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ABSTRACT. We consider the problem of variable selection via penalized likelihood using nonconvex
penalty functions. To maximize the non-differentiable and nonconcave objective function, an algorithm
based on local linear approximation and which adopts a naturally sparse representation was recently
proposed. However, although it has promising theoretical properties, it inherits some drawbacks of
Lasso in high dimensional setting. To overcome these drawbacks, we propose an algorithm (MLLQA)
for maximizing the penalized likelihood for a large class of nonconvex penalty functions. The conver-
gence property of MLLQA and oracle property of one-step MLLQA estimator are established. Some
simulations and application to a real data set are also presented.

RÉSUMÉ. Nous considérons le problème de sélection de variables via la vraisemblance pénalisée en
utilisant des fonctions de pénalité non convexes. Afin de maximiser la fonction objectif qui est non dif-
férentiable et non concave, un algorithme basé sur une approximation linéaire locale et fournissant un
estimateur éparse été récemment proposé. Cependant, il hérite de certains inconvénients du Lasso
en grande dimension. Afin d’y remédier, nous proposons un algorithme (MLLQA) pour maximiser la
vraisemblance pénalisée pour une large classe de fonctions de pénalité non convexes. La propriété
de convergence du MLLQA ainsi que la propriété oracle de l’estimateur obtenu après une itération ont
été établies. Des simulations ainsi qu’une application sur données réelles sont également présentées.
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1. Introduction

Variable selection plays an important role in statistical modeling. In genomics and
preteomics studies, functional MRI, tumor classification and signal processing[14], it is
very common that a large numberp of candidate predictors are included in the model.
However, whenp is large, selection of a small number of predictors that contribute to
the response leads often to a parsimonious model. It amounts to assuming that the true
model has a sparse representation, i. e. some components of the parameter vectorβ of
regression coefficients are exactly zero. In this setting, variable selection can improve
on both estimation accuracy and interpretation. Our objective is to find the setA of the
nonzero components ofβ and to estimate the true corresponding coefficients.

Recently, variable selection for high dimensional data has received a lot of attention.
In the last decade interest has focused on penalized regression methods which implement
both variable selection and coefficient shrinkage in a single procedure. The most well
known of these procedures are Lasso[12, 1] and SCAD[3], which have good computa-
tional and statistical properties. The Lasso sparse estimates minimize the penalized least
squares withℓ1 penalty. While SCAD is presented as a unified approach, via nonconcave
penalized likelihood which simultaneously performs variable selection and coefficient es-
timation. By a judicious choice of nonconvex penalty function, SCAD keeps many merits
of the best subset selection and ridge regression. A similar nonconvex penalty MCP[13]
has been proposed to overcome the Lasso bias[10]. SCAD and MCP enjoy the oracle
property, that is, the SCAD and MCP estimators can perform as well as the oracle if the
penalization parameter is appropriately chosen.

The SCAD (and also MCP) penalty is nonconvex, and consequently it is hard to com-
pute the solution of the optimization problem. To facilitate the use of Newton-Raphson
algorithm, Fan and Li[3] proposed to approximate the nonconvex penalty by the local
quadratic approximation (LQA). However, the drawback of this approximation is that the
estimate of the regression coefficient has to end up being0 once it reached0 at any step of
the LQA algorithm. So, the LQA algorithm inherits the drawback of backward stepwise
variable selection: if a covariate is eliminated at any step in the LQA algorithm, it will
necessarily be deleted from the final selected model. To alleviate this problem, Hunter
and Li[6] proposed a minorize-maximize (MM) algorithm to compute the nonconcave
penalized estimator. In this algorithm, the LQA approximation is improved with a small
perturbationǫ > 0 to overcome the non-differentiability at zero.

On the other hand, Zou and Li[15] proposed a local linear approximation (LLA) al-
gorithm that recasts the computation of nonconcave penalized likelihood problems into a
sequence of penalizedℓ1-likelihood problems. The LLA algorithm enjoys some signif-
icant advantages over LQA and the perturbed LQA and produces a sparse estimates via
continuous penalization. Moreover, the efficient LARS algorithm[2] for solving Lasso
is used to compute the one-step LLA estimator. Consequently, the LLA algorithm will
inherit similar limitations of Lasso in high dimensional setting: forp > n, it selects at
mostn variables before it puts all coefficients to zero and a second limitation is that group
of variables can not enter in the same time with Lasso.

In this paper, we propose an efficient one-step sparse estimation procedure in non-
concave penalized likelihood models, which is based on the mixture of local linear and
quadratic approximation penalties (MLLQA). The new iterative MLLQA enjoys the ad-
vantages of both LLA and the perturbed LQA algorithms. As with LLA, MLLQA does
not delete any small coefficient and it produces a sparse estimates via continuous penal-
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ization. Its convergence property is shown and the oracle property of one-step MLLQA
estimator is established. Computationally, we take advantage of the efficient coordinate
descent algorithm for Lasso penalized regression to compute the one-step MLLQA esti-
mator in high dimension.

In Section 2, we present the local linear and quadratic approximation algorithms for
SCAD penalty. In Section 3, we present our mixture of the local linear and quadratic
approximation algorithm for SCAD penalty and study its various properties. In particular,
we show that the MLLQA algorithm is an instance of MM algorithms[5] which converges
to a stationary point of the likelihood solutions. In Section 4, we study the statistical
properties of the one-step MLLQA estimator. In particular, we show that the one-step
MLLQA estimator enjoys the oracle property: consistence of selection and asymptotical
normality. Numerical study is presented in Section 5 and we end with a brief discussion
in Section 6.

