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ABSTRACT. We consider a mathematical SIL model for the spread of a directly transmitted infectious
disease in an age-structured population; taking into account the demographic process and the vertical
transmission of the disease. First we establish the mathematical well-posedness of the time evolution
problem by using the semigroup approach. Next we prove that the basic reproduction ratio R0 is
given as the spectral radius of a positive operator, and an endemic state exist if and only if the basic
reproduction ratio R0 is greater than unity, while the disease-free equilibrium is locally asymptotically
stable if R0 < 1. We also show that the endemic steady states are forwardly bifurcated from the
disease-free steady state when R0 cross the unity. Finally we examine the conditions for the local
stability of the endemic steady states.

RÉSUMÉ. Nous considérons ici un modèle mathématique SIL de transmission directe de la maladie
dans une population hôte structurée en âge; prenant en compte les processus démographiques et
la transmission verticale de la maladie. Premièrement, nous étudions le caractère bien posé du pro-
blème par la théorie des semi-groupes. Ensuite, nous montrons que le taux de reproduction de base
R0 est le rayon spectral d’un opérateur positif; et un équilibre endémique existe si et seulement si R0

est supérieur à l’unité, tandis que l’équilibre sans maladie est localement asymptotiquement stable si
R0 < 1. Nous établissons aussi l’existence d’une bifurcation de l’équilibre sans maladie quand R0

passe par l’unité. Enfin, nous donnons des conditions nécessaires pour la stabilité locale de l’équilibre
endémique.
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1. Introduction

During the earliest centuries mankind faces ever more challenging environmental and
public health problems, such as emergence of new diseases orthe emergence of disease
into new regions, and the resurgence diseases (tuberculosis, malaria HIV/AIDS, HBV).
Mathematical models of populations incorporating age structure, or other structuring of
individuals with continuously varing properties, have an extensive history.

The earliest models of age structured populations, due to Sharpe and Lotka in 1911
[37] and McKendrick in 1926 [39] established a foundation for a partial differential equa-
tions approach to modeling continuum age structure in an evolving population. At this
early stage of development, the stabilization of age structure in models with linear mor-
tality and fertility processes was recognized, although not rigorously established [35, 36].
Rigorous analysis of these linear models was accomplished later in 1941 by Feller [16],
in 1963 by Bellman and Cooke [4], and others, using the methods of Volterra integral
equations and Laplace transforms. Many applications of this theory have been devel-
oped in demography [9, 27, 33, 43], in biology [1, 2, 3, 10, 24, 48] and in epidemiology
[7, 8, 17, 18, 22, 32, 13, 12].

The increasingly complex mathematical issues involved in nonlinearities in age struc-
tured models led to the development of new technologies, andone of the most useful of
these has been the method of semi-groups of linear and nonlinear operators in Banach
spaces. Structured population models distinguish individual from another according to
characteristics such as age, size, location, status and movement. The goal of structured
population is to understand how these characteristics affect the dynamics of these models
and thus the outcomes and consequence of the biological and epidemiological processes.

In this paper we consider a mathematical S-I-L (Susceptibles-Infected-Lost of sight)
model with demographics process, for the spread of a directly transmitted infectious dis-
ease in an age-structured population. By infected (I) we mean infectious taking a chemo-
prophylaxis in a care center. And by loss of sight (L), we meaninfectious that begun their
effective therapy in the hospital and never return to the hospital for the spuctrum exami-
nations for many reasons such as long duration of treatment regimen, poverty, mentality,
etc... The lost of sight class was previously consider in some papers as [6, 15].

In this paper, the infective agent can be transmitted not only horizontally but also
vertically from infected mothers to their newborns (perinatal transmission). There are im-
portant infective agents such as HBV (hepatitis B virus), HIV (human immunodeficiency
virus) and HTLV (human T-cell leukemia virus) that can be vertically transmitted. Com-
pared with the pure horizontal transmission case, so far we have not yet so many results
for vertically diseases in structured populations. In Africa, the vertical transmission of the
disease like HIV is in progression nowadays.

Worldwide, 1% of pregnant women are HIV-positive. However,sub-Saharan Africa
where 95% of HIV positive women live carries the vast majority of this burden [46].
Without treatment, approximately 25%-50% of HIV-positivemothers will transmit the
virus to their newborns during pregnancy, childbirth, or breastfeeding [5]. In 2007, over 2
million children worldwide were living with HIV/AIDS, withthe overwhelming majority
again in sub-Saharan Africa [46]. Approximately 400,000 infants contract HIV from their
mother every year, which is about 15% of the total global HIV incidence [41, 50]. The
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rate of pediatric HIV infections in sub-Saharan Africa remains unacceptably high, with
over 1,000 newborns infected with HIV per day [25].

Large simple trials which aim to study therapeutic interventions and epidemiological
associations of human immunodeficiency virus (HIV) infection, including perinatal trans-
mission, in Africa may have substantial rates of lost of sight. A better understanding of
the characteristics and the impact of women and children lost of sight is needed. Accord-
ing to Ioannidis et al. [30], for the impact of lost of sight and vertical transmission cohort
in Malawi, several predictors of lost of sight were identified in this large HIV perinatal
cohort. Lost of sights can impact the observed transmissionrate and the risk associations
in different studies. They (Ioannidis et al.) also focus that the HIV infection status could
not be determine for36.9% of infant born to HIV-infected mothers;6.7% with missing
status because of various sample problems and30.3% because they never returned to the
clinic (Lost of sight).

Firstly, the epidemic system is formulated. Then, we will describe the semigroup
approach to the time evolution problem of the abstract epidemic system. Next we consider
the disease invasion process to calculate the basic reproduction ratioR0, then, we prove
that the disease-free steady state is locally asymptotically stable ifR0 < 1. Subsequently,
we show that at least one endemic steady state exists if the basic reproduction ratioR0

is greater than unity. By introducing a bifurcation parameter, we show that the endemic
steady state is forwardly bifurcated from the disease-freesteady state when the basic
reproduction ratio crosses unity. Finally, we consider theconditions for the local stability
of the endemic steady states.

2. The model

In this section, we formulate a model for the spread of the disease in a host population.
We consider a host population divided into three subpopulations; the susceptible class, the
infective class (those who are infectious but taking a chemoprophylaxis) and the lost of
sight class (those who are infectious but not on a chemoprophylaxis) denoted respectively
by S(t, a), I(t, a) andL(t, a) at timet and at specific agea. Let β(., .) be the contact
rate between susceptible individuals and infectious individuals. Namely,β(a, σ) is the
transmission rate from the infectious individuals agedσ to the susceptible individuals
ageda. All recruitment is into the susceptible class and occur at aspecific rateΛ(a). The
rate of non-disease related death isµ(a). Infected and lost of sight have additional death
rates due to the diseased1(a) andd2(a) respectively. The transmission of the disease
occurs following adequate contacts between a susceptible and infectious or lost of sight.
r(a) denoted the proportion of individuals receiving an effective therapy in a care center
andφ(a) the fraction of them who after begun their treatment will notreturn in the hospital
for the examination. After some time, some of them can returnin the hospital at specific
rateγ(a).
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The basic system (age-structured SIL epidemic model) with vertical transmission can
be formulated as follows by equation (1).





(
∂

∂t
+

∂

∂a

)
S(t, a) = Λ(a)− (λ(t, a) + µ(a))S(t, a),

(
∂

∂t
+

∂

∂a

)
I(t, a) = λ(t, a)S(t, a)− (µ(a) + d1(a)

+r(a)φ(a))I(t, a) + γ(a)L(t, a),(
∂

∂t
+

∂

∂a

)
L(t, a) = r(a)φ(a)I(t, a) − (µ(a) + d2(a)

+γ(a))L(t, a).

