problem, many corrected versions of AIC
was proposed in different special situations. For instance, Hurvich and Tsai [16] proposed
a corrected AIC (AICc) for linear and non-linear regression and autoregressive modeling.
Their work was extended to the case of autoregressive moving average by Hurvich [14],
to vector autoregressive modeling by Hurvich and Tsai [15] and multivariate regression
by Bedrick et al. [3], Fujikoshi and Satoh [9].... On the other hand, using the Kullback’s
symmetric divergence Cavanaugh [4] proposed a corrected Kullback’s information crite-
rion (KICc) for linear models. Hafidi and Mkhadri [11] generalized the corrected KICc
for multiple to multivariate regression and for univariate or multivariate autoregressive
modeling.
Longitudinal data analysis has been a great deal of interest in the fields of clinical tri-
als, epidemiology, agriculture and medicine over the last decade. These data arise when
repeated measurements are obtained for an individual or more outcome variables at suc-
cessive points in time. The successive measurements for each individual tend to be cor-
related. Therefore, it is necessary to take into account this correlation in order to produce
proper analysis. The comprehensive synthesis of both theoretical, applied aspects, model
structure details and parameter estimation about longitudinal analysis is given in Diggle
[7], Hedeker and Gibbons [13], Fitzmaurice et al. [8], Hand and Crowder [12] and Jones
[17].
Recently Azari et al. [2] showed that the classical corrected AICc criteria can not be di-
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rectly applied to model selection for longitudinal data with correlated errors. They derived
two model selection criteria: the first one is obtained by applying the maximum likelihood
approach and the second is RICc derived by using the residual (restricted) likelihood ap-
proach. Both these two criteria are estimator of the Kullback-Leibler’s divergence distance
which is asymmetric. Cavanaugh [5, 4] suggested that the Kullback’s symmetric distance
is a preferable tool for model selection than the asymmetric one. In this paper, we use the
kullback’s symmetric divergence and we apply the likelihood and residual likelihood ap-
proaches to derive corrected version suitable for small sample longitudinal data. A large
simulation investigations for these criteria show their appropriateness for model selection
especially when the sample size and the signal to noise ration are small. In this case, they
can be used as an alternative to classical criteria.
The paper is organized as follows. Section 2 is devoted to the description of model struc-
ture of longitudinal data. Derivation of the corrected KICc, is presented in Section 3. In
Section 4, we presented the criteria obtained by using the residual likelihood. We end the
paper with simulation results and with a small conclusion.

2. Preliminaries and notations

Let yij represents the measurement for the ith subject at the time points tij . we denote
by Yi = (yi1, . . . , yini

)t a (ni × 1) vector of all repeated observations on the ith subject.
The sign ’t’ stands for the transpose. For simplicity, we assume that ni = n for all i.
Suppose that the true model is given by

Yi = Xi0β0 + εi i = 1, . . . ,m, [1]

where εi = (εi1, . . . , εin) is a (n × 1) vector at time n. It is assumed to follow a
multivariate normal distribution with mean zero and covariance matrix σ2

0Σ0. β0 is a
(p0 × 1) vector of unknown parameters. Finally Xi0 is an (n × p0) matrix with the jth
row (x0

ij1
, . . . , x0

ijp0
). Define the observation (N × 1) vector Y as Y = (Y t

1 , . . . , Y
t
m)t

where N = nm. Let X0 = (Xt
10, . . . , X

t
m0)

t be a (N × p0) matrix of explanatory vari-
ables and ε0 = (εt1, . . . , ε

t
m)t the error vector. With this notation, we can form a general

regression model

Y = X0β0 + ε0,

where ε0 ∼ N (0, σ2
0V0) and V0 is an (N ×N) block diagonal matrix with (n×n) blocks

Σ0.
In practice, we do not know the true model described below, thus we fit the data to a
candidate one