2. Linear and quadratic approximation algorithms

In this Section, we consider the problem of variable selection in generalized linear
model based on penalized likelihood approach. Two useful nonconvex penalties (SCAD
and MCP) and various local linear and quadratic approximation algorithms for computing
the maximum penalized likelihood are briefly presented.

2.1. Penalized likelihood with concave penalty

Let (xi, yi), i = 1, . . . , n be n i. i. d. predictive-response observation pairs that
are assumed to be a random sample wherexi ∈ IRp, andyi ∈ IR. We assume that the
observationyi depend onxi through a linear combination of(xi)tβ,β ∈ IRp and t stands
for the transpose. That is, we assume that givenxi, yi has the densityfi(g((xi)tβ), yi)
whereg is a known link function. The conditional log-likelihood givenxi can be written
as

ℓi(β) = ℓi(β, φ) = ℓi((x
i)tβ, yi, φ) (1)

whereφ is a dispersion parameter which is assumed to be known. Our objective is the
estimation of the parameter vectorβ and the identification of the subset model.

We consider the estimating of parameter vectorβ by maximizing the penalized log-
likelihood

Pℓ(β) =
n∑

i=1

ℓi(β)− n

p
∑

j=1

Jλ(|βj |), (2)

for a penalty functionJλ(.). In the linear model case, the penaltyJλ(|βj |) = λ|βj |γ , γ ≥
0 leads the bridge estimator ([4]). In the same setting, whenγ = 1 the penalty yields
the Lasso estimator ([12]). Fan and Li (2001) proposed the SCAD penalty which is a
continuously differentiable concave function defined by:Jλ(0) = 0 and for|βj | > 0

J
′

λ(|βj |) = λI(|βj | ≤ λ) +
(aλ− |βj |)+

a− 1
I(|βj | > λ), (3)

where(z)+ = max(z, 0), a = 3.7, J
′

λ(r) ≥ 0 for r > 0 andI(|x| ≤ λ) = 1 if |x| ≤ λ and
0 otherwise. So, with the penalty (3) the penalized likelihood function (2) is a nonconcave
function. The hard thresholding estimator corresponds to the penaltyJλ(|βj |) = λ2 −
(|βj | − λ)2I(|βj | < λ). Moreover, a new nonconvex penalty MCP ([13]) derived from
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SCAD penalty can be easily understood by considering its derivativeJ
′

λ1,a
(z) = λ1(1 −

|z|/(aλ1))+sgn(z) where sgn(z) = −1, 0 or 1 if z < 0,= 0 or > 0, respectively. It
begins by applying the same rate of penalization as Lasso, but continuously relaxes that
penalization, until|z| > aλ1, until the rate of penalization drops to zero. In the literature,
the penaltyJλ produces estimates with basic properties such that: unbiasedness, sparsity
and continuity ([13]).

2.2. Local approximation algorithms

The function (2) is non-differentiable at the origin and nonconcave with respect toβ.
Suppose given an initial valueβ(0) that is close to the true value ofβ. To run easily the
Newton-Raphson algorithm, Fan and Li[3] propose the following quadratic approxima-
tion

[Jλ(|βj |)]
′

= J
′

λ(|βj |)sign(βj) ≈
{

J
′

λ(|β
(0)
j |)/|β(0)

j |
}

βj . (4)

It leads toJλ(|βj |) ≈ Jλ(|β(0)
j |) + 1

2

{

J
′

λ(|β
(0)
j |)/|β(0)

j |
}

(β2
j − β

(0)
j

2
) for βj ≈ β

(0)
j .

Then the iterative procedure LQA (Local Quadratic Approximation) solves

β(k+1) = argmaxβ

{
n∑

i=1

ℓi(β)− n

n∑

i=1

J
′

λ(|β
(k)
j |)

2|β(k)
j |

β2
j

}

. (5)

When β
(k)
j is close to zero, i. e.|β(k)

j | < ǫ0 (pre-specified value), then̂βj = 0 and
delete thejth component ofxi from the iteration. However, LQA has two drawbacks:
the choice ofǫ0 and similarity with the backward stepwise variable selection. Hunter and
Li[6] studied the convergence property of the LQA algorithm. They described a minorize-
maximize (MM) algorithm[5] to compute the penalized nonconcave likelihood estimator.
In this algorithm, the latter approximation (4) is improved with a small perturbationτ0 to
handle the non-differentiability at0. This prevents the estimation from being trapped at
0. Then, the new iterative perturbed LQA algorithm solves

β(k+1) = argmaxβ







n∑

i=1

ℓi(β)− n

p
∑

j=1

J
′

λ(|β
(k)
j |)

2(|β(k)
j |+ τ0)

β2
j






, (6)

for a fixed size perturbationτ0. Hunter and Li[6] noted that a suitable choice of the size
of τ0 is essential for the good degree of sparsity of the solution as well as the speed of
convergence. To overcome the limitations of LQA algorithms, Zou and Li[15] described
a new algorithm based on local linear approximation (LLA) to the penalty function:

Jλ(|βj |) ≈ Jλ(|β(0)
j |) + J

′

λ(|β
(0)
j |)(|βj | − |β(0)

j |) for βj ≈ β
(0)
j . (7)

Then, the iterative LLA procedure becomes

β(k+1) = argmaxβ







n∑

i=1

ℓi(β)− n

p
∑

j=1

J
′

λ(|β
(k)
j |)|βj |






. (8)

As with Lasso, theℓ1 penalty in the LLA algorithm naturally leads to a sparse represen-
tation of the estimates of the vector parameterβ. So the LLA algorithm shares the good
properties of Lasso in terms of computational efficiency, and therefore the efficient least
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angle regression shrinkage (LARS) algorithm[2] can be used to solve the equation (8).
Zou and Li[15] confirm that the LLA algorithm is numerically stable, and so, the limita-
tions of backward variable selection can be avoided in the LLA algorithm. However, the
LLA algorithm inherits the drawbacks of Lasso in high dimensional setting in the pres-
ence of strong correlated variables. Moreover, whenp > n Lasso will selects at leastn
variables[14].

