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ABSTRACT. We derive and analyze an a posteriori error estimator for nonconforming finite element
approximation for the quasi-Stokes problem, which is based on the solution of local problem on stars
with low cost computation, this indicator is equivalent to the energy error norm up to data oscillation,
neither saturation assumption nor comparison with residual estimator are made.

RESUME. Nous dérivons et analysons un estimateur d’erreur a posteriori pour les approximations par
éléments finis non conformes du probléme de quasi-Stokes, il est basé sur la résolution de problemes
locaux a faible codt de calcul. Lestimateur est équivalent a 'erreur en norme d’énergie augmentée
d’oscillations des données, sans hypothése de saturation ni de comparaison avec I'estimateur par
résidu.
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1. Introduction

The need for accurate solutions of large scale problems in computational fluid dynam-
ics has made the use of adaptive, automatic re-meshing very attractive for nonconforming
finite element approximations to solution of partial differential equation. A posteriori er-
ror estimate was introduced in order to provide an information about the local and global
quality of the computed finite element solution. One of the most popular a posteriori error
estimators is the hierarchical estimator introduced by Bank et al. in [8] for symmetric el-
liptic problems and generalized after by Achchab et al. in [2] and Hoppe et al. in [14] for
conforming and nonconforming mixed finite elements. An abstract setting is developed
in ([1, 4,5, 6, 15]).

In this paper we developed and analyzed an error estimate for the quasi-Stokes problem
which is based on the solution of a local quasi-Stokes problem in star, this estimate is
shown to both a global upper and lower bound of the discretization error ([7],[8],[13],
[15D).

The advantage of using the solution of the local problem on star is control error without
influence on the regions near the singularity which introduces less degree of freedom and
the optimality of cost calculation ([3],[9],[10], [15]).

We test this estimate on several classical problems and demonstrate its efficiency in grid
adaptation. The quasi Stokes problem modeling the fluid flows, and flows in porous me-
dia.

2. Setting of the problem

We consider the quasi Stokes problem :

Find (u, p) such that
—Au+ou+Vp=f inQ,

divu =0 in €,

u=0 on =T =01,

where f € (L%(Q))%. We assume that ¢ € L>(Q) and Q C RY, d = 2,3, is a simply
connected polygonal domain, u is the velocity, p is the pressure. Let (7)), be a family
of conforming shape-regular triangulation of 2 by d-simplex. We denote by E; the set of
interior edges (faces), and by E the set of all edges (faces) included in I'.

We denote by {z; };cn the set of all nodes of the triangulation 7. For each i € N/,
¢; denotes the canonical continuous piecewise linear basis function associated to x;. The
star w; is the interior relative to €2 of the support of ¢;, and h; is the maximal size of the
elements constituting w;. Finally, I'; denotes the union of the sides touching x; that are
contained in 2, and T'; the union of the sides touching x; that are contained in Q.

Let V4 (©2) be the lowest order non-conforming Crouzeix-Raviart finite element space
defined by
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Vh(Q) = {Uh € L2(Q);VT € Tn, Uh|T S Pl(T),VE € Fy, IE['Uh]EdU =0 and
VE € Ef’fE vpdo = 0}.
and

Qh = {Qh S Lg(Q),qh‘T € Po(T),VT € w; and w; € 777,}

where [.] g denotes the jump of the argument across E.

For each star w;, i € N, if z; is an interior node, we introduce the space defined by

vpidr =0 and/ |Vol2¢; < oo},

Wi

V) = v € (Hp ) [

Wi

and if x; is a boundary node, by

V(w)={veH (w)?:v=0ondw;NT and/ |Vu|?¢; < oo}.

i

There exists a constant C, only depending on the minimum angle of the triangulation
but independent of the star being considered, such that (see Prop. 2.4 of [15]) :

Vo e V(w) 5 |vflow < C’h,;(/ |V1}|2¢idm)1/2. [1]

Wi

We define the finite dimensional local space Pg(w;) as follows,

Definition 1 For i € N, let P?(w;) denote the space of continuous piecewise quadratic
functions on star w; that vanish on Ow;. The spaces Pg(wi) are defined by

”Pg(wl) = Pz(wi) n V(wz)
We consider the approximate solution (uXY, py,) € (V1,(22))4 x Qy, defined by:
vvh € (Vh(Q))da
Sorer 4 Jr Vun© - Vopdz + [ ouf© wpde — [ pn divopdz} = [, foondz,