Yi = Xiβ + εi i = 1, . . . ,m, [2]
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where β is a (p × 1) vector and Xi is an explanatory (n × p) matrix with jth row
(xij1 , . . . , xijp) and ε = (εt1, . . . , ε

t
m)t is the vector error with εi ∼ N (0, σ2Σ). As

previous, the model (2) can be written as

Y = Xβ + ε,

where Y is a dependent (N × 1) vector, X is an (N × p) matrix of explanatory and
ε ∼ N (0, σ2V ) and V is an (N ×N) block diagonal matrix with (n×n) blocksΣ. With
these previous considerations, we denote θ = (β, σ2,Σ, p) and θ0 = (β0, σ

2
0 ,Σ0, p0)

the parameter vectors of the candidate and the true models respectively. Let fθ0(Y ) and
fθ(Y ) represent the generating and candidate densities for data respectively. In this case,
ignoring the constant term, the log-likelihood for the candidate model is given by

log fθ(Y ) = −
1

2

{

N log σ2 +m log |Σ|+
(Y −Xβ)tV −1(Y −Xβ)

σ2

}

. [3]

Similarly the log likelihood function of the true model is obtained by replacing θ, σ, β, Σ
and V in equation (3) by θ0, σ0, β0, Σ0 and V0 respectively.

REMARK. — It should be noted that, in longitudinal data analysis, the covariance matrix
Σ is often assumed to have a special morphology. For example:

– The uniform structure: where Σ = (σjl)j,l=1...n is defined by

σjl =

{

ρ for tij 6= til
1 for tij = til

and ρ is a positive correlation coefficient between two measurements on the same subject.
– the exponential correlation structure: in this case σjl = exp(−γ|tij − til|) where

γ is the correlation decay rate between two measurements on the same unit.
– The autoregressive correlation structure: it is a particular case of the latter where

the observation times are equally spaced for all j. In this setting σjl can be expressed
as σjl = ρ|j−l| or σjl = ρ|j−l|

1−ρ2 . The parameter ρ is the correlation between successive
observations on the same subject.
In this paper we assume that the correlation structure of Σ and Σ0 is expressed as a func-
tion of an unknown parameter vector φ and φ0 respectively: meaning that Σ = Σ(φ) and
Σ0 = Σ0(φO). As Azari et al. [2], we assume the consistency of the maximum likelihood
and the restricted maximum likelihood estimators of Σ. In all the rest of the paper we
replace the precedent notations of θ and θ0 by θ = (β, σ2, φ) and θ0 = (β0, σ

2
0 , φ0).
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3. Derivation of the corrected (KICc) based on the Kulback’s
symmetric divergence

Ameasure of separation between the generating and a candidate model is given by the
symmetric divergence (Kullback [18]). It is defined by

J(θ0, θ) = {d(θ0, θ)− d(θ0, θ0)}+ {d(θ, θ0)− d(θ, θ)}, [4]

where d(θ0, θ) = IEθ0{−2 log fθ(Y )} and IEθ0 denotes the expectation with respect to
fθ0(Y ). Ignoring d(θ0, θ0) which does not depend on θ, for the purpose of discriminating
among various models depending on θ we propose a substitution of J(θ0, θ) as,

K(θ0, θ) = d(θ0, θ) + {d(θ, θ0)− d(θ, θ)}. [5]

In practice, the exact computation of this quantity is not easily accessible. To overcome
this problem, Cavanaugh [5] proposed an asymptotically unbiased estimator of

Ω(θ0) = IEθ0{K(θ0, θ̂)}. [6]

in the case of large sample data, where θ̂ is the maximum likelihood estimator of θ,
K(θ0, θ̂) has the same expression as in (5) by replacing θ by θ̂. This estimator is given by

KIC = N log σ̂2 +m log |Σ̂|+ 3(p+ 1). [7]

The purpose of this section is to derive a corrected version of this criterion. For this, we
assume that the candidate class of models includes the true model. This assumption is
also used in the derivation of KIC [5] and its other versions see for instance [2, 4, 10, 11].
In this setting the columns of X can be rearranged so that X0β0 = Xβ∗, where β∗ =
(βt

0, β
t
1)

t and β1 is a (p − p0) × 1 vector of zeros. Under this assumption, we show the
forthcoming proposition.