In the same setting, other new algorithms have been recently proposed to find a min-
imizer of the SCAD (or MCP) penalized likelihood function[7, 8, 11]. However, even
if these new procedures provide simple and efficient computational algorithms, but they
inherit the drawbacks of LARS in high dimension with correlated predictors.

3. Mixture of Local Linear and Quadratic Approximations

In this Section, we propose our MLLQA procedure and establish its convergence prop-
erty.

3.1. MLLQA procedure

To overcome the drawbacks of the LLA algorithm in high dimensional setting with
correlated variables, we propose a new unified algorithm which is a mixture of local lin-
ear and quadratic approximations. Indeed, from the approximation (4), we obtain that
J

′′

λ (|βj |) ≈ J
′

λ(|β
(0)
j |)/|β(0)

j | for βj ≈ β
(0)
j . Then, we consider the following local

quadratic approximation of the penalty function

Jλ(|βj |) ≈ Jλ(|β(0)
j |) + J

′

λ(|β
(0)
j |)(|βj | − |β(0)

j |) +
J

′

λ(|β
(0)
j |)

2|β(0)
j |

(|βj |2 − |β(0)
j |2)

for βj ≈ β
(0)
j . Finally, the iterative mixture of local linear and quadratic approxima-

tions (MLLQA) procedure is defined by

β(k+1) = argmaxβ







n∑

i=1

ℓi(β)− n

p
∑

j=1

J
′

λ(|β
(k)
j |)|βj | −

n

2

p
∑

j=1

J
′

λ(|β
(k)
j |) + τ0

|β(k)
j |+ τ0

|βj |2





.

(9)
The small perturbationτ0 is introduced, in the numerator and denominator of the3th
term of (9), to handle the non-differentiability at0 and in order to ensure convergence
of our algorithm as we will see further, respectively. Consequently, the penalty in (9) is
a combination of the weightedℓ1 andℓ2 norms. So, MLLQA is similar to the Elastic
Net[14] which is more adapted to strong correlated variables in high dimensional linear
regression setting. Thus, MLLQA inherits the good properties of LLA algorithm and
corrects its difficulties in high dimension.

3.2. Convergence property of MLLQA algorithm

Following Schifano et al.[11], we assume thatJ
′

λ(0+) ∈ [C−1
λ , Cλ] for some finite

Cλ > 0. So,Jλ(.) satisfies the condition(P1) in Schifano et al.[11], which implies that
J

′

λ(r) > 0 for r ∈ (0, Kλ), whereKλ > 0 may be finite or infinite. The positivity of the
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right derivative at zero ensures that
∑p

j=1 Jλ(|βj |) is not identically zero for|βj | > 0.
Denote

H(β|β(k)) =







n∑

i=1

ℓi(β)− n

p
∑

j=1

Υτ0(βj |β(k)
j )






(10)

where

Υτ0(βj |β(k)
j ) = Jλ(|β(k)

j |)+J
′

λ(|β
(k)
j |)(|βj |−|β(k)

j |)+
J

′

λ(|β
(k)
j |) + τ0

2(|β(k)
j |+ τ0)

(|βj |2−|β(k)
j |2).

The following theorem states that MLLQA algorithm is an instance ofMM algorithms
and has the ascent property.

Theorem 3.1. For a differentiable concave penalty functionJλ(.) on [0,∞), we have

Pℓ(β) ≥ H(β|β(k)) and Pℓ(β(k)) = H(β(k)|β(k)). (11)

Furthermore, the MLLQA has the ascent property, i.e, for all k=0,1,2,...

Pℓ(β(k+1)) ≥ Pℓ(β(k)). (12)

Proof of Theorem 3.1. We recall that

Pℓ(β)−H(β|β(k)) = n{
n∑

i=1

(Jλ(|β(k)
j |) + J

′

λ(|β
(k)
j |)(|βj | − |β(k)

j |)+

J
′

λ(|β
(k)
j |) + τ0

2(|β(k)
j |+ τ0)

(|βj |2 − |β(k)
j |2)− Jλ(|βj |))}.

By the concavity ofJλ(.), we have

Jλ(|β(k)
j |) + J

′

λ(|β
(k)
j |)(|βj | − |β(k)

j |)− Jλ(|βj |) ≥ 0 for j = 1, ..., p.

Whenβ(k)
j = 0, we use the right derivative. The quadratic term

J
′

λ(|β
(k)
j |) + τ0

2(|β(k)
j |+ τ0)

(|βj |2 − |β(k)
j |2)

is always positive due to the approximation(|βj | − |β(k)
j |)2 ≈ |βj |2 − |β(k)

j |2 for βj ≈
β
(k)
j . We hence havePℓ(β) ≥ H(β|β(k)) and it’s easy to verify thatPℓ(β(k)) =

H(β(k)|β(k)).
The second inequality holds by the fact thatβ(k+1) = argmaxβH(β|β(k)), which leads

toPℓ(β(k+1)) ≥ H(β(k+1)|β(k)) ≥ H(β(k)|β(k)) = Pℓ(β(k)). �
Let M(β(k)) denote the map defined by the MLLQA algorithm fromβ(k) toβ

(k+1). Note
that the penalty function has continuous first derivative and solvingβ(k+1) is a convex
optimization problem, soM is a continuous map. We assume that the setS of stationary
points forξ(β) = −Pℓ(β) is both non empty and finite.
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Theorem 3.2. Letβ(k+1) = argminβ − H(β|β(k)). Then, using the condition(iii) of

Theorem2.1 in Schifano et al.[11],β(k+1) converges to a stationary point ofξ(β) =
−Pℓ(β).