(1)

For the boundary conditions of model (1), we consider that pregnant lost of sight
women generally return to the clinic for the birth of they newborn, therefore, we can
assume that there is not lost of sight new born (i.e.L(t, 0) = 0). Due to the above
consideration, the initial boundary conditions of model (1) is given by:





S(t, 0) =
∫ a+

0
f(a)[S(t, a) + (1− p)(I(t, a) + L(t, a))]da,

I(t, 0) = p
∫ a+

0 f(a)(I(t, a) + L(t, a))da,
L(t, 0) = 0,
S(0, a) = ϕS(a); a ∈ (0, a+),
I(0, a) = ϕI(a); a ∈ (0, a+),
L(0, a) = ϕL(a); a ∈ (0, a+),

(2)

and wheref(a) is the age-specific fertility rate,p is the proportion of newborns produced
from infected individuals who are vertically infected anda+ < ∞ is the upper bound of
age. The force of infectionλ(t, a) is given by

λ(t, a) =

∫ a+

0

β(a, σ)(I(t, σ) + L(t, σ))dσ.

whereβ(a, s) is the transmission rate between the susceptible individuals aged a and in-
fectious or lost of sight individuals ageds. a+ <∞ is the upper bound of age.
Let us note that in the literature the transmission rateβ(a, σ) can take many forms:
β(a, σ) = β = constant (Dietz 1975 [11]; Greenhalgh 1987 [19]), β(a, σ) = g(a)
(Gripenberg 1983 [20]; Webb 1985 [49]), β(a, σ) = g(a)h(σ) (Dietz and Schenzle 1985
[14]; Greenhalgh 1988 [23]; Castillo-Chavez and al. 1989 [8]).

In the following, we consider systems (1)-(2) under following assumption:

Assumption 1. We assume thatβ ∈ L∞[(0, a+,R+) × (0, a+,R+)] and functions
f, d1, d2, γ, Λ, µ belong toL∞(0, a+,R+).

3. Existence of flow

The aim of this section is to derive premininary remarks on (1)-(2). These results
include the existence of the unique maximal bounded semiflowassociated to this system.
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3.1. Abstract formulation

LetX be the space defined as

X := L1(0, a+,R3)

with the norm

||ϕ||X =

3∑

i=1

||ϕi||L1 ;

whereϕ = (ϕ1, ϕ2, ϕ3)
T ∈ X . Let us noteX+ the positive cone ofX .

It is well known that(X, ||.||X) is a Banach space. LetA : D(A) ⊂ X → X be a
operator defined by

Aϕ = −ϕ′ − µϕ, (3)

with the domain

D(A) =



ϕ = (ϕ1, ϕ2, ϕ3) ∈W 1,1(0, a+,R3) and




ϕ1(0)
ϕ2(0)
ϕ3(0)


 =




∫ a+

0
f(a)[ϕ1(a) + (1− p)(ϕ2(a) + ϕ3(a))]da

p
∫ a+

0
f(a)(ϕ2(a) + ϕ3(a))da

0








;

the functionF : D(A) → X defined by

F




ϕ1

ϕ2

ϕ3


 =




Λ− λ[., ϕ]ϕ1

λ[., ϕ]ϕ1 − (d1 + rφ)ϕ2 + γϕ3

rφϕ2 − (d2 + γ)ϕ3


 ,

λ[., ϕ] ∈ L1(0, a+,R) is a function such that

λ[a, ϕ] =

∫ a+

0

β(a, σ)[ϕ2(σ) + ϕ3(σ)]dσ

andW 1,1(0, a+,R) is a usual Sobolev space.

Let us first derive the following lemma on operatorA.

Lemma 1. 1) The operatorA is generator of aC0-semigroup of linear bounded
operators{T (t)}t≥0 such that

T (t)ϕ(a) =

{
ϕ(a− t) if a− t ≥ 0
C(t− a) if a− t ≤ 0

for t ≤ a+

andT (t)ϕ(a) = 0R3 for t > a+; whereC(t) = (C1(t), C2(t), 0) ∈ R3 is the unique
solution of the following Volterra integral equation

C(t) = G(t) + Φ(t, C),

with

G(t) =

(∫ a+

t

f(s)(ϕ1(s− t) + (1− p)ϕ2(s− t) + ϕ3(s− t))ds ; p

∫ a+

t

f(s)ϕ2(s− t)ds ; 0

)
,

Φ(t, C) =

(∫ t

0

f(s)(C1(t− s) + (1− p)C2(t− s))ds ; p

∫ t

0

f(s)C2(t− s)ds ; 0

)
.
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2) The domainD(A) of operatorA is dense inX andA is a closed operator.

Proof. The proof of this result is rather standard. Standard methodologies apply to pro-
vide item 1 (see Pazy 1983 [40]). Item 2 is a direct consequence of the fact that the
operatorA is generator of aC0-semigroup of linear bounded operators (see Corollary 2.5
in Pazy 1983 [40]).

Therefore, one obtains that System (1)-(2) re-writes as the following densely defined
Cauchy problem 




dϕ(t)

dt
= Aϕ(t) + F (ϕ(t)),

ϕ(0) = (ϕS , ϕI , ϕL)
T .

(4)

3.2. Existence and uniqueness of solutions

We setX0 := D(A) andX0+ the positive cone ofX0. In general we can not solve (4)
in this strong formulation, ifu0 ∈ X0+ \D(A). So, for arbitraryϕ0 ∈ X0+ , we solve it
in the integrated form:

ϕ(t) = ϕ0 +A

∫ t

0

ϕ(s)ds+

∫ t

0

F (ϕ(s))ds ; t > 0. (5)

A solution of (5) is called amild solutionof the initial value problem (4). So, in the
following, we are looking for mild solution of abstract Cauchy-problem (4).

We can easily find that:

Lemma 2. On Assumption1, the nonlinear operatorF fromX toX is continuous and
locally Lipschitz.

Using Lemmas1 and2 the main results of this section reads as (see Theorem 1.4 in
Pazy 1983[40]).

Theorem 1. Recalling Assumption1 and let Lemmas1 and 2 be satisfied. Ifϕ0 ∈
X0+ := L1(0, a+,R3

+). Then there exists a unique bounded continuous solutionϕ to
the integrated problem(5) defined on[0,+∞) with values inX0+.

4. Equilibria

4.1. Disease-Free Equilibrium (DFE)

The following proposition gives the characteristics of thedisease-free equilibrium
(DFE) of system (1)-(2).

Let us introducel(a) = exp
(
−
∫ a

0
µ(s)ds

)
the average lifetime of individuals at age

a.
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Proposition 1. Let
∫ a+

0

f(a)l(a)da < 1 be satisfied. Then, system (1)-(2) has a unique

Disease Free Equilibrium (DFE),ϕ0 = (S0, 0L1 , 0L1), whereS0 is given by




S0(0) =
1

1−
∫ a+

0 f(a)l(a)da

∫ a+

0

f(a)l(a)

(∫ a

0

Λ(s)

l(s)
ds

)
da,

S0(a) = l(a)

[
S0(0) +

∫ a

0

Λ(s)

l(s)
ds

]
for 0 ≤ a ≤ a+.

(6)

Proof. : ϕ is an equilibrium of problem (4) if and only if

ϕ ∈ D(A) andAϕ+ F (ϕ) = 0X . (7)

For the DFE we haveϕ2 = ϕ3 ≡ 0L1 . Henceλ[a, ϕ] ≡ 0L1 . From where the result
follows using straightforward computations.

4.2. Endemic equilibrium (EE)

ϕ is an endemic equilibrium of (4) if and only if (7) is satisfied. That is,

ϕ1(a) = ϕ1(0)l(a) exp

(
−

∫ a

0

λ[σ, ϕ]dσ

)

+

∫ a

0

l(a)

l(s)
exp

(
−

∫ a

s

λ[σ, ϕ]dσ

)
Λ(s)ds; (8)

ϕ2(a) =

∫ a

0

l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−

∫ a

s

r(σ)φ(σ)dσ

)
[γ(s)ϕ3(s) + λ[s, ϕ]ϕ1(s)] ds

+ϕ2(0)l(a)Γ1(a) exp

(
−

∫ a

0

r(σ)φ(σ)dσ

)
; (9)

ϕ3(a) = ϕ3(0)l(a)Γ2(a) exp

(
−

∫ a

0

γ(σ)dσ

)

+

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
exp

(
−

∫ a

s

γ(σ)dσ

)
r(s)φ(s)ϕ2(s)ds; (10)

ϕ1(0) =

∫ a+

0

f(a)[ϕ1(a) + (1− p)(ϕ2(a) + ϕ3(a))]da; (11)

ϕ2(0) = p

∫ a+

0

f(a)(ϕ2(a) + ϕ3(a))da; (12)

ϕ3(0) = 0. (13)

where
Γ1(a) = exp

(
−
∫ a

0 (d1(s) + r(s)φ(s))ds
)
;

Γ2(a) = exp
(
−
∫ a

0
(d2(s) + γ(s))ds

)
.