Van € Qn, Y / gn divu €dz = 0
TeTi T

Note that the second equation means that for every T € Tp,, div((up©)r) = 0.
Let v, € (V4 (Q)) be fixed. We define Vv, and divy,vy, by:

VT € 777,§ Vwvn = Vo, onT.

and
VT € Tp;  divyup, = divey, onT.
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For each i € N, we consider the local problems :
Find n; € (PZ(w;))?, such that Vu; € (P3(w;))4,
(SP) / (Vi : Vi) pide = [ VhUNC V(pigi)dr + [, oup © pigida
B = S, Prdiv(pidi)da — [, (f-pi)pida.
It is obvious that these local problems admit unique solutions.
We introduce for all ¢ € A the three indicators,

1
7711 uh 7ph Z ||d7’vuh Cd) ||0Wl)E

TeEw;
1
N2,i(up €, pr) = (/ |Vni|*pidr) 2,
w;

and

m(un©pn) = > W Ifun oz,
FEeE;

and set the problem data oscillation,

osc(f) = (Z RIS — fi)o?

iEN

Nl=

27 )

S (f = ouy©)dude
fwi ¢id$

where f; = for interior nodes i, and f; = 0 otherwise.

2.1. Upper bound

We consider first the upper bound of the error and we step the process to the main theo-
rem by the following intermediate lemmas. The first lemma is an adaptation of arguments
given in [15], and so the proof will be skipped.

Lemma 2 For interior nodes i € N, there exists an operator
I (V(wi) — (P(wi),
such that for any v € V (w;) the following conditions hold:

1) For all edge(face) E C T, / (v—TLv)p; dy=0.
E

2) Moreover, / (v —T,v)¢; dx =0, if x; is an interior node.

Wi

3) (/w |VH¢U|2¢,;)% <C (/w |V1}|2¢i>%.

where C is a positive constant depending only on the minimum angle of Ty,

Lemma 3 For interior nodes i € N, eachv € (V(w;))? and u}¢ € (V},(Q))4, we have

ViulC V() p)de = | Viul© : V(ve;)dx

Wi Wi
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8UNC
Proof. If we denote by | 5 h
mn

| € Py(E) the jump of the normal derivative across E, we

have by applying Green formula and subsequently using the property 1 of lemma 2,

NC . 8uh 8uth
thh : V((TLw) g, )dx = Z IL;v)pidy = Z Jogidry.

ECw;

Applying again Green formula yields the result. We give the following lemmas [9]

Lemma 4 There exists a linear operator I: (V;,(2))4 — (Vi,(2))4 N (HE ()4, satis-
fying the following estimate.

Yul e Vi, (Q),Vw; € Th, k=0,1,

Lk
lup'© = Tup @Ik, < C hg [uy “lsllo,e-

EE€E;
ENw; #0

where h is the diameter of face (edge) E.
We have also, the following result:

Lemma 5 For each node i € N, there exists a linear operator
I : (Hg () — (Vi ()%,
such that for any v € (H}(Q))4(Q) and VT € w; € Ty, the following assumptions hold:

1) For all edge E C T';, / (v —T,v)p;do =0, and
E

2) For all edge s, € (PO(T))dXd,/ sp.-V(v —ILw)gide =0

Wi

3) For all edge g5, € Py(T), / grdiv(v — I;v)¢;dx = 0.

Wi

The following theorem gives the star-based a posteriori error estimate for the noncon-
forming finite element approximation of quasi Stokes problem solution.

Theorem 6 There exists a positive constant C' depending on the minimum angle of the
triangulation such that:

(3 =i €IB,,)° < Gl R+ +mlE +ose(f)},

iEN 1EN

where, for more readability, we have skipped the arguments of 11 ;,m2,; and 13, and so
will be done in the sequel.