Proof of Theorem 3.2. We recall that

−Pℓ(β) = −ℓ(β) + n

p
∑

j=1

Jλ(|βj |).

Let ξ(β) = −Pℓ(β) = g(β) + nSλ(β). The negative log-likelihood functiong(.) is
strictly convex andSλ(β) =

∑p

j=1 Jλ(|βj |) satisfies the assumptions needed for Theo-
rem 2.1 of Schifano et al.[11]. On the other hand, let
Uλ(β|β(k)) =

∑p

j=1 ũλ(|βj |, |β(k)
j |), where

ũλ(r, s) = Jλ(s) + J
′

λ(s)(r − s) +
J

′

λ(s) + τ0
2(s+ τ0)

(r − s)2

for r ≈ s, with r ands are taken in a compact set of(0,∞). Then, we haveUλ(β|β(k))−
Sλ(β

(k)) > 0. This strict inequality is obtained by the concavity ofJλ(.) on (0,∞)
which leads toJλ(r) ≤ Jλ(s) + J

′

λ(s)(r − s) for eachr, s > 0 and the fact that
(J

′

λ(s) + τ0)(r − s)2/2(s + τ0) > 0 for eachr ≈ s. Hence,−H(β|β(k)) strictly
locally majorizesξ(β) in an open neighborhood containingβ(k+1). We mention here
that as far as strictly local majorization holds at each iteration, we don’t need to use the
functionh(β, α) used in Theorem 2.1 of Schifano et al.[11] to majorizeg(β). In fact,

one can consider that,
∑p

j=1

J
′

λ(|β
(k)
j

|)+τ0

2(|β(k)
j

|+τ0)
(|βj |− |β(k)

j |)2 > 0 instead ofh(β,β(k)). This

is the reason of introducing the perturbation to the numerator, as previously mentionned.
Finally, strict convexity of−H(β|β(k)) in β leads to unique minimumβ(k+1). With lo-
cally strict majorization, we conclude that the MM algorithm derived from−H(β|β(k))
converges to a stationary point ofξ(β). �

4. Statistical study of one-step MLLQA estimator

In this Section, we establish the oracle property of the one-step MLLQA estimator in
the case of linear regression models based on the penalized least squares and in the most
general penalized likelihood setting.

4.1. Linear regression case

In the case of linear models, the one step MLLQA estimatorβ̂ verifies

β̂ = argminβ







1

2
‖ y −Xβ ‖2 +n

p
∑

j=1

J
′

λ(|β
(0)
j |)|βj |+

n

2

p
∑

j=1

J
′

λ(|β
(0)
j |) + τ0

|β(0)
j |+ τ0

|βj |2





.

(13)
We remark that solving(13) is similar to elastic net problem. In fact unlike the elastic net
based on the choice of two regularization parameters, here we deal with a single parameter
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λ due to the behavior of the SCAD (and also MCP) penalty. It is easy to see that solving
problem(13) is equivalent to find

β̂ = argminβ







1

2
‖ y∗ −X∗β ‖2 +n

p
∑

j=1

J
′

λ(|β
(0)
j |)|βj |,






(14)

where

y∗ =

(
y

0

)

, X∗ =

(
X
S

)

andS is a diagonal matrix withSjj =

√

n
J

′

λ
(|β(0)

j
|)+τ0

|β(0)
j

|+τ0
, j = 1, ...p.

Thus, maximizingPℓ(β), as defined in (2) via the one-step MLLQA algorithm, is
equivalent to use one-step LLA on an augmented data.
It’s now interesting to see if̂β enjoys oracle properties. So, we assume the two following
regularity conditions (A.1) and (A.2) used in [15].

(A.1). yi = xt
iβ0 + ǫi, whereǫ1, ..., ǫn are independent and identically distributed

random variables with mean0 and varianceσ2,
(A.2).

1

n
XtX → C =

(
C11 C12

C21 C22

)

whereC is a positive definite matrix,β0 = (β01, ..., β0p)
t = (βt

10,β
t
20)

t andβ20 = 0.

Theorem 4.1. Assume that the previous assumptions (A.1) and (A.2) are satisfied and
that if λn → 0,

√
nλn → ∞ and

√
nτ0 → 0 asn → ∞, then with probability tending to

one we obtain that:
(a) Sparsity:β̂2 = 0.
(b) Asymptotic normality:

√
n(β̂1 − β10) → N(0, σ2C−1

11 ).

We omit the proof of Theorem4.1 since it is similar to that of Theorem4.2 defined in
Section4.2.

4.2. Generalized linear model case

In the penalized likelihood setting, we assume that the log-likelihood functionℓ(β) =
∑n

i=1 ℓi(β) is twice differentiable according toβ. For a given initial valueβ(0), we can
use the following local approximation:

ℓ(β) ≈ ℓ(β(0)) +∇ℓ(β(0))t(β − β(0)) +
1

2
(β − β(0))t∇2ℓ(β(0))(β − β(0)). (15)

Starting fromβ(0) = β̂(mle) the maximum likelihood estimator, with∇ℓ(β(0)) = 0,
thenβ̂ verifies

β̂ = argminβ{
1

2
(β − β(0))t[−∇2ℓ(β(0))](β − β(0))

+n

p
∑

j=1

J
′

λ(|β
(0)
j |)|βj |+

n

2

p
∑

j=1

J
′

λ(|β
(0)
j |) + τ0

|β(0)
j |+ τ0

|βj |2},
(16)
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which can be written as

β̂ = argminβ

{
1

2
(β − β(0))t[−∇2ℓ(β(0))](β − β(0))

+
n

2
βtQτ0β + n

p
∑

j=1

J
′

λ(|β
(0)
j |)|βj |







(17)

whereQτ0 = diag(Qτ011, . . . ,Qτ0pp) andQτ0jj =
J

′

λ(|β
(0)
j |)+τ0

|β(0)
j

|+τ0
.

