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ABSTRACT. We consider a mathematical SIL model for the spread of a directly transmitted infectious
disease in an age-structured population; taking into account the demographic process and the vertical
transmission of the disease. First we establish the mathematical well-posedness of the time evolution
problem by using the semigroup approach. Next we prove that the basic reproduction ratio Ry is
given as the spectral radius of a positive operator, and an endemic state exist if and only if the basic
reproduction ratio Ry is greater than unity, while the disease-free equilibrium is locally asymptotically
stable if Ry < 1. We also show that the endemic steady states are forwardly bifurcated from the
disease-free steady state when Ry cross the unity. Finally we examine the conditions for the local
stability of the endemic steady states.

RESUME. Nous considérons ici un modéle mathématique SIL de transmission directe de la maladie
dans une population héte structurée en age; prenant en compte les processus démographiques et
la transmission verticale de la maladie. Premiérement, nous étudions le caractére bien posé du pro-
bléme par la théorie des semi-groupes. Ensuite, nous montrons que le taux de reproduction de base
Ry est le rayon spectral d’'un opérateur positif; et un équilibre endémique existe si et seulement si Ro
est supérieur a I'unité, tandis que I'équilibre sans maladie est localement asymptotiquement stable si
Rp < 1. Nous établissons aussi I'existence d’une bifurcation de I'équilibre sans maladie quand Ro
passe par I'unité. Enfin, nous donnons des conditions nécessaires pour la stabilité locale de I'équilibre
endémique.
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1. Introduction

During the earliest centuries mankind faces ever more@hgilhg environmental and
public health problems, such as emergence of new disease emergence of disease
into new regions, and the resurgence diseases (tubergutoalaria HIV/AIDS, HBV).
Mathematical models of populations incorporating agecstme, or other structuring of
individuals with continuously varing properties, have ateasive history.

The earliest models of age structured populations, due &opghand Lotka in 1911
[37] and McKendrick in 192639 established a foundation for a partial differential equa-
tions approach to modeling continuum age structure in atviagpopulation. At this
early stage of development, the stabilization of age stredh models with linear mor-
tality and fertility processes was recognized, althoudtrigorously establishedf, 36].
Rigorous analysis of these linear models was accomplisitedih 1941 by Feller1[d],
in 1963 by Bellman and Cookel], and others, using the methods of \olterra integral
equations and Laplace transforms. Many applications f ttieory have been devel-
oped in demography?[ 27, 33, 43, in biology [1, 2, 3, 10, 24, 48] and in epidemiology
[7,8,17,18 22 32,13, 12].

The increasingly complex mathematical issues involvedinlinearities in age struc-
tured models led to the development of new technologiespaedf the most useful of
these has been the method of semi-groups of linear and eanloperators in Banach
spaces. Structured population models distinguish indalidrom another according to
characteristics such as age, size, location, status andmmeot. The goal of structured
population is to understand how these characteristicstdfie dynamics of these models
and thus the outcomes and consequence of the biologicaléaheheiological processes.

In this paper we consider a mathematical S-1-L (Suscesibiéected-Lost of sight)
model with demographics process, for the spread of a dyregethsmitted infectious dis-
ease in an age-structured population. By infected () wemm@actious taking a chemo-
prophylaxis in a care center. And by loss of sight (L), we mie&ectious that begun their
effective therapy in the hospital and never return to thehabfor the spuctrum exami-
nations for many reasons such as long duration of treatnegithen, poverty, mentality,
etc... The lost of sight class was previously consider inespapers asi 15].

In this paper, the infective agent can be transmitted noy dotizontally but also
vertically from infected mothers to their newborns (petah&ransmission). There are im-
portant infective agents such as HBV (hepatitis B virus)/ fHuman immunodeficiency
virus) and HTLV (human T-cell leukemia virus) that can betioadly transmitted. Com-
pared with the pure horizontal transmission case, so farave hot yet so many results
for vertically diseases in structured populations. In édrithe vertical transmission of the
disease like HIV is in progression nowadays.

Worldwide, 1% of pregnant women are HIV-positive. Howeserh-Saharan Africa
where 95% of HIV positive women live carries the vast majoudf this burden 44].
Without treatment, approximately 25%-50% of HIV-positivethers will transmit the
virus to their newborns during pregnancy, childbirth, edstfeeding]. In 2007, over 2
million children worldwide were living with HIV/AIDS, witithe overwhelming majority
again in sub-Saharan Afric&]. Approximately 400,000 infants contract HIV from their
mother every year, which is about 15% of the total global Hi¥idence 41, 50]. The
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rate of pediatric HIV infections in sub-Saharan Africa reémsaunacceptably high, with
over 1,000 newborns infected with HIV per day].

Large simple trials which aim to study therapeutic intetiems and epidemiological
associations of human immunodeficiency virus (HIV) infentiincluding perinatal trans-
mission, in Africa may have substantial rates of lost of sigh better understanding of
the characteristics and the impact of women and childrearofosight is needed. Accord-
ing to loannidis et al. 30, for the impact of lost of sight and vertical transmissiamort
in Malawi, several predictors of lost of sight were identifia this large HIV perinatal
cohort. Lost of sights can impact the observed transmigsitenand the risk associations
in different studies. They (loannidis et al.) also focud tha HIV infection status could
not be determine f036.9% of infant born to HIV-infected mothersi.7% with missing
status because of various sample problems3ari{s because they never returned to the
clinic (Lost of sight).