Let us setλ(s) = λ[s, ϕ] for s ∈ [0, a+). Equation (8) re-write as

ϕ1(a) = ϕ1(0)A11(λ, a) + u1(λ, a). (14)
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Equations (8) and (9) give

ϕ2(a) = ϕ1(0)A21(λ, a) + ϕ2(0)A22(a) + u2(λ, a). (15)

Equations (10), (13) and (14) give

ϕ3(a) = ϕ1(0)A31(λ, a) + ϕ2(0)A32(λ, a) + u3(λ, a); (16)

with

A11(λ, a) = l(a) exp

(
−

∫ a

0

λ(σ)dσ

)
;

A21(λ, a) =

∫ a

0

χ21(a, s)λ(s) exp

(
−

∫ s

0

λ(σ)dσ

)
ds;

A22(a) = l(a)Γ1(a);

A31(λ, a) =

∫ a

0

χ31(a, s)λ(s) exp

(
−

∫ s

0

λ(σ)dσ

)
ds;

A32(a) = l(a)Γ2(a)

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)ds;

u1(λ, a) =

∫ a

0

l(a)

l(s)
Λ(s) exp

(
−

∫ a

s

λ(σ)dσ

)
ds;

u2(λ, a) =

∫ a

0

l(a)

l(s)
Λ(s)

∫ a

s

Γ1(a)

Γ1(η)
λ(η) exp

(
−

∫ η

s

λ(σ)dσ

)
ds;

u3(λ, a) =

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)u2(λ, s)ds

+

∫ a

0

l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−

∫ a

s

r(σ)φ(σ)dσ

)
γ(s)ϕ3(s)ds;

and

χ21(a, s) = l(a)
Γ1(a)

Γ1(s)
; χ31(a, s) = l(a)

∫ a

s

Γ2(a)Γ1(η)

Γ2(η)Γ1(s)
r(η)φ(η)dη.

From equations (11) and (12), we respectively deduce that
(
1−

∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) +A31(λ, a))]da

)
ϕ1(0)

− (1− p)ϕ2(0)

∫ a+

0

f(a)[A22(a) +A32(a)]da = v1(λ);

(17)

and

pϕ1(0)

∫ a+

0

f(a)[A21(λ, a) +A31(λ, a)]da

+ ϕ2(0)

(
p

∫ a+

0

f(a)[A22(a) +A32(a)]da− 1

)
= −v2(λ);

(18)
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where

v1(λ) =

∫ a+

0

f(a)[u1(λ, a) + (1− p)(u2(λ, a) + u3(λ, a))]da;

v2(λ) = p

∫ a+

0

f(a)[u2(λ, a) + u3(λ, a)]da.

Therefore, we find thatϕ1(0) =
∆1(λ)

∆(λ)
andϕ2(0) =

∆2(λ)

∆(λ)
; with

∆(λ) = (1− p)p

∫ a+

0

f(a)[A22(a) +A32(a)]da×

∫ a+

0

f(a)[A21(λ, a) +A31(λ, a)]da

+

(
1−

∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) +A31(λ, a))]da

)
×

(
p

∫ a+

0

f(a)[A22(a) +A32(a)]da− 1

)
;

∆1(λ) = v1(λ)

(
p

∫ a+

0

f(a)[A22(a) +A32(a)]da− 1

)

− (1 − p)v2(λ)

∫ a+

0

f(a)[A22(a) +A32(a)]da;

∆2(λ) = v2(λ)

(∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) +A31(λ, a))]da − 1

)

− pv1(λ)

∫ a+

0

f(a)[A21(λ, a) +A31(λ, a)]da.

Equations (15) and (16) give




ϕ2(a) =
∆1(λ)

∆(λ)
A21(λ, a) +

∆2(λ)

∆(λ)
A22(a) + u2(λ, a)

ϕ3(a) =
∆1(λ)

∆(λ)
A31(λ, a) +

∆2(λ)

∆(λ)
A32(a) + u3(λ, a)

(19)

Sinceλ(a) =
∫ a+

0
β(a, s)(ϕ2(s) + ϕ3(s))ds; then we have

λ(a) = H(λ)(a); (20)

whereH is the operator defined fromL1(0, a+,R) into itself by

H(ϕ)(a) =

∫ a+

0

β(a, s)

[
∆1(ϕ)

∆(ϕ)
(A21(ϕ, s) +A31(ϕ, s)) + u2(ϕ, s) + u3(ϕ, s)

+
∆2(ϕ)

∆(ϕ)
(A22(s) +A32(s))

]
ds. (21)
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Hence, system (1)-(2) have an endemic equilibrium if and only if the fixed point equation
(20) has at least one positive solution.

Now let us introduce the following technical assumptions onthe transmission rateβ
as in Inaba [26, 28, 29]:

Assumption 2. 1) β ∈ L1
+(R×R) such thatβ(a, s) = 0 for all (a, s) /∈ [o, a+]×

[0, a+].

2) lim
h→0

∫ +∞

−∞
|β(a+ h, ξ)− β(a, ξ)|da = 0 for ξ ∈ R.

3) It exists a functionε such thatε(s) > 0 for s ∈ (0, a+) andβ(a, s) > ε(s) for
all (a, s) ∈ (0, a+)2.

On the above assumption, some properties of operatorH are given by the following
lemma.

Lemma 3. Let Assumption2 be satisfied.

(i) H is a positive, continu operator. There exist a closed, bounded and convex subset
D ⊂ L1

+(0, a
+,R) such thatH(D) ⊂ D.

(ii) OperatorH has a Fréchet derivativeH0 at the pointϕ ≡ 0 defined by(22) and
H0 := H ′(0) is a positive, compact and nonsupporting operator.

Proof. (i) The positivity and the continuity of operatorH are obvious. Letϕ ∈ L1(0, a+,R+),
then

A21(ϕ, a) ≤ 1; A31(ϕ, a) ≤

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds := Ã31(a);

u1(ϕ, a) ≤

∫ a

0

l(a)

l(s)
Λ(s)ds; u2(ϕ, a) ≤ a||Λ||∞ and

u3(ϕ, a) ≤ ||Λ||∞Ã31(a) + sup
s∈[0,a]

γ(s)||ϕ||L1 .

Since∆1(ϕ)
∆(ϕ) = ϕ1(0);

∆2(ϕ)
∆(ϕ) = ϕ2(0) and the flow of system (1)-(2) is bounded (The-

orem1), we can findMΩ > 0 such that|ϕ1(0)| ≤ MΩ and|ϕ2(0)| ≤ MΩ. Therefore,
||H(ϕ)||L1 ≤M ; with

M = ||β||∞

∫ a+

0

[
MΩ(1 +A22(s) + (Ã31(s) + A32(s)) + sup

s∈[0,a]

γ(s)) + ||Λ||∞(Ã31(s) + s)

]
ds.

SettingD = B+(0,M) with B+(0,M) := {ϕ ∈ L1(0, a+,R+) : ||ϕ||L1 ≤M}. Hence
H(D) ⊂ D. This end the proof of item (i).