We denoteI(β0) thep × p Fisher information matrix and the submatrixI1(β10) =
I(β10, 0), the Fisher information knowingβ20 = 0. As advocated in [9], under some reg-
ularity conditions, we haven−1∇2ℓ(β̂(mle)) →P −I(β0), and

√
n(β0 − β̂(mle)) →D

W = N(0, I−1(β0)). The following theorem assesses the oracle property of the one step
MLLQA estimator for penalized likelihood.

Theorem 4.2. Under the previous assumptions, ifλn → 0,
√
nλn → ∞ and

√
nτ0 → 0

asn → ∞, then with probability tending to one,̂β satisfies:
(a) Sparsity:β̂2 = 0.
(b) Asymptotic normality:

√
n(β̂1 − β10) → N(0, I−1

1 (β10))

According to the two previous theorems, we see that oracle properties require for the
penalty function to be twice differentiable,λn is chosen as in Theorem 2 of [3] and we
have used a supplementary condition

√
nτ0 → 0 asn → ∞. This is justified by the fact

that our algorithm is based on linear and quadratic approximation of the SCAD penalty
function, which uses the second order derivatives. We recall that results for the one step
LLA require less regularity conditions than results given in Fan and Li[3].

REMARK. — In their earlier work, Fan and Li[3] showed that continuity for the noncon-
cave penalized likelihood estimates is guaranteed by the condition that the minimum of
the function|θ| + J

′

λ(|θ|) must be attained at 0. Since our MLLQA one step estimator is
based on a mixture of linear and quadratic approximation of the penalty function, conti-
nuity of β̂ only requires thatJ

′

λ(|θ|) is continuous for|θ| > 0, as with the one step LLA
estimator[15]. Since the computation of the sparse one-step MLLQA estimator is based
on the LLA algorithm which uses anL1 penalized criterion. The quadratic term of the
approximation only contributes in the non penalized part of the objective function.

Proof of Theorem 4.2. We only demonstrate oracle properties for the penalized like-
lihood estimates. The proof for linear regression model is similar. The following proof is
based on a slightly modified version of Theorem5 in [15]. Let us define

Kn(u) =
1

2
(
u√
n
+ β0 − β(0))t[−∇2ℓ(β(0))](

u√
n
+ β0 − β(0)) +

n

p
∑

j=1

J
′

λn
(|β(0)

j |)|β0j +
uj√
n
|+ n

2

p
∑

j=1

J
′

λn
(|β(0)

j |) + τ0

|β(0)
j |+ τ0

(β0j +
uj√
n
)2.
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Then, we have

Kn(u)−Kn(0) =
1

2
(
ut

√
n
[−∇2ℓ(β(0))]

u√
n
+ (β0 − β(0))t[−∇2ℓ(β(0))]

u√
n

+ n

p
∑

j=1

J
′

λn
(|β(0)

j |)(|β0j +
uj√
n
| − |β0j |)

+
n

2

p
∑

j=1

J
′

λn
(|β(0)

j |) + τ0

|β(0)
j |+ τ0

((β0j +
uj√
n
)2 − β2

0j)

≡ T1 + T2 + T3 + T4.

Moreover, it’s easy to see that

û(n) = argminu[Kn(u)−Kn(0)]

leads toβ̂ = β0 +
û(n)√

n
with β̂ the one step MLLQA estimator.

By Slutsky’s theorem and using the same argument as in the proof of Theorem5 in
Zou and Li[15], it follows that

T1 =
1

2
(
ut

√
n
[−∇2ℓ(β(0))]

u√
n
→P

1

2
utI(β0)u,

T2 = (β0−β(0))t[−∇2ℓ(β(0))]
u√
n
=

√
n(β0−β(0))t[

−∇2ℓ(β(0))

n
]u →D −W tI(β0)u

and

T3 →P

{
0 if u20 = 0
∞ otherwise.

(18)

The last term can be written as

T4 =
1

2

p
∑

j=1

√
n
J

′

λn
(|β(0)

j |) + τ0

|β(0)
j |+ τ0

(
(β0j +

uj√
n
)2 − β2

0j

1√
n

) =
1

2

p
∑

j=1

T4j .

First, it can be seen that

(β0j +
uj√
n
)2 − β2

0j

1√
n

→ 2ujβ0j I(β0j 6= 0) +
u2
j√
n

I(β0j = 0).

We now examine the behavior of
√
n(J

′

λn
(|β(0)

j |) + τ0)/(|β(0)
j |+ τ0).

Whenβ0j 6= 0, we have|β(0)
j | →P |β0j | > 0 and|β(0)

j |+ τ0 remains bounded away

from zero. Moreover, using the fact thatJ
′

λn
(θ) = 0 if θ > aλn and if

√
nτ0 → 0 and

λn → 0 asn → ∞ weconclude that
√
n

J
′

λn
(|β(0)

j
|)+τ0

|β(0)
j

|+τ0
ujβ0j →P 0.

When β0j = 0, T4j = 0 if uj = 0 else we have|β(0)
j | = OP (1/

√
n). On the other

hand, J
′

λn
(θ) = λn for all 0 < θ < λn and

√
nλn → ∞ and

√
nτ0 → 0 asn → ∞, then

T4j = (
√
nλn +

√
nτ0)

u2
j√

n(|β(0)
j |+ τ0)

→P ∞.
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So

T4 →P

{
0 if u20 = 0
∞ otherwise.