Proof Since (Iu}“,py) € (HE(Q))? x L2(Q), by standard finite element analysis ar-
guments we state
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1
2
<Z ||U—IUhNC|%,wi> + lp—prlloga
ieN
< ¢ sy |MwP)(9)- a((Tuy“, pr); (v,9))|
B (v, €(HE(2))d v, + llallo.e
xL3(%2)

)

where a(.;.) is defined by

V(u,p), (v,q) € (Hy(Q)* x (L())%,

a((u,p); (v,q)) :/VU.VdeJr/ ouvdzf/pdivvder/ q divudz.
Q Q Q Q
Then
a((u,p); (v,q)) — a((quLVC,ph); (v,q)) = /(Vu - Vlufyc) : Vudzx —|—/ o(u— quyc)vdx
Q Q

- / (p — pn) divodx + / q div(u — u)©)dz.
Q Q

On one hand, since divu = 0 on 2, Z ¢; = 1 and ¢; being bounded we have
ieN

1
divIud €67 0., -

| /Q gdiv(u—Tud)dz| <C 3 lallow,

Wi €Th
By virtue of Lemma 4 with £ = 1 we have
1 . . 1
| diveeg © 67 llow, + 1 divay' — divIug <)o [lo.w,,

low: +C Y W73 [uf]p

E€E;

N

1
Vw; € Thy || divIud €67 (|0

IN

1
| divuyy 7

0,E-

Summing up the contributions, using given indicators definitions and the inequality
2y1 2\ %
D i < (Y a8,
i i i

we get

| [ adivtu - 1u€yds| < O3 lalow ) (X o+ ).
Q2 ieN ieN

On the other hand, let v be an element of (H{(€2))¢ and set ¥ := Z v;¢;, where
ieN
|, véidz

V; for interior nodes and 0 otherwise.
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A = /(Vu—VIuhNC):Vvdx—l—/J(u—IuhNC)vdm—/(p—ph)divvd:r
Q Q Q

= Z / (Vu — Vud ) : Vodz Jr/ (VuNC = VIul©) : Vuda
wi €Th Wi Wi

—|—/ o(u —ul 9 vdr — / (p — pr) divudz + / o(uNY — TulYudz,
Q w; Q

i

= — Z /(Vuth):Vvdx—/ auibvcvda:—l—/ Dh divvda:—i—/ fudz

w; €Th g ¢
+ Z / (Vul© — VIuhNC).Vvder/ o(ul € — Tul Yvdz.
Wi €Ty VWi Q2
Knowing that v € (V},(2))? N (Hg(2))4,
A = — Z / (Vud©) V(v—ﬁ)dw—/ ou € (v —v)dx

wi €Th Wi

+/ prdiviv —0)dz + | f(v—")dx

i Wi

+ Z / (VuhNC—VIu}]:/C):Vvdx—l—/a(uﬁ[c—luth)(v—ﬁ)dm.
: Q

wi €Th Wi
Stating that v — v = Z(v — v;)¢;, and using Z o;=1.
ieN ieN
Since (v — v;) € (V(w;))?, adding and removing same quantities in the two last terms
and use item 2 of Lemma 5 we obtain

A = — Z /W(Vuflvc) : VII(v — v;)pidx — /w ou “Tl(v — v;)didx

wi€Th

+/ pr divII(v — v;)@idx + fI(v — v;)pidx

i Wi

—/ oul € (v —v; — (v — v;))psda + / pp div(v —v; — (v — v;))pidx

+Z/

wi €T Vi

(Vup© = VIul ) : Vodz + [ f(v — v — (v — v;))pida.

Finally, using the definition of local problems (SP;),
A = -— Z / (Vi) : V(v — v;)pidx — / oul € (v —v; — (v — v;))psda

wi€Th

i

+/ pp div(v — v; — (v — v;))Pidx

i

+ Z / (Vul€ — VIul®) : Vodz + /w flo—v; = (v —v;))p;da.

wi €T Wi
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We now process successively with each term of the right-hand side. On one hand, using
Cauchy-Schwarz and item 2 of Lemma 2 we have

Z{ Vni:VHi(v—vi)@dm] < (Z/ \Vm|2¢idx)5(z/ ‘VHi(U—Ui)|2¢idx)§7
ienN Lwi PEN VWi iEN T
< (Xt ®m) (3 [ IVto—v)Pods)”
ieEN 1EN
< (X mamm) vl
ieN

on the other hand, since both of (v — v;) and IT; (v — v;) belong to V' (w;), using definition
of V' (w;) and coefficients f; give

/(f—auhNC)(v—vi—Hi(v—vi))@dx = /(f fi = oup ) (v = v = Wi(v = v;)) pid,

i

for any constant f; € R for all interior nodes. Defining f; = 0 for boundary nodes, we
have

/ = ouO) o — v~ Tl —v)oude < (7~ F)(90)?

wr (10 = 0)(60) o,
(L0 = 0)) ()2 o)

for every nodes. Using Cauchy-Schwarz then the inequality (1) and once more Z o =1

1EN
we get

dien [/w (f = oup ) (v —v; — (v — Uz‘))@dfc}

i

< (ZHh (f = fi)(#i)2 ||2> (Zh (Hv_vz (¢z) llo,w;

1EN 1EN

(M0 = v (@) o ) ).