(ii) We find that

H0(ψ)(a) =

∫ a+

0

β(a, s)

[
∆1(0)

∆(0)
(DA21(0, s)(ψ) +DA31(0, s)(ψ)) +Du2(0, s)(ψ)

+Du3(0, s)(ψ) +
D∆2(0)(ψ)

∆(0)
(A22(s) +A32(s))

]
ds.
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whereDu denotes the derivative of the functionu and

Du2(0, a)(ψ) =

∫ a

0

χ2(a, s)ψ(s)ds; Du3(0, a)(ψ) =

∫ a

0

χ3(a, s)ψ(s)ds;

DA21(0, a)(ψ) =

∫ a

0

χ21(a, s)ψ(s)ds; DA31(0, a)(ψ) =

∫ a

0

χ31(a, s)ψ(s)ds;

D∆2(0)(ψ) = p

∫ a+

0

χ4(a)ψ(a)da.

with

χ21(a, s) =
l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−

∫ a

s

r(σ)φ(σ)dσ

)
l(s)

χ31(a, s) =

∫ a

s

l(a)Γ2(a)

l(η)Γ2(η)
r(η)φ(η)χ21(η, s)dη

χ2(a, s) = χ21(a, s)

∫ s

0

Λ(η)

l(η)
dη; χ3(a, s) = χ31(a, s)

∫ s

0

Λ(η)

l(η)
dη;

χ4(a) =

[
S0(a)

l(a)

∫ a+

0

f(σ)l(σ)dσ − S0(0)

]∫ a+

a

f(s) [χ21(s, a) + χ31(s, a)] ds.

Hence, operatorH0 read as a kernel operator:

H0(ψ)(a) =

∫ a+

0

χ(a, s)ψ(s)ds; (22)

where the kernelχ(a, s) is defined by

χ(a, s) =
S0(s)

l(s)

∫ a+

s

β(a, η) (χ21(η, s) + χ31(η, s)) dη

+
pχ4(s)

∆(0)

∫ a+

0

β(a, σ)(A22(σ) +A32(σ))dσ. (23)

The positivity ofH0 is obvious. Let us show the compactness of the operatorH0 on
Assumption2. Let ψ ∈ L1 andǫ > 0. From Assumption2; there existsρ = ρ(ǫ) > 0

such that, for|h| < ρ we have
∫ a+

0
|β(a + h, ξ) − β(a, ξ)|da < ǫ. Is thereforeh ∈ R

such that|h| < ρ. ||τhH0(ψ)−H0(ψ)||L1 =

∫ a+

0

|H0(ψ)(a + h)−H0(ψ)(a)|da. It is

easily checked that

|H0(ψ)(a + h)−H0(ψ)(a)| ≤ ||ψ||L1

∫ a+

0

|β(a+ h, s)− β(a, s)|C1(s)ds;

where

C1(a) =

(
||Λ||∞ +

∆1(0)

∆(0)

)(
1 +

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds

)

+
||Λ||∞
∆(0)

(A22(a) +A32(a))

∫ a+

0

f(a)

(
1 +

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds

)
da.
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Since
(
|h| < ρ =⇒

∫ a+

0
|β(a+ h, s)− β(a, s)|da < ǫ

)
, it comes that

||τhH0(ψ)−H0(ψ)||L1 ≤ ǫ

(∫ a+

0

C1(a)da

)
||ψ||L1 .

LetB a bounded subset ofL1 such thatψ ∈ B. Then

||τhH0(ψ)−H0(ψ)||L1 ≤ ǫ

(∫ a+

0

C1(a)da

)
× sup

ϕ∈B

{||ϕ||L1}.

Applying the Riesz-Fréchet-Kolmogorov theorem onH0(B) we conclude thatH0(B) is
relatively compact. From whereH0 si a compact operator.
Now, let us check thatH0 is a nonsupporting operator. We define the operatorF0 ∈
(L1(0, a+,R+))

∗ (dual space ofL1(0, a+,R+)) by

〈F0;ψ〉 =

∫ a+

0

ε(s)[Du2(0, s)(ψ) + δ(s)Du3(0, s)]ds;

whereε is the positive function given by Assumption2 and〈F0;ψ〉 is the value ofF0 ∈
(L1(0, a+,R+))

∗ atψ ∈ L1(0, a+,R+). Then forψ ∈ L1(0, a+,R+) we haveH0(ψ) ≥
〈F0;ψ〉 · e ( with e = 1 ∈ L1(0, a+,R+)). From whereHn+1

0 (ψ) ≥ 〈F0;ψ〉 〈F0; e〉
n · e ∀n ∈

N. Hence for alln ∈ N∗; F ∈ (L1(0, a+,R+))
∗ \ {0} andψ ∈ L1(0, a+,R+) \ {0} we

have〈F ;Hn
0 (ψ)〉 > 0. Therefore,H0 is a nonsupporting operator.

The main results of this section reads as

Theorem 2. Let Assumption2 be satisfied. Let us noteR0 = ρ(H0) the spectral radius
of operatorH0.

1) If R0 ≤ 1, system (1)-(2) has a unique DFE defined by(6);

2) If R0 > 1, in addition to the DFE, system (1)-(2) has at least one endemic
equilibrium.

Proof. The operatorH always hasλ ≡ 0 as fixed point. This corresponds to the perma-
nent DFE for system (1)-(2). For the rest, we are looking for the positive fixed point to the
operatorH . From Lemma3 we know that there exists a closed, bounded and convex sub-
setD of L1(0, a+,R+) which is invariant by the operatorH . Moreover, from Lemma3,
H has a Fréchet derivativeH0 at the point0 andH0 = DH(0) is a compact and nonsup-
porting operator. Therefore, there exists a unique positive eigenvectorψ0 corresponding
to the eigenvalueR0 = ρ(H0) of H0. Using the same arguments as for the Krasnoselskii
fixe point theorem [34], it comes that ifR0 = ρ(H0) > 1, then the operatorH has at least
one positive fixed pointλ∗ ∈ L1(0, a+,R+) \ {0}, corresponding to the EE of system
(1)-(2).

Let us suppose thatR0 = ρ(H0) ≤ 1. If the operatorH has a positive fixe pointλ∗ ∈
L1(0, a+,R+)\{0} thenλ∗ = H(λ∗). Let us notice thatH−H0 ∈ L1(0, a+,R+)\{0};
henceλ∗ ≤ H0(λ

∗). Let F0 ∈ (L1(0, a+,R+))
∗ \ {0} be the positive eigenfunctional

corresponding to the eigenvalueR0 = ρ(H0) of H0 (Sawashima [44]). Therefore

0 ≤ 〈F0;H0(λ
∗)− λ∗〉 = 〈F0, ;H0(λ

∗)〉 − 〈F0;λ
∗〉 ;

= ρ(H0) 〈F0;λ
∗〉 − 〈F0;λ

∗〉 ;

= (ρ(H0)− 1) 〈F0;λ
∗〉 .
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From where(ρ(H0) − 1) 〈F0;λ
∗〉 ≥ 0. Since〈F0;λ

∗〉 > 0, it follows thatρ(H0) ≥ 1;
which is a contradiction.

5. Stability analysis for equilibrium

In order to investigate the local stability of the equilibrium solutions(S∗(a); I∗(a);L∗(a))
we rewrite (1)-(2) into the equation for small perturbations. Let

(S(t, a), I(t, a), L(t, a)) = (S∗(a), I∗(a), L∗(a)) + (x(t, a), y(t, a), z(t, a)).