(19)

By takingW = (W t
10,W

t
20), from T1, T2, T3 andT4 convergence results we conclude

that for each fixed u,

Kn(u)−Kn(0) →d K(u) ≡
{

1
2u

t
10I1(β10)u10 −W t

10u10 if u20 = 0
∞ otherwise.

(20)

. The unique minimum ofK(u) is u = (u10 = I−1
1 (β10)W10, u20 = 0). SinceKn(u)−

Kn(0) is a convex function of u, we conclude by epiconvergence as in [15], that

û(n)10 →d I−1
1 (β10)W10 (21)

û(n)20 →d 0. (22)

ConsideringW10 = N(0, I1(β10)), (21) is equivalent to
√
n(β̂1−β10) → N(0, I−1

1 (β10))

and (22) implies that
√
nβ̂2 →P 0.

Now we have to show thatP(β̂2 = 0) → 1, which is stronger statement than (22).
We just have to show that ifβ0j = 0, thenP(β̂j 6= 0) → 0. Assumeβ̂j 6= 0, by (KKT)
conditions of(16), we must have

1√
n
([−∇2ℓ(β(0))](β̂ − β

(0)))j =
√
nλ(J

′

λn
(|β(0)

j |) +
J

′

λn
(|β(0)

j |) + τ0

|β(0)
j |+ τ0

|β̂j |). (23)

Since
J

′

λn
(|β(0)

j
|)+τ0

|β(0)
j

|+τ0
|β̂j | ≥ 0, (23) leads to

1√
n
([−∇2ℓ(β(0))](β̂ − β(0)))j ≥

√
nλJ

′

λn
(|β(0)

j |).

Whenβ0j = 0, λ
√
nJ

′

λn
(|β(0)

j |) goes to∞ in probability. Moreover, the left hand side

of (23) can be written as([−∇2ℓ(β(0))
n

]
√
n(β̂ − β0))j − ([−∇2ℓ(β(0))

n
]
√
n(β(0) − β0))j .

From (21) and (22), the first term converges in law to some normal, and so does the
second term. Thus

P(β̂j 6= 0) ≤ P(KKT condition (23) holds) → 0.�

5. Numerical experiments

In this section, we study the performances of our one step MLLQA and its competitors
on simulated and real data sets. As competitors we consider one step LLA, LQA, Per-
turbed LQA (PLQA), LASSO and ENET. For the choice of the initial parameter vector
β(0), we use the Maximum Likelihood Estimator (MLE) in the classical case whenn > p,
otherwise we consider theℓ2-Penalized MLE. In all of the experiments, computations are
conducted using R software.
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5.1. Simulation study

In all of the examples the correlation matrix(Σ) is defined byΣij = ρ|i−j|, 1 ≤
i, j ≤ n andρ ∈ {0, 0.5, 0.75, 0.9}. For illustration, we consider the setting of linear
regression and logistic regression models. In all of the simulated examples, the perturba-
tion τ0 = 10−6 for one step MLLQA, and the same value is considered for the PLQA
with ǫ chosen according to equation (3.12) in Hunter and Li[6]. The tuning parameters
are selected by ten-fold cross validation. The statistics considered here are the predic-
tion error(MSEy), the false positive (FP), which is the number of true zero coefficients
incorrectly estimated as nonzero, and false negative (FN), which is the number of true
nonzero coefficients incorrectly estimated to zero value. All simulations are performed
100 times and standard error related to an estimation, presented in brackets, is obtained
by 500 bootstrap resampling.

5.1.1. Linear regression case

Example 1: (n > p). We consider the following modelyi = xt
iβ + ǫi wherexi =

(xi1, ..., xi8) is a multinormal vector with correlation matrix(Σ),β = (3, 1.5, 0, 0, 2, 0, 0, 0)
andǫi ∼ N(0, 1) 1 ≤ i ≤ n. The sample sizen is set to ben = 60 for training sample
and the test sample has sizentest = 2 × n. The initial vectorβ(0) corresponds to the
Ordinary Least Square estimate. Table1 summarizes the results forρ ∈ {0, 0.5}.

" Table 1 about here "

As presented in Table 1, one step MLLQA performs slightly better in terms of MSEy

and FP followed by the one step LLA, where the difference in terms of FP rate with the
four other methods is clear. While the methods are all comparable in terms of FN. In
addition, the performance of LASSO and ENET are relatively similar but slightly better
than the performance of LQA and PLQA.
Example 2: p > n. We consider the high dimensional modely = xtβ + ǫ whereǫ
follows a standard gaussian distribution and the predictors are generated as in the previous
example. The number of predictors is fixed top = 120 and the vectorβ has nine nonzero
components of differents signs and the remaining components set to be equal to zero, so
β = (3, 3,−1/3, ..., 3, 3,−1/3

︸ ︷︷ ︸

9

, 0, ..., 0
︸ ︷︷ ︸

111

). Sample sizes considered for both training and

test sets aren = p/3 = 40 andn = p/2 = 60. The results are summarized in Table 2
and Table 3 forρ ∈ {0.5, 0.75, 0.9}. For this example, we use a ridge regression estimate
for β(0) as initial value instead of the classical OLS estimate.

As can be seen from Table 2 forρ = 0.5, ENET and LASSO performs slightly better
than MLLQA in terms of MSEy, respectively. Moreover, MLLQA does better in terms of
FP and FN rates with large difference in terms of FP. However, MLLQA performs better
than all other methods in terms of MSEy and FP forρ ∈ {0.75, 0.9}. It is followed by
LLA in terms of FP and ENET in terms of MSEy. Unlike Example 1, the difference
between MLLQA and LLA appears to be slightly greater in terms of errors and it is
relatively low in terms of FP. In terms of FN, PLQA and LQA perform surprisingly better
than all other methods, but their performance is bad in all other three measures.