Proposition 1 The criterion defined by

KICc = N log σ̂2 +m log |Σ̂|+
(p+ 1)(3N − p− 2)

N − p− 2
[8]

is an approximate unbiased estimator ofΩ(θ0).

Proof: Ignoring the constant term, the log likelihood of the candidate model is given by

log fθ(Y ) = −
1

2

{

N log σ2 +m log |Σ|+
(Y −Xβ)tV −1(Y −Xβ)

σ2

}

. [9]

The maximum likelihood estimators of β, σ2 and V (φ) are given by

β̂ = (XtV̂ −1X)−1XtV̂ −1Y, σ̂2 =
(Y −Xβ̂)tV̂ −1(Y −Xβ̂)

N
, [10]
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where V̂ −1 is V −1(φ) evaluated at φ̂. This latter is obtained by maximizing the profile

log-likelihood: ℓ(φ) = −
1

2
(Nσ̂2(φ) +m log |Σ(φ)|), see for instance Azari [2] and for

more details see Diggle ([7] p. 64-65).
From (5), the expectation ofK(θ0, θ̂) has the form

Ω(θ0) = IEθ0{d(θ0, θ̂) + d(θ̂, θ0)− d(θ̂, θ̂)}. [11]

For clarity, we emphasize that

d(θ0, θ̂) = IEθ0{−2 log fθ(Y )}

∣

∣

∣

∣

θ=θ̂

and d(θ̂, θ0) = IEθ{−2 log fθ0(Y )}

∣

∣

∣

∣

θ=θ̂

.

The notation
∣

∣

∣

∣

θ=θ̂

means that we calculate the expectation and then we replace θ by θ̂ in

the resulting formula. Now, we will compute each term of (11). By adding and subtracting
Xβ∗, we have

d(θ0, θ̂) = IEθ0{−2 log fθ(Y )}

∣

∣

∣

∣

θ=θ̂

= IEθ0

{

N log σ2 +m log |Σ|+
(Y −Xβ)tV −1(Y −Xβ)

σ2

}∣

∣

∣

∣

θ=θ̂

= IEθ0

{

N log σ2 +m log |Σ|+
(Y −Xβ∗)tV −1(Y −Xβ∗)

σ2

+
(β − β∗)tXtV −1X(β − β∗)

σ2

}∣

∣

∣

∣

θ=θ̂

.

It is easy to see that the expectation IEθ0{N log σ2}

∣

∣

∣

∣

θ=θ̂

= N log σ̂2 and similarly we

have
IEθ0{m log |Σ|}

∣

∣

∣

∣

θ=θ̂

= m log |Σ̂|.

By using the same reasoning we also have,

IEθ0

{

(β − β∗)tXtV −1X(β − β∗)

σ2

} ∣

∣

∣

∣

θ=θ̂

=
(β̂ − β∗)tXtV̂ −1X(β̂ − β∗)

σ̂2
.

On the other hand, since (Y − Xβ∗)tV −1(Y − Xβ∗) = εt0V
−1ε0, consequently we

deduce that

IEθ0

{

(Y −Xβ∗)tV −1(Y −Xβ∗)

σ2

} ∣

∣

∣

∣

θ=θ̂

=
σ2
0

σ̂2
tr(V̂ −1V0),
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where ”tr” stands for trace. Finally,

d(θ0, θ̂) = N log σ̂2 +m log |Σ̂|+
σ2
0

σ̂2
tr(V̂ −1V0) +

(β̂ − β∗)tXtV̂ −1X(β̂ − β∗)

σ̂2
. [12]

Similarly, we have

d(θ̂, θ0) = IEθ{−2 log fθ0(Y )}

∣

∣

∣

∣

θ=θ̂

= IEθ

{

N log σ2
0 +m log |Σ0|+

(Y −Xβ∗)tV −1
0 (Y −Xβ∗)