Then from system (1) we have

(
∂

∂t
+

∂

∂a

)
x(t, a) = −λ(t, a)(S∗(a) + x(t, a))

−(µ(a) + λ∗(a))x(t, a); (24)
(
∂

∂t
+

∂

∂a

)
y(t, a) = λ(t, a)(x(t, a) + S∗(a)) + λ∗(a)x(t, a)

−(µ(a) + d1(a) + r(a)φ(a))y(t, a); (25)
(
∂

∂t
+

∂

∂a

)
z(t, a) = r(a)φ(a)y(t, a) − (µ(a) + d2(a))z(t, a); (26)

and from (2) we also have





x(t, 0) =
∫ a+

0
f(a)[x(t, a) + (1− p)(y(t, a) + z(t, a))]da;

y(t, 0) = p
∫ a+

0
f(a)(y(t, a) + z(t, a))da;

z(t, 0) = 0;

(27)

with λ(a, t) =

∫ a+

0

β(a, s)(y(t, s) + z(t, s))ds and λ∗(a) =

∫ a+

0

β(a, s)(I∗(s) +

L∗(s))ds.
Let us noteu(t) = (x(t), y(t), z(t))T . Then from equations (24), (25) and (26) we have

d

dt
u(t) = Au(t) +G(u(t)); (28)

whereA is the operator defined by (3). The nonlinear termG is defined by

G(u) =




−P(u2, u3)(u1 + S∗)− (λ∗ + µ)u1

P(u2, u3)(u1 + S∗) + λ∗u1 − (µ+ d1 + rφ)u2
rφu2 − (µ+ d2)u3


 ;

andP is linear operator defined onL1 × L1 by

P(u2, u3)(a) =

∫ a+

0

β(a, s)(u2(s) + u3(s))ds. (29)
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The linearized equation of (28) aroundu = 0 is given by

d

dt
u(t) = (A+ C)u(t); (30)

where the linear operatorC is the Fréchet derivative ofG(u) atu = 0 and it is given by

C(u) =




−P(u2, u3)S
∗ − (λ∗ + µ)u1

P(u2, u3)S
∗ + λ∗u1 − (µ+ d1 + rφ)u2
rφu2 − (µ+ d2)u3




Now let us consider the resolvent equation forÂ+ C:

(z − (A+ C))ψ = ϑ; ψ ∈ D(A), ϑ ∈ X, z ∈ C. (31)

Applying the variation of constant formula to (31) we obtain the following equations:

ψ1(a) = Π(a)l(a)e−za

[
ψ1(0) +

∫ a

0

(T11(s)ϑ1(s)− T12(s)P(ψ1, ψ2)(s))ds

]
;(32)

ψ2(a) =

[
ψ2(0) +

∫ a

0

ezs

Γ1(s)l(s)
(ϑ2(s) + λ∗(s)ψ1(s) + P(ψ1, ψ2)(s)S

∗(s))ds

]

×Γ1(a)l(a)e
−za; (33)

ψ3(a) = Γ2(a)l(a)e
−za

[
ψ3(0) +

∫ a

0

ezs

Γ2(s)l(s)
(ϑ3(s) + r(s)φ(s)ψ2(s))ds

]
.(34)

with Π(a) = exp

(
−

∫ a

0

λ∗(σ)dσ

)
; T11(s) =

ezs

Π(s)l(s)
andT12(s) = S∗(s)T11(s).

Equations (32)-(33) and (35)-(34) respectively gives

ψ2(a) = Γ1(a)l(a)e
−za

[
ψ2(0) + T21(a)ψ1(0) +

∫ a

0

T23(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T24(z, a, s)ϑ1(s)ds+

∫ a

0

T25(z, s)ϑ2(s)ds

]
(35)

and

ψ3(a) = Γ2(a)l(a)e
−za

[
T32(a)ψ2(0) + T31(a)ψ1(0) + ψ3(0) +

∫ a

0

T33(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T34(z, a, s)ϑ1(s)ds+

∫ a

0

T35(z, a, s)ϑ2(s)ds+

∫ a

0

T36(z, a, s)ϑ3(s)ds

]
;

(36)

where

T21(a) =

∫ a

0

Π(s)

Γ1(s)
λ∗(s)ds; T24(z, a, s) =

ezs

l(s)Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ,

T23(z, a, s) =
ezs

l(s)
S∗(s)

(
1

Γ1(s)
−

1

Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
,
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T25(z, s) =
ezs

l(s)Γ1(s)
, T31(a) =

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)T21(s)ds,

T32(a) =

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)ds, T36(z, a) =

eza

Γ2(a)l(a)
,

T33(z, a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T23(z, σ, s)dσ,

T34(z, a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T24(z, σ, s)dσ,

T35(z, a, s) = T25(z, s)

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)dσ.

Sinceψ ∈ D(A); it comes that

ψ1(0) =

∫ a+

0

f(a)[ψ1(a) + (1 − p)(ψ2(a) + ψ3(a))]da; (37)

ψ2(0) = p

∫ a+

0

f(a)(ψ2(a) + ψ3(a))da; (38)

ψ3(0) = 0. (39)

Equations (36)-(39); (32)-(35)-(40)-(37) and (35)-(40)-(38) respectively lead to

ψ3(a) = Γ2(a)l(a)e
−za

[
T32(a)ψ2(0) + T31(a)ψ1(0) + +

∫ a

0

T33(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T34(z, a, s)ϑ1(s)ds+

∫ a

0

T35(z, a, s)ϑ2(s)ds+

∫ a

0

T36(z, s)ϑ3(s)ds

]
;

(40)

(B11(z)− 1)ψ1(0) + (1− p)B12(z)ψ2(0) +

∫ a+

0

B13(z, a)P(ψ1, ψ2)(a)da

+

∫ a+

0

B14(z, a)ϑ1(a)da+

∫ a+

0

B15(z, a)ϑ2(a)da+

∫ a+

0

B16(z, a)ϑ3(a)da = 0;

(41)

and

pB21(z)ψ1(0) + (pB22(z)− 1)ψ2(0) + p

∫ a+

0

B23(z, a)P(ψ1, ψ2)(a)da

+ p

∫ a+

0

B24(z, a)ϑ1(a)da+ p

∫ a+

0

B25(z, a)ϑ2(a)da+ p

∫ a+

0

B26(z, a)ϑ3(a)da = 0;

(42)

with

B11(z) =

∫ a+

0

f(a)l(a)e−za [Π(a) + (1− p)(Γ1(a)T21(a) + Γ2(a)T31(a)] da;
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B12(z) =

∫ a+

0

f(a)l(a)e−za [Γ1(a) + Γ2(a)T32(a)] da;

B13(z, a) =

∫ a+

a

f(s)l(s)e−zs [−T12(a)Π(s) + (1− p)(Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a))] ds;

B14(z, a) =

∫ a+

a

f(s)l(s)e−zs [T11(a)Π(s) + (1− p)(Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a))] ds;

B15(z, a) =

∫ a+

a

f(s)l(s)e−zs [Γ1(s)T25(z, a) + (1− p)Γ2(s)T35(z, s, a)] ds;

B16(z, a) = (1 − p)

∫ a+

a

f(s)l(s)e−zsΓ2(s)T36(z, s)ds;

B21(z) =

∫ a+

0

f(a)l(a)e−za[Γ1(a)T21(a) + Γ2(a)T31(a)]da;

B22(z) =

∫ a+

0

f(a)l(a)e−za[Γ1(a) + Γ2(a)T32(a)]da;

B23(z, a) =

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a)]ds;

B24(z, a) =

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a)]ds;

B25(z, a) = T25(z, a)

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T25(z, a) + Γ2(s)T35(z, s, a)]ds;

B26(z, a) = T36(z, a)

∫ a+

a

f(s)l(s)Γ2(s)e
−zsds.

System (41)-(42) is a linear system with respect toψ1(0) andψ2(0), hence

ψ1(0) =

∫ a+

0

det11(z, a)P(ψ1, ψ2)(a)da+

∫ a+

0

det12(z, a)ϑ1(a)da+

+

∫ a+

0

det13(z, a)ϑ2(a)da+

∫ a+

0

det14(z, a)ϑ3(a)da; (43)

ψ2(0) =

∫ a+

0

det21(z, a)P(ψ1, ψ2)(a)da+

∫ a+

0

det22(z, a)ϑ1(a)da

+

∫ a+

0

det23(z, a)ϑ2(a)da+

∫ a+

0

det24(z, a)ϑ3(a)da; (44)

where

det11(z, a) =
−1

det
[(pB22(z)− 1)B13(z, a)− p(1− p)B12(z)B23(z, a)] ;

det12(z, a) =
−1

det
[(pB22(z)− 1)B14(z, a)− p(1− p)B12(z)B24(z, a)] ;
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det13(z, a) =
−1

det
[(pB22(z)− 1)B15(z, a)− p(1− p)B12(z)B25(z, a)] ;

det14(z, a) =
−1

det
[(pB22(z)− 1)B16(z, a)− p(1− p)B12(z)B26(z, a)] ;

det21(z, a) =
p

det
[(B21(z)B13(z, a)− (B11(z)− 1)B23(z, a)] ;

det22(z, a) =
p

det
[(B21(z)B14(z, a)− (B11(z)− 1)B24(z, a)] ;

det23(z, a) =
p

det
[(B21(z)B15(z, a)− (B11(z)− 1)B25(z, a)] ;

det24(z, a) =
p

det
[(B21(z)B16(z, a)− (B11(z)− 1)B26(z, a)] ;

det = (B11(z)− 1)(pB22(z)− 1)− p(1− p)B21(z)B12(z).