Table 3 displays the results for the case where the sample sizen = 60 andp = 120.
In all terms and for allρ values, it can be seen that the one step MLLQA is better than
its competitors, except in terms of FN rate where PLQA and LQA are slightly better
than MLLQA. Furthermore, we note that when the sample size increases the gap between
LLA and MLLQA is increased in terms of prediction and estimation errors particularly
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for ρ = 0.9. Globally, it can be seen that the FN rates of all methods decrease when the
sample size increases.

Example 3: p > n
We consider the high dimensional modely = xtβ+ σ× ǫ whereǫ follows a standard

gaussian distribution and the predictors are generated as in the previous examples with
correlation matrix(Σ) defined byΣij = 0.9|i−j|, 1 ≤ i, j ≤ n . The number of predic-
tors is fixed top = 120 with the nine first components ofβ with nonzero values and the
remaining components set to be equal to zero, so thatβ = (10, ..., 10

︸ ︷︷ ︸

9

, 0, ..., 0
︸ ︷︷ ︸

111

). Sample

size considered isn = p/2 = 60 for both training and test sets andσ ∈ {3, 5}.

Results in Table 4 show that one step MLLQA is also the winner in terms of FP for
σ ∈ {3, 5} followed by one step LLA. Considering MSEy, ENET performs better for
σ = 3 followed respectively by one step MLLQA and LASSO; forσ = 5 our one step
MLLQA is the winner followed by ENET and LASSO. Globally for this example, one
step LLA, LQA and PLQA seem not having good performances except for FN where
PLQA and LQA perform better.

" Table 2 about here "

" Table 3 about here "

" Table 4 about here "

5.1.2. Logistic regression

The response variable is generated from a binomial distribution with parameter

Π = P (y = 1|X = x) = ex
tβ/(1 + ex

tβ).

The predictorsx are generated following the similar model as in examples before.
On the other hand, the sample size considered isn = 200 for training and test sets.
The parameter vector considered isβ = (3, 1.5, 0, 0, 2, 0, 0,−1). The misclassification
error rate, FP and FN rates are the three measures used for comparing the performance of
different methods on test data set. In this example, best results are obtained for weighted
methods (LLA, LQA, PLQA, MLLQA) by usingexp(λ̂) rather than̂λ when evaluating
weights related to each coefficient, whereλ̂ is the optimal tuning parameter selected by
tenfold cross validation.

For this example, the results in Table 5 show that the one step MLLQA is the winner
in terms of misclassification error rate followed by the LASSO, while one step LLA is the
winner in terms of false positive. Moreover, LASSO, the one step MLLQA and ENET
have a zero false negative rate, which is not the case for one step LLA, LQA and PLQA.

" Table 5 about here "

5.2. Real data experiments: p»n

We propose to test the performance of our method on ARCENE dataset which is one
of the five NIPS 2003 feature selection challenge data sets. The data set is obtained from
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UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. For this two-class clas-
sification problem with continuous input variables, the aim is to distinguish cancer versus
normal patterns from mass-spectrometric data. The samples include patients with can-
cer (ovarian or prostate cancer), and healthy or control patients. ARCENE was obtained
by merging three mass-spectrometry data sets to obtain enough training and test data for
a benchmark. The original features indicate the abundance of proteins in human sera
having a given mass value. Based on those features one must separate cancer patients
from healthy patients. The sample size considered here isn = 100 for training and test
sets withp = 10000 features. Before performing variables selection, we firstly select
p = 500, 1000, 1500 and2000 variables with the smallest p-value and compare our meth-
ods on the selected subset of variables. This pre-selection step is a common approach
used in many papers with ultra high dimensional data sets.

According to results in Table 6, the one step MLLQA is very competitive in terms
of misclassification error rate and has a tendency to select small number of variables
in all settings (followed by LLA or LASSO). While, ENET is competitive in terms of
misclassification error, but it has a tendency to introduce a lot of variables. The LQA and
PLQA perform badly in terms of misclassification rate and select more variables than all
other methods (except inp = 500).

" Table 6 about here "

6. Conclusion

We have proposed an efficient one-step sparse estimation procedure in nonconcave
penalized likelihood models, which is based on the mixture of local linear and quadratic
approximation penalties (MLLQA). The new iterative MLLQA enjoys the advantages of
both LLA and the perturbed LQA algorithms. Its convergence property is shown. As with
LLA, MLLQA does not delete any small coefficient and it produces a sparse estimates via
continuous penalization. Computationally, we take advantage of the efficient coordinate
descent algorithm for LASSO penalized regression to compute the one-step MLLQA es-
timator. Moreover, the oracle property of one-step MLLQA estimator is established. Em-
pirically, the proposed method provides smaller models with better prediction accuracy in
comparison with its principal competitors.
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Number of Zeros
Method MSEy FP FN

ρ = 0
LASSO 1.144(0.018) 2.50(0.17) 0(-)

LLA 1.139(0.018) 1.91(0.16) 0(-)
LQA 1.156(0.017) 4.26(0.09) 0(-)
PLQA 1.152(0.019) 4.24(0.09) 0(-)

MLLQA 1.132(0.018) 1.77(0.16) 0(-)
ENET 1.142(0.019) 2.49(0.15) 0(-)

ρ = 0.5
LASSO 1.119(0.015) 2.36(0.15) 0(-)

LLA 1.112(0.016) 1.67(0.15) 0(-)
LQA 1.118(0.015) 3.90(0.10) 0(-)
PLQA 1.114(0.016) 3.84(0.10) 0(-)

MLLQA 1.108(0.016) 1.58(0.15) 0(-)
ENET 1.119(0.015) 2.38(0.14) 0(-)

Table 1. Simulation results for Example 1.