< Cosc(f) [lvlla,

where C'is a generic constant only depending on the minimum angle of triangulation.

Using successively item 3. of Lemma 5 and Lemma 4 with k£ = 1 we get

(X na+md)t +ose(h) oo

1EN

Summing up the contributions gives,
la((u, p); (v;0)) = a((Tuy', pr); (v, )]
< (D lallo.ws) 27711+773 )+ {nd s + 3} + ose(f) Hlolva,

ieN €N
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which finally gives us:
DN R T P N (R (TN S N (A (TN
ieEN iEN ieEN

Cny+ Y llu—Tu 93,
1EN

IN

and yields the result.

2.2. Efficiency of the estimator

This section is devoted to the estimator efficiency. Hence, we first need the following
theorem:

Theorem 7 There exists a positive constant C' depending on the minimum angle of the
triangulation such that : Vw; € Ty, we have

|| divuthHO,wi S C”u - ull—bvc| 1,wis [2]
M2 < Cllu—ul 1w + lp = pallow: (3]

and
13 < Cllu—up |1 - [4]

Proof. It is clear that:
1
| divup €67 flo.w,) < Cllu—up 1w,

For each i € N, by definition of 7 ; (u}’ ©) and taking test function p; = 7; in local
problem (S P;) give

3. (un €, pn)

/ (VP dud),

Vuy @ : V(i) da +/ (oup “n;).gidx — / (pn div(n;)¢i)dx — / fnigidx.

wi

Wi i i

Since (n;¢:) € (Hg())%, we can state

w5 (uy < pn) =

i

/‘(Vuth —Vu) : V(n;)pidx —|—/ (Vuévc — Vu)(n;).V(é;)dx

Wi

(VulYC — Vu) - V(ni)de + /

J(uivc —u).nip;dr — / (pn, — p) div(n;¢;)dz,
Q

Wi

+ /Q U(uth —u)n;¢idx — /w (pn, — p) div(n;¢; )dx.

Applying Cauchy-Schwarz inequality gives

M a(un ©oon) < Il = ah v, (g pn) + llu = ug <L willmillo.w: [ @llwro )

771'||L°°(wi) + ”p - phHO.,wf,nZi(uthaph)a[S]

Hlollo,colle = uh'lo.w,
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where ¢ is bounded in w;. Now since 7; € V' (w; ), using (1), we have

[millow, < C hima,iy(ui'©, pr)-
. . C
Finally using the property |¢;|y 1.0 () < o we get
n2,i(up @ pn) < C(L+ [l oo oy i) [lu = uh 1w + 1P = Pallo.w, -

We refer for a proof of third estimate to [9], which concludes the proof.

3. Mesh adaption procedure and Numerical results.

For the numerical illustration of the efficiency of the error estimator and the based
adaption process, we consider tree examples for different singularity geometry.

3.1. Example 1.

In this example, we consider a simple problem with a homogeneous data on the com-
putational domain [0, 1], as shown in figure 1, with the source term f given by the exact
solution u = [uq, ug] and the pressure p .

up = 2500002193 (1—1)° (4(1—5y+9y> —Ty> +2y*) —5y+243° — 423 +32y* —9y°) +0.3z
ug = 250000y 23 (1—x)® (4(1—5x+92? 723+ 22%) —5r+2422 — 4223+ 322 —925)+0.3y
p1 = 2510%y* 23 (1 —5)® (4 — 202 + 362 — 2823 4+ 8" — b 4242 — 4223 4-322* —925)

p2 = (4(1 = 5y + 9% — Ty° + 2y*) — By + 24y% — 423 + 32y* — 9°)

D = p1p2

We perform nonconforming finite element discretization on it, and we report on Figures
1, 2, 3 and 4 a sequence of adapted meshes using the proposed refinement indicators and
corresponding computed velocity and pressure respectively.
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Figure 1. Adaptively refined mesh after 1 (top left),

(bottom right) refinement steps.