σ2
0

}
∣

∣

∣

∣

θ=θ̂

= IEθ

{

N log σ2
0 +m log |Σ0|+

(Y −Xβ)tV −1
0 (Y −Xβ)

σ2
0

+
(β − β∗)tXtV −1

0 X(β − β∗)

σ2
0

}∣

∣

∣

∣

θ=θ̂

. [13]

With the same technique as in (12), the expectation calculation leads to the equality

IEθ

{

(Y −Xβ)tV −1
0 (Y −Xβ)

σ2
0

} ∣

∣

∣

∣

θ=θ̂

= IEθ

{

εtV −1
0 ε

σ2
0

} ∣

∣

∣

∣

θ=θ̂

=
σ̂2

σ2
0

tr(V̂ V −1
0 ).

This implies that

d(θ̂, θ0) = N log σ2
0 +m log |Σ0|+

σ̂2

σ2
0

tr(V̂ V −1
0 ) +

(β̂ − β∗)tXtV −1
0 X(β̂ − β∗)

σ2
0

. [14]

The same reasoning leads to

d(θ̂, θ̂) = IEθ{−2 log fθ(Y )}

∣

∣

∣

∣

θ=θ̂

= IEθ

{

N log σ2 +m log |Σ|+
(Y −Xβ)tV −1(Y −Xβ)

σ2

}
∣

∣

∣

∣

θ=θ̂

= IEθ

{

N log σ2 +m log |Σ|+
εtV −1ε

σ2

}∣

∣

∣

∣

θ=θ̂

= N log σ̂2 +m log |Σ̂|+N. [15]

Substituting (12), (14) and (15) into (11) we obtain

Ω(θ0) = IEθ0

{

N log σ̂2 +m log |Σ̂|+
σ2
0

σ̂2
tr(V̂ −1V0)

A R I M A



90 A R I M A – Volume 15 – 2012

+
(β̂ − β∗)tXtV̂ −1X(β̂ − β∗)

σ̂2

}

[16]

+IEθ

{

N log
σ2
0

σ̂2
+m log

|Σ0|

|Σ̂|
+

σ̂2

σ2
0

tr(V̂ V −1
0 )

+
(β̂ − β∗)tXtV −1

0 X(β̂ − β∗)

σ2
0

−N

}

. [17]

REMARK. — Under the assumption that φ̂ is a consistent estimator of φ0, Azari et al. [2]
approximate V̂ by V0; i.e. V̂ = V0 + op(1). They have given a corrected version of the
Akaike criterion and they showed that

AICc = N log σ̂2 +m log |Σ̂|+ 2
N(p+ 1)

N − p− 2
, [18]

is an approximate unbiased estimator of the first term in Ω(θ0) which is in our case the
right hand side of equation (16).

Let us remark that

β̂ = (XtV̂ −1X)−1XtV̂ −1(X0β0 + ε0)

= (XtV̂ −1X)−1XtV̂ −1Xβ∗ + (XtV̂ −1X)−1XtV̂ −1ε0

= β∗ + (XtV̂ −1X)−1XtV̂ −1ε0. [19]

Using the assumption that φ̂ is a consistent estimator of φ0 and the fact that β̂ − β∗ =
(XtV̂ −1X)−1XtV̂ −1ǫ0, we compute the error term given in equation (17). In the first
term, we have the approximation

IEθ0

{

m log
|Σ0|

|Σ̂|

}

≈ 0. [20]

On the other hand, since V̂ = V0+ op(1) then the third term in the right-hand side of (17)
becomes

IEθ0

{

σ̂2

σ2
0

tr(V̂ V −1
0 )

}

≈ IEθ0

{

ǫt0(V̂
−1 − V̂ −1X(XtV̂ −1X)−1XtV̂ −1)ǫ0

σ2
0

}

= IEθ0

{

ǫt0(V
−1
0 − V −1

0 X(XtV −1
0 X)−1XtV −1

0 )ǫ0
σ2
0

}

= N − p. [21]
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Furthermore, using the expression (19) and by a simple matrix calculus, the fourth term
on the right-hand side of (17) becomes,