Number of Zeros
Method MSEy FP FN

ρ = 0.5
LASSO 2.35(0.10) 16.26(0.56) 2.62(0.06)

LLA 3.22(0.70) 7.18(0.60) 2.41(0.12)
LQA 22.02(2.92) 18.72(1.66) 1.68(0.18)
PLQA 20.96(2.95) 20.60(1.75) 1.56(0.16)

MLLQA 2.40(0.17) 4.60(0.57) 2.30(0.09)
ENET 2.33(0.08) 12.95(0.52) 2.54(0.06)

ρ = 0.75
LASSO 1.91(0.06) 13.78(0.47) 2.45(0.07)

LLA 2.51(0.48) 2.99(0.45) 2.19(0.12)
LQA 14.44(2.54) 19.94(1.52) 1.47(0.13)
PLQA 12.55(2.13) 21.03(1.87) 1.26(0.10)

MLLQA 1.74(0.06) 1.33(0.23) 1.85(0.11)
ENET 1.82(0.06) 9.20(0.57) 2.20(0.08)

ρ = 0.9
LASSO 1.71(0.05) 14.87(0.51) 2.15(0.07)

LLA 4.00(1.01) 1.38(0.24) 2.05(0.17)
LQA 5.68(0.59) 26.26(1.73) 1.29(0.09)
PLQA 5.05(0.57) 28.88(1.61) 1.08(0.09)

MLLQA 1.47(0.05) 0.44(0.10) 1.37(0.09)
ENET 1.62(0.05) 6.97(0.48) 1.46(0.08)

Table 2. Simulation results for Example 2: n = 40, p = 3 ∗ n.
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Number of Zeros
Method MSEy FP FN

ρ = 0.5
LASSO 1.87(0.05) 23.17(0.81) 2.35(0.07)

LLA 3.19(0.80) 5.98(0.77) 2.32(0.14)
LQA 13.81(2.13) 21.07(1.89) 1.17(0.15)
PLQA 14.57(2.36) 18.12(1.62) 1.34(0.13)

MLL QA 1.57(0.05) 3.76(0.58) 2.08(0.11)
ENET 1.78(0.05) 14.40(0.70) 2.60(0.06)

ρ = 0.75
LASSO 1.72(0.04) 21.36(0.62) 2.47(0.06)

LLA 2.94(0.69) 3.21(0.54) 1.97(0.14)
LQA 5.87(0.74) 18.44(1.74) 1.20(0.10)
PLQA 6.12(0.93) 21.38(2.10) 1.25(0.10)

MLL QA 1.34(0.03) 1.18(0.24) 1.73(0.10)
ENET 1.57(0.04) 11.45(0.64) 2.31(0.07)

ρ = 0.9
LASSO 1.54(0.03) 21.22(0.53) 2.28(0.07)

LLA 2.49(0.45) 1.38(0.28) 1.61(0.14)
LQA 3.19(0.27) 26.93(2.12) 1.46(0.09)
PLQA 3.18(0.26) 27.69(2.06) 1.44(0.09)

MLLQA 1.31(0.04) 0.46(0.12) 1.52(0.10)
ENET 1.40(0.03) 12.71(0.37) 1.69(0.08)

Table 3. Simulation results for Example 2: n = 60, p = 2 ∗ n.

Number of Zeros
Method MSEy FP FN

σ = 3
LASSO 14.75(0.36) 25.90(0.48) 2.36(0.07)

LLA 18.19(4.02) 4.15(0.13) 3.05(0.06)
LQA 33.28(7.96) 47.39(1.61) 1.39(0.12)
PLQA 32.69(8.67) 47.43(1.80) 1.39(0.11)

MLLQA 14.15(3.17) 3.57(0.06) 3.04(0.04)
ENET 12.14(0.32) 12.03(0.73) 2.70(0.05)

σ = 5
LASSO 40.47(0.93) 24.07(0.45) 2.42(0.07)

LLA 49.33(5.70) 4.49(0.29) 3.14(0.09)
LQA 100.23(8.16) 33.98(1.86) 1.21(0.11)
PLQA 92.82(8.75) 35.50(1.77) 1.18(0.14)

MLLQA 32.81(0.67) 3.59(0.10) 2.98(0.02)
ENET 34.80(0.76) 11.02(0.93) 2.73(0.05)

Table 4. Simulation results for Example 3.
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Method Misclassification error FP FN
LASSO 24.14(0.53) 2.48(0.10) 0(-)

LLA 24.17(0.55) 2.47(0.11) 0.01(0.01)
LQA 27.12(0.65) 2.95(0.07) 0.02(0.01)
PLQA 27.12(0.68) 2.64(0.08) 0.02(0.01)

MLLQA 23.90(0.55) 2.75(0.10) 0(-)
ENET 24.26(0.54) 3.19(0.08) 0(-)

Table 5. Simulation results for logistic regression model.

Method Misclassification error ♯ Selected variables
p = 500

LASSO 36 18
LLA 36 18
LQA 40 65
PLQA 38 123

MLLQA 33 11
ENET 37 68

p = 1000
LASSO 29 22

LLA 29 20
LQA 44 119
PLQA 44 119

MLLQA 27 21
ENET 28 108

p = 1500
LASSO 30 43

LLA 31 41
LQA 44 174
PLQA 44 174

MLLQA 29 36
ENET 27 114

p = 2000
LASSO 30 47

LLA 32 50
LQA 45 150
PLQA 44 244

MLLQA 31 46
ENET 32 122

Table 6. Results for ARCENE dataset.
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