Figure 2. The Velocity distribution corresponds to the meshes shown in figure 1.
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Figure 4. approximate pressure.
On the left, the first iteration with 467 DOF, on the right the last iteration with 5667 DOF.

& Star-based error Indicator

—=— Residual type Indicator

10 slope =172

10°
ndof

Figure 5. Evolution of residual error indicator and star-based error indicator for quasi-
Stokes example.

In figure 5, we have included the error indicator behavior against the number of degree
of freedom. Let us remark that the error decreases in energy norm as the number of DOF
increases, compared with a slope —%.
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A comparison with residual type estimator:

The new estimator is compared now with the residual type estimator [16]. We will take
the same quasi-Stokes example as above. Successive iterations of adapted mesh are rep-
resented in Figure 6 for the residual type estimator, and Figure 5 gives comparison of

asymptotic decays of the two estimators versus the number of degrees of freedom (ndof).
We observe analogous behavior of the two estimators for this example.
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Figure 6. Adaptively refined mesh after 1 (top left), 3 (top right), 6 (bottom left), and 9
(bottom right) refinement steps.

3.2. Example 2, Backward facing Step.

In this example, we consider the Backward facing Step. Here, the spikes in the pres-
sure are noted due to a discontinuity in the boundary conditions, but to a discontinuity in

the geometry of the boundary. The figures 7, 8 and 9 show the adaptive meshes , corre-
sponding velocity and pressure elevation [10].
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Figure 7. Adaptively refined mesh after 1 (top left), 3 (top right), 6 (bottom left), and 9
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Figure 8. The velocity distribution corresponds to the meshes shown in figure 7.
On the left the pressure on the uniform grid, on the right the adapted grid .
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—— Star-based error Indicator|
—#— Residualtype Indicator ||

sope =112 -

ndof

Figure 10. Evolution of residual error indicator and star-based error indicator for quasi-
Stokes example.

The initial grid is uniformly refined, 4 levels of refinement, or adaptively refined based
on the error estimate computed from the solution. In the last case triangles were added
near the re-entrant corner to resolve the discontinuity, profiles of the velocity field are very
similar this time but the drop in pressure is better represented with the adaptive strategy
done near the boundary.

In figure 10, we have included the error indicator behavior against to the number of degree
of freedom, compared with a slope —%, and gives a comparison with the residual type
estimators.
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3.3. Example 3: Disk with a Crack.
Finally, we test our error estimate on a quasi Stokes flow in a disk of radius 1 with a
crack joining the center to the boundary [10].
o The right-hand side f is 0 .
e The boundary conditions are u’ = 3(cos § — cos 3¢, 3sin & — sin 32).
e (r,0) is a polar representation of a point in the disk.

o The exact solution is:
ut =3 9 _ 30 34ipn @ — gin 3¢ — 0
u’ = 54/r(cos 5 — cos %, 3sin 5 —sin 5). and p = - cos 3.
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Figure 11. Adaptively refined mesh after 1 (top left), 3 (top right), 6 (bottom left), and 9
(bottom right) refinement steps.
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Figure 12. The velocity distribution corresponds to the meshes shown in figure .
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A AV i,
g P A AV vt =
hv#"ee—ﬂ’. A

7=

Figure 13. approximate pressure.

On the left the pressure on the uniform grid on the right the adapted grid.

©— Star-based error Indicator

—— Residual type Indicator

10
ndof

Figure 14. Evolution of residual error indicator and star-based error indicator for quasi-
Stokes example.

The solution was computed on each grid, along with error estimates, during the refine-
ment process, (Figures 11, 12, 13 and 14), these estimates were computed using an inter-
polation scheme for the values at the new nodes, consequently their accuracy deteriorates
along with the number of refinement steps. However, we used intermediate recalculations
based on the computation of the estimates, we would have a mesh with more levels of re-
finement around the singularity(hence giving higher level for the pressure). In that regard,
the use of interpolated values instead of computed solution values had a grid smoothing
effect, and the figure 14 gives a comparison with the residual type estimators.

4. Conclusion
In this work, we have presented an a posteriori error analysis for a nonconforming

finite element method to approximate the quasi Stokes problem. The a posteriori error
analysis of this scheme give the global upper bound and local lower bound. The perspec-
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tive of this work is to adapt this technique to the Navier Stokes problem and the evolution
Stokes problem.
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