IEθ0

{

(β̂ − β∗)tXtV −1
0 X(β̂ − β∗)

σ2
0

}

= IEθ0

{

ǫt0V
−1
0 X(XtV −1

0 X)−1XtV −1
0 ǫ0

σ2
0

}

= tr(X(XtV −1
0 X)−1XtV −1

0 ),

= p. [22]

Now it remains to compute IEθ0

{

N log
σ2
0

σ̂2

}

. It is known that the distribution of N(
σ̂2

σ2
0

)

is a chi-square with (N − p) degrees of freedom. From lemma (3) in [6], we have

IEθ0

{

N log
σ2
0

σ̂2

}

= (p+ 1) + o(1). [23]

According to (18) and substituting (20), (21), (22) and (23) in the right side of (17), we
obtain the estimator of Ω(θ0) given in the proposition.

REMARK. — It is important to note that if p held fixed andN tends to infinity, the second
term in the expression (8) of KICc tends to 3(p+ 1). This yields the criterion KIC given
in (7).

4. Derivation of RIC sd cri terion based on residual likelihood
and symmetric divergence

The method of restricted (or residual) maximum likelihood is a way of estimating
variance components in a general linear model. It was first introduced by Patterson and
Thompson [19]. By adopting the results of Diggle [7] or Verbyla [21], and omitting irrel-
evant terms, the restricted likelihood for the candidate model (2) is defined by

log f
(r)
θ (Y ) = −

1

2

{

(N − p) log σ2 +m log |Σ|+ log |XtV −1X |+
Y tAY

σ2

}

[24]

where A = V −1 − V −1X(XtV −1X)−1XtV −1.
The residual maximum likelihood estimator of (β, σ2, φ) are given by the equalities

β̃ = (XtṼ −1X)−1XtṼ −1Y

and σ̃2 = (Y −Xβ)tṼ −1(Y −Xβ)/(N − p). Following Azari et al. [2], Ṽ −1 is V eval-
uated at φ̃ which is obtained in this setting by maximizing the residual likelihood given
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by ℓr(φ) = ℓ(φ)− 1
2 log |X

tV −1(φ)X |.
Similarly, the restricted likelihood function for the true model (1), can be obtained by re-
placing σ, β, Σ,X , p and V in equation (24) with σ0, β0, Σ0,X0, p0 and V0 respectively.
A useful measure of the discrepancy between the residual log-likelihood function of can-
didate and true models is the Kullback’s symmetric divergence defined by

Ωr(θ0) = IEθ0{dr(θ0, θ̃) + dr(θ̃, θ0)− dr(θ̃, θ̃)}. [25]

where dr(θ0, θ) = IEθ0{−2 log f
(r)
θ (Y )}. Under the assumption that the true model is

include in the family of candidate models, we show the following proposition:

Proposition 2 The criterion defined by

RICsd = (N − p) log σ̃2 +m log |Σ̃|+ p log(N) +
(N − p)2

N − p− 2

+(N − p)

(

log(
N − p

2
)−Ψ(

N − p

2
)

)

[26]

is an approximate unbiased estimator of the discrepancyΩr(θ0), whereΨ denote the
digamma function.

Proof: We have

Ωr(θ0) = IEθ0{dr(θ0, θ̃) + dr(θ̃, θ0)− dr(θ̃, θ̃)}. [27]

From the model consideration, it is easy to see thatXtA = 0. This implies the following:

dr(θ0, θ̃) = IEθ0{−2 log f
(r)
θ (Y )}

∣

∣

∣

∣

θ=θ̃

= IEθ0

{

(N − p) log σ2 +m log |Σ|+ log |XtV −1X |

+
(Y −Xβ∗)tA(Y −Xβ∗)

σ2

}∣

∣

∣

∣

θ=θ̃

= IEθ0

{

(N − p) log σ2 +m log |Σ|+ log |XtV −1X |

+
(Y −X0β0)

tA(Y −X0β0)