From equations (29)-(35)-(40)-(43)-(44) it follows that

P(ψ2, ψ3)(η) = (I − Vz)
−1

[(Uzϑ1)(η) + (Wzϑ2)(η) + (Yzϑ3)(η)] ; (45)

whereVz, Uz,Wz andYz are the Volterra operator define onL1(0, a+,R) into itself by

(Uzϕ)(a) =

∫ a+

0

Θz(η, a)ϕ(a)da; (Vzϕ)(a) =

∫ a+

0

χz(η, a)ϕ(a)da;

(Yzϕ)(a) =

∫ a+

0

Ez(η, a)ϕ(a)da; (Wzϕ)(a) =

∫ a+

0

Kz(η, a)ϕ(a)da;

(46)

where

χz(η, a) = Cte
1 (η)det11(z, a) + Cte

2 (η)det21(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a)]ds;
(47)

Θz(η, a) = Cte
1 (η)det12(z, a) + Cte

2 (η)det22(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a)]ds;

Kz(η, a) = Cte
1 (η)det13(z, a) + Cte

2 (η)det23(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T25(z, s, a) + Γ2(s)T35(z, s, a)]ds;

Ez(η, a) = Cte
1 (η)det14(z, a) + Cte

2 (η)det24(z, a) +

∫ a+

a

β(η, s)l(s)e−zsΓ2(s)T36(z, s, a)ds;
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and

Cte
1 (η) =

∫ a+

0

β(η, a)l(a)e−za[Γ1(a)T21(a) + Γ2(a)T31(a)]da;

Cte
2 (η) =

∫ a+

0

β(η, a)l(a)e−za[Γ1(a) + Γ2(a)T32(a)]da;

Let us recall some definitions related to aC0-semi-group{T (t)}t>0 on a Banach
space with infinitesimal generatorR. The typeor thegrowth boundof the semi-group
{T (t)}t>0 is the quantity:

ω0(R) :=
inf{α ∈ R : ∃M ≥ 1 such that||T (t)|| ≤Meαt ∀t ≥ 0}

= lim
t→0

ln ||T (t)||

t
.

Thespectral boundof theC0-semi-group{T (t)}t>0 is the quantity:

s(R) := sup{Reλ : λ ∈ σp(R)},

whereσp(R) denote the point spectrum ofR.

Wow, we conclude that

Lemma 4. Recalling Assumptions1 and2. Then

1) The perturbated operatorA+ C has a compact resolvent and

σ(A+ C) = σp(A+ C) = {z ∈ C : 1 ∈ σp(Vz)};

whereσ(A) andσp(A) denote the spectrum ofA and the point spectrum ofA respectively.

2) Let{U(t)}t≥0 be theC0-semigroup generated byA + C. Then{U(t)}, t ≥ 0
is eventually compact and

ω0(A+ C) = s(A+ C).

Proof. 1) From equations (32), (43) and (46) we find that

ψ1(a) = Π(a)l(a)e−zaψ1(0) + J1(ϑ1)(a) +K1(ϑ1, ϑ2)(a);

with

J1(ϑ1)(a) =

∫ a

0

Π(a)l(a)T11(s)e
−zsϑ1(s)ds;

K1(ϑ1, ϑ2)(a) =

∫ a

0

Π(a)l(a)T11(s)S
∗(s)e−zs(I − Vz)

−1

[(Uzϑ1)(s) + (Wzϑ2)(s) + (Yzϑ3)(s)]ds.

ψ1 is a compact operator if and only ifJ1 andK1 are compact. SinceJ1 is a Volterra
operator with continue kernel, we deduce thatJ1 is a compact operator onL1. Using the
same arguments as for the proof of the compactness of operator H0 (Lemma3), we can
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show that the operatorsUz, Wz andYz are compact for allz ∈ C. Let us setΣ := {z ∈
C : 1 ∈ σp(Vz)}. Hence, ifz ∈ C\Σ then,K1 is a compact operator fromL1×L1 toL1.
In the same way, we can show thatψ2(a) andψ3(a) are represent by a compact operators.
Therefore, the resolvent ofA+C is compact. From whereσ(A+C) = σp(A+C) (see
Kato, p.187 [31]) i.e. C\Σ ⊂ ρ(A+C) andρ(A+C) denotes the resolvent ofA+C. In
other wordsΣ ⊃ σ(A+C) = σp(A+C). SinceVz is a compact operator, we know that
σ(Vz) \ {0} = σp(Vz) \ {0}. If z ∈ Σ, then it existsψz ∈ L1 \ {0} such thatVzψz = ψz.
Let us set

φ1(a) = Π(a)l(a)e−za

[∫ a+

0

det11(z, a)ψz(a)da−

∫ a

0

eza

Π(s)l(s)
ψz(s)ds

]
;

φ2(a) = Π(a)l(a)e−za

[∫ a+

0

det21(z, a)ψz(a)da−

∫ a

0

eza

Γ1(s)l(s)
(λ∗(s)φ1(s) + S∗(s)ψz(s))ds

]
;

φ3(a) = Γ2(a)l(a)e
−za

∫ a

0

eza

Γ2(s)l(s)
r(s)φ(s)ψ2(s)ds.

Then(φ1, φ2, φ3)T is an eigenvector ofA + C associated to the eigenvaluez. Hence,
z ∈ σ(A + C) = σp(A + C) i.e. Σ ⊂ σ(A + C) = σp(A + C). This end the proof of
item 1.

2) Forψ ∈ X , let us set

C1ψ = (−P (ψ2, ψ3)S
∗,P(ψ2, ψ3)S

∗, 0)T ;

C2ψ = (−(λ∗ + µ)ψ1, λ
∗ψ1 − (µ+ d1 + rφ)ψ2rφψ2 − (µ+ d2)ψ3)

T ; .

ThenC = C1+C2. The operatorA+C2 generated a nilpotentC0-semigroup{S2(t)}t≥0,
from where{S2(t)}t≥0 is norm continuous. Using Assumptions1 and2, we find thatC1

is compact operator onX . From Theorem 1.30 of Nagel(1986) [42] it comes thatC1 is
generator of a norm continuousC0-semigroup{S1(t)}t≥0. Therefore,S1(t) + S2(t) is
a C0-semigroup generated byA + C and it is norm continuous (Spectral theorem P.87
Nagel [42]).

Let us remark that ifω0(A + C) < 0, the equilibriumu = 0 of system (28) is
locally asymptotically stable (linearized stability, Webb 1985[49]). Therefore, to study
the stability of equilibrium states, we have to know the structure of the setΣ := {z ∈ C :
1 ∈ σp(Vz)}. Since||Vz ||L1 → 0 if z → +∞, I − Vz is inversible for the large values of
Rez.
By theorem of Steinberg(1968)[47], the functionz ֌ (I − Vz)

−1 is meromorphic in
the complex domain, and hence the setΣ is a discrete set whose elements are poles of
(I − Vz)

−1 of finite order.

In the following, we will use elements of positive operator theory.

For the positivity of operatorVz we make the following assumption

Assumption 3.
∫ a+

0

(d1(σ) + r(σ)φ(σ))dσ ≤ exp

(
−

∫ a+

0

λ∗(σ)dσ

)
; (48)

whereλ∗(σ) =
∫ a+

0 β(σ, η)(I∗(η) + L∗(η))dη.

A R I M A



42 A R I M A – Volume 17 – 2014

Lemma 5. Let Assumption3 be satisfied. Then

1) The operatorVz , z ∈ R, is nonsupporting with respect toL1(0, a+,R+) and

lim
z֌−∞

ρ(Vz) = +∞ ; lim
z֌+∞

ρ(Vz) = 0.