σ2

}∣

∣

∣

∣

θ=θ̃

= IEθ0

{

(N − p) log σ2 +m log |Σ|+ log |XtV −1X |+
εt0Aε0
σ2

}
∣

∣

∣

∣

θ=θ̃

= (N − p) log σ̃2 +m log |Σ̃|+ log |XtṼ −1X |+
σ2
0

σ̃2
tr(Ã−1V0), [28]
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where Ã−1 is A evaluated at φ̃. Similarly, we have

dr(θ̃, θ0) = IEθ{−2 log f
(r)
θ0

(Y )}

∣

∣

∣

∣

θ=θ̃

= IEθ

{

(N − p0) log σ
2
0 +m log |Σ0|+ log |XtV −1

0 X |+
Y tA0Y

σ2
0

}∣

∣

∣

∣

θ=θ̃

.

Furthermore, we derive the following simple expectation equalities

IEθ

{

Y tA0Y

σ2
0

}
∣

∣

∣

∣

θ=θ̃

= IEθ

{

(Y −Xβ∗)tA0(Y −Xβ∗)

σ2
0

}
∣

∣

∣

∣

θ=θ̃

=
σ̃2

σ2
0

tr(Ṽ A0).

With the same technique as in (13), we obtain

dr(θ̃, θ0) = (N − p) log σ2
0 +m log |Σ0|+ log |XtV −1

0 X |+
σ̃2

σ2
0

tr(Ṽ A0)

+
(β̃ − β∗)tXtA0X(β̃ − β∗)

σ2
0

. [29]

As it was argued bellow, sinceXtA = 0 then we have the following

IEθ

{

Y tAY

σ2

}∣

∣

∣

∣

θ=θ̃

= IEθ

{

(Y −Xβ)tA(Y −Xβ)

σ2

}∣

∣

∣

∣

θ=θ̃

= IEθ

{

εtAε

σ2

}∣

∣

∣

∣

θ=θ̃

= tr(Ṽ A).

The third term of (27) is then given by:

dr(θ̃, θ̃) = IEθ{−2 log f
(r)
θ (Y )}

∣

∣

∣

∣

θ=θ̃

,

= IEθ

{

(N − p) log σ2 +m log |Σ|+ log |XtV −1X |+ Y tAY/σ2

}∣

∣

∣

∣

θ=θ̃

= (N − p) log σ̃2 +m log |Σ̃|+ log |XtṼ −1X |+ tr(Ṽ Ã). [30]

From (28), (29) and (30), we obtain,

Ωr(θ0) = IEθ0

{

(N − p) log σ̃2 +m log |Σ̃|+ log |XtṼ −1X |+
σ2
0

σ2
tr(Ã−1V0)

}

[31]

+IEθ0

{

(N − p) log
σ2
0

σ̃2
+m log

|Σ0|

|Σ̃|
+ log

|XtV −1
0 X |

|XtṼ −1X |
− tr(Ṽ Ã)

+
σ̃2

σ2
0

tr(Ṽ A0) +
(β̃ − β∗)tXtA0X(β̃ − β∗)

σ2
0

− p0 log σ
2
0

}

. [32]
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By adopting the same reasoning as Azari et al. [2], we can approximate equation (31) by

N log σ̃2 +m log |Σ̃|+ p log(N) +
(N − p)2

N − p− 2
. [33]

By using the equality (19) and simple matrix simplifications, we have

∆ , IEθ0

{

(β̃ − β∗)tXtA0X(β̃ − β∗)

σ2
0

}

= IEθ0

{

εt0V
−1
0 Xt(XtV −1

0 X)−1XtA0X(XtV −1
0 X)−1XtV −1

0 ε0
σ2
0

}

= tr(X(XtV −1
0 X)−1XtA0)

= tr(X(XtV −1
0 X)−1XtV −1

0 )

−tr(X(XtV −1
0 X)−1XtV −1

0 X0(X
t
0V

−1
0 X0)

−1Xt
0V

−1
0 ).