2) There exists a uniquez0 ∈ R ∩ Σ such that

ρ(Vz0) = 1 and





z0 > 0 if ρ(V0) > 1,
z0 = 0 if ρ(V0) = 1,
z0 < 0 if ρ(V0) < 1.

3) z0 > sup{Rez : z ∈ Σ \ {z0}}.

Proof. 1) Let z ∈ R. Unconditionally,Vz is a positive operator whenλ∗(a) ≡ 0
(case of DFE). Whenλ∗(a) > 0, Vz is a positive operator onceΓ1(s)T23(z, a, s) +
Γ2(s)T33(z, a, s) ≥ 0 for all 0 ≤ a ≤ s ≤ a+. To have the previous inequality, it suffices
that inequality (48) of Assumption3 holds. We can checked that

Vzψ ≥ 〈fz, ψ〉 · e; (49)

whereψ ∈ L1(0, a+,R+); e ≡ 1 ∈ L1(0, a+,R+) andfz is a positive linear functional
defined by

< fz, ψ > = m

∫ a+

0

∫ a+

a

e−z(a−s) l(s)

l(a)

(
1

Γ1(a)
−

1

Π(a)

∫ s

a

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
dsda;

with m = inf(a,s)∈[0,a+)2 β(a, s). From (49), we show thatV n+1
z ψ ≥ 〈fz, ψ〉 〈fz, e〉

n
· e

for all n ∈ N. Sincefz is positive operator ande ∈ L1(0, a+,R+) \ {0}, we have
〈F, V n

z ψ〉 > 0 ∀ψ ∈ (L1(0, a+,R+))
∗ \ {0} ∀ψ ∈ L1(0, a+,R+) \ {0}. That isVz is

nonsupporting.

Let Fz be the eigenfunctional ofVz that corresponds to the eigenvalueρ(Vz). Taking
the duality pairing into inequality (49), we have

ρ(Vz) 〈Fz , ψ〉 ≥ 〈fz, ψ〉 〈Fz , e〉 .

Takingψ = e and sinceFz is positive, it follows thatρ(Vz) ≥ 〈fz, e〉 → +∞ when
z → −∞. From where lim

z֌−∞
ρ(Vz) = +∞. since||Vz ||L1 → 0 whenz → +∞, we

deduce that lim
z֌+∞

ρ(Vz) = 0. This end the proof of item 1.

2) Let h : R → C; z 7→ ρ(Vz). The kernelχz defined by (47) is strictly decreasing
with respect toz ∈ R. Let z1, z2 ∈ R such thatz1 < z2, thenχz1 < χz2 that is
Vz1 > Vz2 . SinceVz1 andVz2 are compact and nonsupporting operators we deduce from
Marek(1970) [38] thatρ(Vz1) > ρ(Vz2). Therefore, the functionh is strictly decreasing.
The limits of the functionh(z) = ρ(Vz) at−∞ and+∞ give that there exist a unique
z0 ∈ R ∩ Σ such thatρ(Vz0) = 1. If ρ(V0) > 1 thenh(0) > h(z0) i.e. z0 < 0 (strictly
decreasing ofh) and the other cases is show in the same way. This end the proofof item
2.

3)Let z ∈ Σ, then there existsψz ∈ L1 such thatVzψz = ψz . Let |ψz | be a function
defined by|ψz|(s) := |ψz(s)|. The definition ofVz leads to

|ψz| = |Vzψz | ≤ VRez |ψz|. (50)
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Let FRez be the positive eigenfunction associated to the eigenvalueρ(VRez) of VRez.
From (50) we deduce that〈FRez, |ψz|〉 ≤ 〈FRez , VRez|ψz |〉 = r(VRez) 〈FRez, |ψz |〉.
The positivity ofFRez implies thatr(VRez) ≥ 1 that ish(Rez) ≥ h(z0) i.e. z0 ≤ Rez.
To end the proof, let us show that: ifz0 = Rez thenz = z0.
We know that|ψz | ≤ VRez|ψz | = Vz0 |ψz |. Let us suppose that|ψz| < Vz0 |ψz |; taking the
pairing product with the dual functionF0 corresponding to the eigenvalueρ(Vz0) = 1, one
has〈F0, |ψz|〉 > 〈F0, |ψz|〉, which is a contradiction. Hence|ψz| = Vz0 |ψz|. Therefore
|ψz| = cψ0 wherec is constant not equal to zero (Sawashima 1964 [44]) andψ0 is the
eigenfunction corresponding toρ(Vz0) = 1. Soψz(a) = cψ0(a)e

iα(a) for a reel function
α; moreover|Vzψz | = |ψz | = cψ0 = cVz0ψ0. Substitutingψz(a) = cψ0(a)e

iα(a) into
the equality|Vzψz| = cVz0ψ0 one has

∫ a+

0

∫ a+

a

β(η, s)l(s)e−z0(s−a)[Γ1(s)T̃23(s, a) + Γ2(s)T̃33(s, a)]ψ0(a)dsda =

∣∣∣∣∣

∫ a+

0

∫ a+

a

β(η, s)l(s)e−(z0+i(s−a)Imz)[Γ1(s)T̃23(s, a) + Γ2(s)T̃33(s, a)]e
iα(a)ψ0(a)dsda

∣∣∣∣∣ ;

(51)

with

T̃23(a, s) =
S∗(s)

l(s)

(
1

Γ1(s)
−

1

Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
;

T̃33(a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T̃23(a, σ)dσ.

Applying two times, Lemma 6.12 of Heijmans(1986) [21], to the relation (51) it comes
that (s − a)Imz + α(a) = b for all 0 ≤ a ≤ s ≤ a+ whereb is a constant. From the
equalityVzψz = ψz one haseibVz0ψ0 = ψ0e

iα(a) i.e. b = α(a). From whereImz = 0,
that isz = z0.

From the above result, we can state the threshold criterion as follows:

Proposition 2. Recalling Assumption3. Then equilibrium(S∗, I∗, L∗) is locally asymp-
totically stable ifρ(V0) < 1 and unstable ifρ(V0) > 1.

Proof. From Lemma5 (items 2. and 3.), we conclude that:sup{Rez; 1 ∈ σp(Vz)} = z0.
Hences(A + C) = sup{Rez; 1 ∈ σp(Vz)} < 0 if ρ(V0) < 1, ands(A + C) =
sup{Rez; 1 ∈ σp(Vz)} > 0 if ρ(V0) > 1.

In the following, let us noteV 0
0 the operatorV0 corresponding to the caseλ∗(σ) ≡ 0

(DFE) andV ∗
0 the operatorV0 corresponding to the caseλ∗(σ) > 0 (EE). It is easily

checked that

χ0
0(a, s) = χ(a, s); (52)

whereχ(a, s) is the kernel of the Volterra operatorH0 defined by (23).

Now, the main results for the local stability of our epidemicmodel reads as

Theorem 3. Let Assumptions1 and 2 be satisfied. LetR0 := ρ(H0) be the spectral
radius of the operatorH0 defined by (22). Then,
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1) If R0 = ρ(H0) < 1 then, the unique equilibrium of (1)-(2) (DFE) is locally
asymptotically stable.

2) If R0 = ρ(H0) > 1 then, the DFE is unstable.

3) If R0 = ρ(H0) > 1 then, in addition to the DFE system (1)-(2) has at least one
endemic equilibrium (EE). Moreover, ifρ(V ∗

0 ) < 1 and Assumption3 holds, then the EE
is locally asymptotically stable.

Proof. For the DFE, one hasλ∗(σ) ≡ 0. Hence, from (52) it comes thatρ(H0) =
ρ(V 0

0 ) := ρ(V0) (for λ∗ = 0). From Prop.2 we deduce that: ifρ(H0) = ρ(V0) < 1, the
DFE is locally asymptotically stable; and unstable ifρ(H0) = ρ(V0) > 1. This end the
proof of items 1. and 2.
The case of EE is a direct consequence of Prop.2.

Remark 1.