= p− p0. [34]

Under the same assumption used in the previous section, φ̃ is a consistent estimator of φ0,
we can approximate (in probability) Ṽ by V0 and Σ̃ by Σ0. Hence, we have

IEθ0

{

m log
|Σ0|

|Σ̃|

}

≈ 0 and IEθ0

{

log |XtV −1
0 X | − log |XtṼ −1X |

}

≈ 0.

On the other hand,

IEθ0

{

σ̃2

σ2
0

tr(Ṽ A0)

}

= IEθ0

{

ǫt0(Ṽ
−1 − Ṽ −1X(XtṼ −1X)−1XtṼ −1)ǫ0

(N − p)σ2
0

× tr{(V −1
0 − V −1

0 X(XtV −1
0 X)−1XtV −1

0 )Ṽ }

}

≈ IEθ0

{

ǫt0(V
−1
0 − V −1

0 X(XtV −1
0 X)−1XtV −1

0 )ǫ0
(N − p)σ2

0

× tr{(V −1
0 − V −1

0 X(XtV −1
0 X)−1XtV −1

0 )V0}

}

= IEθ0

{

ǫt0(V
−1
0 − V −1

0 X(XtV −1
0 X)−1XtV −1

0 )ǫ0
σ2
0

}

.

= N − p. [35]
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Furthermore, we have

IEθ0

{

tr(ÃṼ )
}

≈ IEθ0

{

tr(V −1
0 − V −1

0 X(XtV −1
0 X)−1XtV −1

0 )V0)
}

= N − p. [36]

Now it remains to compute IEθ0

{

(N −p) log
σ2

0

σ̃2

}

. Since, the distribution of (N −p)( σ̃
2

σ2

0

)

is a chi-square with (N − p) degrees of freedom, then a simple calculus shows that:

IEθ0

{

(N − p) log
σ̃2

σ2
0

}

= (N − p){log
2

N − p
+Ψ(

N − p

2
)} [37]

ignoring the constant term in (32) (p0 log σ2
0) and according to (33) and substituting (37),

(35) and (36) in the right side of (32), we obtain the estimator of Ωr(θ0) given in the
proposition.

5. Simulation and conclusions

The purpose of this section is to study and compare the performance of both criteria
KICc and RICsd, introduced in this paper, to those studied in Azari et al. [2], namely RIC
and AICc, and the well known criteria AIC, BIC (Akaike [1], Schwarz [20]). The perfor-
mances are evaluated as a function of the number of subjects, the repeated measurements,
the SNR and the correlation structure of longitudinal models.
We generate 1000 realizations from model (1), with p0 = 3, β0 = (1, 2, 3)t and vari-
ables X0 is a three column explanatory matrix. The explanatory variables of the candi-
date model were stored in a p = 7 column matrix X ; where the first three columns of X
are those of X0. The explanatory variables were randomly generated from the standard
normal distribution. The number of repeated measurement was fixed at n = 10 and the
number of subjects m have been changed to take values m = 1,m = 5,m = 10 and

m = 30. The SNR ratio was also controlled at 1, 5, and 10, where SNR =
var(x0

t

ij β0)

var(ǫij) . We
have considered the uniform correlation structure of longitudinal data with ρ tacking 0.5
and 0.9. The results are summarized in Table 1 in which we give the percentages of the
correct model order selected by each criterion considered here. We recall that:

BIC = N log σ̂2 +m log |Σ̂|+ p log(N)

AIC = N log σ̂2 +m log |Σ̂|+ 2(p+ 1)

AICc = N log σ̂2 +m log |Σ̂|+ 2
N(p+ 1)

N − p− 2

RIC = N log σ̃2 +m log |Σ̃|+ p log(N) +
(N − p)2

N − p− 2
.

A R I M A



96 A R I M A – Volume 15 – 2012

From Table 1, we see that when SNR = 1 andm = 1 the KICc criterion performs better
than the others criteria followed by AICc. However, RICsd is superior than RIC, BIC, AIC
and KIC. If the number of the subjects increases, RICsd outperforms all criteria, except
when SNR = 1 and ρ = 0.5 where BIC is the best. We note also, that in all setting KICc
is better than AICc and when m is large (m = 30), BIC and RIC give approximatively
the same results. This latter remark is mentioned also by Azari et al. [2]. Moreover, when
SNR increases both RIC and RICsd are improved and the performance of these criteria is
better as ρ increases. On the other hand the performance of KICc and AICc decays asm
increases.
Other examples of simulations not reported here, with the autoregressive correlation struc-
ture of longitudinal data, give the same results as in the preceding example.
In conclusion, when both the number of subjects and the repeated observations are small,
it is preferable to use the KICc criterion. However, when m or n is large one should use
RICsd or BIC. This latter is favored for a small SNR ratio and RICsd for a moderate to
large SNR ratio.

6. Conclusion

In this paper, we have derived two model selection criteria, KICc and RICsd, for ap-
plication in longitudinal data analysis. Our criteria are based on the Kullbak’s symmetric
divergence. A small simulation study is undertaken to compare the performance of our
criteria to other well known criteria. Moreover, our simulation studies show that the KICc
criterion outperforms all other criteria when the sample size and the SNR ration are small.
RICsd is favored when the sample size and the SNR ration are moderate to large. Further-
more, KICc and RICsd are superior to AIC and RIC, respectively, which are based on the
asymmetric divergence.
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Table 1: Percentages of correct model order selection for the uniform correlation structure
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m = 1 m = 5 m = 10 m = 30

n = 10 n = 10 n = 10 n = 10

AIC 20.9 66.7 69.7 70.5
AICc 95 79.8 74.4 71.8

ρ = 0.5 KIC 34.2 85.2 86.2 86.8
SNR = 1 KICc 96.4 89.7 88.1 87.2

BIC 32.4 93.4 96.1 98.4
RIC 35.4 64.3 82.8 92.8
RICsd 45.8 83.8 92.6 96.1
AIC 21.1 67.3 69.7 72.7
AICc 95.1 77.7 76.3 74.3

ρ = 0.5 KIC 33.9 84.8 87.3 88.2
SNR = 5 KICc 96.6 90.4 89.4 88.9

BIC 32.1 89.2 90.0 94.9
RIC 65.1 92.6 96.5 98
RICsd 77.9 95.2 98.1 99
AIC 20.0 64.8 69.9 74.2
AICc 95.7 76.2 75.8 76.1

ρ = 0.5 KIC 33.2 82.9 85.2 87.8
SNR = 10 KICc 97.3 89.7 88.1 88.0

BIC 32.0 92.4 96.2 99.0
RIC 82 95.8 96.0 97.1
RICsd 91 97.8 98.5 98.9
AIC 24.9 66.4 69 72
AICc 96.2 75.8 75.4 74.6

ρ = 0.9 KIC 39.6 83.4 87.1 88.5
SNR = 1 KICc 97.1 89.2 88.2 87.1

BIC 34.2 92.6 95.6 98.7
RIC 50.0 85.3 91.7 98.9
RICsd 60.6 94.4 95.7 99.7
AIC 21.2 67.7 70.7 75.5
AICc 95.7 78 75.7 73.3

ρ = 0.9 KIC 39.2 84.4 86.7 87.5
SNR = 5 KICc 97.0 89. 88.7 88.1

BIC 33.4 93.2 95.8 99.0
RIC 89.4 95.7 98.5 99.0
RICsd 94.6 98.1 99.1 99.9
AIC 22.9 65.8 74.4 74.4
AICc 97.2 77.5 79.3 75.2

ρ = 0.9 KIC 39.7 83.9 87.3 88.2
SNR = 10 KICc 97.8 89.6 90.8 88.7

BIC 32.9 93.5 97.5 99.2
RIC 95.1 98 99.1 99.8
RICsd 97.6 98.6 99.9 100
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