(♣) To emphasize the impact of vertical transmission on the spread of the disease, let us
observe that the next generation operatorH0 can be rewrite as follows

H0(ψ)(a) =

∫ a+

0

χ♦(a, s)ψ(s)ds +

∫ a+

0

χ♦(p, a, s)ψ(s)ds;

where the kernelsχ♦(., .) andχ♦(p, ., .) are

χ♦(a, s) =
S0(s)

l(s)

∫ a+

s

β(a, η) (χ21(η, s) + χ31(η, s)) dη;

χ♦(p, a, s) =
pχ4(s)

∆(0)

∫ a+

0

β(a, σ)(A22(σ) +A32(σ))dσ.

It is easy to see that when the proportion of infected newborns is zero (p = 0), then
the kernelχ♦(0, ., .) ≡ 0. Therefore, the vertical transmission of the disease amplifies
positively the spread of the disease.

(♣♣) As a special case, we here briefly consider the proportionate mixing assumption,
that is, the transmission rateβ can be written asβ(a, s) = β1(a)β2(s) (see Dietz and
Schenzle [14]; Greenhalgh,1988 [23]). In this case, the basic reproductive numberR0 is
explicitly given by:

R0 := ρ(H0) =

∫ a+

0

χ♦(s, s)ds+

∫ a+

0

χ♦(p, s, s)ds. (53)

And the same conclusion follows as for item (♣). Thus the vertical transmission of the
disease really has an impact on the dynamics and the spread ofthe disease into the host
population. We also refer to Figures2-4 for some illustrations of the state variables of
system (1)-(2) whenp takes different values:0.02; 0.2 and0.5.
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6. Numerical analysis

In this section, we propose a numerical scheme for our model and gives some illustra-
tions.

We adopt a finite differences scheme which is progressive of order 1 in time and
regressive of order 1 in age. Our model has a structure of the following partial differential
equation on the real axe:

∂u

∂t
+
∂u

∂a
= f(t, a). (54)

For equation (54), the numerical scheme is defined by:

un+1
i − uni

∆t
+
uni − uni−1

∆a
= f(tn, ai); (55)

where i and n are the index of age and time discretization respectively; and uni :=
u(tn, xi).

We recall that, generally, all explicit numerical scheme isconditionally stable (Stricwerda[45]).
To ensure the stability of the scheme (55) the necessary condition is the famous Courant-
Friedrichs-Lewy (CFL) condition given as follow:

∆t

∆a
6 1. (56)

For a given age step discretization∆a, the restriction∆t 6 ∆a is necessary for the time
step discretisation∆t.

We are able now to give the solution of the problem (1)-(2) on some time interval
[0, T ] using the above numerical scheme.

The age-specific reproduction ratef(a) is taken to be

f(a) =

{
1
5 sin

2
(

π(a−15)
30

)
if 15 ≤ a ≤ 45;

0 if not.

The fecundity functionf(.) is stated here in units of 1 / years for easier readability and
assumes that from age15 to 45 years a woman will generally give birth to three children,

since
∫ a+

0 f(a)da = 3, wherea+ = 80 is the largest age allowed for the simulation.

We also consider a low value of recruitmentΛ(.)

Λ(a) =

{
1
10 sin

2
(

π(a−17)
43

)
if 17 ≤ a ≤ 60;

0 if not.

This recruitment assume that the total number of recruitment at timet is approximately

equal two, that is
∫ a+

0
Λ(a) = 2.15

The transmission coefficientβ(., .) is assume to be

β(a, s) =





β0 sin
2

(
π(a− 14)

46

)
sin2

(
π(s− 14)

46

)
, if a, s ∈ [14, 60];

0 if not.
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Figure 1: (1a) Transmission coefficientβ(., .) when the transmission constantβ0 = 10−3.
(1b) Fecundity functionf(.) .

Table 1: Numerical values for the parameters of the model

Parameters Description Estimated value

β0 Transmission constant Variable
p Vertical tranmission rate Variable
µ Natural death rate 0.0101/yr1

r Rate of effective therapy 1/yr 1

φ Rate at witch infectious 0.75/yr1

become loss of sight
γ Rate at witch lost of sight 0.02/yr1

return to the hospital
d1 Death rate of infectious 0.02/yr1

d2 Death rate of lost of sight 0.2/yr1

Note: Source of estimates.
1 Assumed.

wherein the nonnegative constantβ0 (transmission constant) will be variable. Figure1
illustrates the transmission coefficientβ (for β0 = 10−3) and the fecundity functionf .
The other parameters of our system are arbitrarily chosen (see Table1).

We provide numerical illustrations for different values ofvertical transmissionp: 0.02,
0.2 and0.5

In Figure2, the vertical transmission rate of the disease is fixed to bep = 0.02. We
observe that infectious individuals (infected and lost of sight) are between 17 and 70 of
age. The number of young infectious (namely infectious withagea < 17) is negligible,
because the value of vertical transmission ratep is low.

In figure 3, the vertical transmission rate of the disease is fixed to bep = 0.2. We
observe that much of the infectious individuals (infected and lost of sight) are between
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17 and 70 of age. Let us also observe that the number of infectious individuals with age
between 17 and 70 is approximately the same than the number ofinfectious individuals
with age between 17 and 70 whenp = 0.02 (see Figs2-3). But now, there are also
infectious individuals with agea < 17 which was not the case whenp = 0.02.

The same observation is given by Figure4 where the vertical transmission rate of the
disease is fixed to bep = 0.5. Hence Figures2-4 emphasize that the vertical transmission
of the disease really has an impact on the dynamics and the spread of the disease into the
host population. See also Table2 for the impact of the vertical transmission of the disease
on the spread of the epidemic.
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Figure 2: The transmission constant and the vertical transmission rate are fixed to be
β0 = 10−3 andp = 0.02. The other parameters are given by Table1. (2a) Distribution
of Infected individuals. (2b) Distribution of Lost of sight. (2c) Distribution of infected
newborn. (2d) Distribution of Infected and Lost of sight individuals after80 years of time
observation.
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Figure 3: The transmission constant and the vertical transmission rate are fixed to be
β0 = 10−3 andp = 0.2. The other parameters are given by Table1. (3a) Distribution
of Infected individuals. (3b) Distribution of Lost of sight. (3c) Distribution of infected
newborn. (3d) Distribution of Infected and Lost of sight individuals after80 years of time
observation.

Table 2: Impact of the vertical transmission of the disease.

Vertical transmission rate (p) Rate increase over the case whenp = 0
p = 0.02 1.8%
p = 0.2 17.5%
p = 0.5 43.8%

Total cases (I+L) when p = 0: 954.85 cases. (i.e. when the vertical transmission of the disease is
neglected in the host population.
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Figure 4: The transmission constant and the vertical transmission rate are fixed to be
β0 = 10−3 andp = 0.5. The other parameters are given by Table1. (4a) Distribution
of Infected individuals. (4b) Distribution of Lost of sight. (4c) Distribution of infected
newborn. (4d) Distribution of Infected and Lost of sight individuals after80 years of time
observation.

7. Conclusion

In this paper, we consider a mathematical model for the spread of a directly transmit-
ted infections disease in an age-structured population with demographics process. The
disease can be transmitted not only horizontally but also vertically from adult individuals
to their children. The dynamical system is formulated with boundary conditions.

We have described the semigroup approach to the time evolution problem of the ab-
stract epidemic system. Next we have calculated the basic reproduction ratio and proved
that the disease-free steady state is locally asymptotically stable ifR0 < 1, and at least
one endemic steady state exists if the basic reproduction ratio R0 is greater than the unity.
Moreover, we have shown that the endemic steady state is forwardly bifurcating from the
disease-free steady state atR0 = 1. Finally we have shown sufficient conditions which
guarantee the local stability of the endemic steady state. Roughly speaking, the endemic

A R I M A



50 A R I M A – Volume 17 – 2014

steady state is locally asymptotically stable if it corresponds to a very small force of in-
fection.

However the global stability of the model still an interesting open problem. Moreover,
biologically appropriate assumptions for the unique existence of an endemic steady state
is also not yet know.
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