Firstly, the epidemic system is formulated. Then, we wilkclébe the semigroup
approach to the time evolution problem of the abstract epideystem. Next we consider
the disease invasion process to calculate the basic regtioduatio Ry, then, we prove
that the disease-free steady state is locally asympthytistable if Ry < 1. Subsequently,
we show that at least one endemic steady state exists if ie tegproduction ratid?,
is greater than unity. By introducing a bifurcation paraengive show that the endemic
steady state is forwardly bifurcated from the disease-fteady state when the basic
reproduction ratio crosses unity. Finally, we considerdbieditions for the local stability
of the endemic steady states.

2. The model

In this section, we formulate a model for the spread of thealie in a host population.
We consider a host population divided into three subpojaurai the susceptible class, the
infective class (those who are infectious but taking a chemghylaxis) and the lost of
sight class (those who are infectious but not on a chemoptapis) denoted respectively
by S(t,a), I(t,a) and L(t,a) at timet and at specific age. Let 3(.,.) be the contact
rate between susceptible individuals and infectious iddls. Namely,5(a, o) is the
transmission rate from the infectious individuals agetb the susceptible individuals
ageda. All recruitment is into the susceptible class and occursyiecific rate\(a). The
rate of non-disease related deathig). Infected and lost of sight have additional death
rates due to the diseade(a) andds(a) respectively. The transmission of the disease
occurs following adequate contacts between a susceptidlénéectious or lost of sight.
r(a) denoted the proportion of individuals receiving an effeetherapy in a care center
and¢(a) the fraction of them who after begun their treatment will regtirn in the hospital
for the examination. After some time, some of them can reituthe hospital at specific
ratey(a).
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The basic system (age-structured SIL epidemic model) véttical transmission can
be formulated as follows by equatiob)(

%+§) S(t.a) = Ala) ~ (A(t,a) + p(a))S(t, ),

(%%)w,a) — At,a)S(t ) — (u(a) + di(a)
+r(@)(a)] (t ) +r@ita, P

(%+%)L<t,a> = r(a)$(@)I(t,a) ~ (n(a) + dafa)
(@)L, >

For the boundary conditions of model)( we consider that pregnant lost of sight
women generally return to the clinic for the birth of they nbarn, therefore, we can
assume that there is not lost of sight new born (ifg#,0) = 0). Due to the above
consideration, the initial boundary conditions of modgli§¢ given by:

St0) = [y f(a)[s(tv a) + (1 = p)(I(t,a) + L(t, a))]da,

I(t,0) = pfy fla)(I(t,a)+ L(t,a))da,

L(t,0) = 0, )
S(Ova> = 905(0’>; ac (OvaJr)v

I(Oaa) = 901(0’>; ac (OvaJr)v

L(07 a) = ¢rla); ac (07 a"‘),

and wheref (a) is the age-specific fertility rate, is the proportion of newborns produced
from infected individuals who are vertically infected amtl < cc is the upper bound of
age. The force of infectio(t, a) is given by

At a) = /O B(a, o) (I(t,0) + L(t, 0))do.

wheref(a, s) is the transmission rate between the susceptible indilschged a and in-
fectious or lost of sight individuals ageda™ < oo is the upper bound of age.

Let us note that in the literature the transmission rate, ) can take many forms:
B(a,0) = B = constant (Dietz 1975 [L1]; Greenhalgh 198711Y)), f(a,o) = g(a)
(Gripenberg 19834(]; Webb 1985 {19)), 5(a, o) = g(a)h(o) (Dietz and Schenzle 1985
[14]; Greenhalgh 198817]; Castillo-Chavez and al. 1989]).

In the following, we consider system$){(2) under following assumption:

Assumption 1. We assume that € L*>[(0,a™,R;) x (0,a™,R,)] and functions
f, dy, da, v, A, pbelongtoL>(0,a™, R,).

3. Existence of flow

The aim of this section is to derive premininary remarks DR(2). These results
include the existence of the unique maximal bounded semédks@ciated to this system.
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3.1. Abstract formulation

Let X be the space defined as
X :=L'0,a",R?)

with the norm ;
lellx = lleillz;
=1

wherep = (1, p2,¢3)7 € X. Let us noteX , the positive cone oX .
It is well known that(X, ||.||x) is a Banach space. Let : D(4) ¢ X — X be a
operator defined by

Ap =~ — e, 3)
with the domain
) ¢1(0)
D(A) = {o=(p1,p2,93) € WH(0,at,R%) and | ©2(0) | =
. 3(0) '
Jo f > (1 —p)(p2(a) + ps(a))da \ | °
pfo 0 (a) + ps(a))da

the functionF' : D(A) — X defined by

1 A=Al ¢l
El e =1 AL dler = (di+r)pa +7ps |
¥3 rép2 — (dz2 +7)ps
Al ¢] € L'(0,a™, R) is a function such that

at

Aa, o] = ; B(a,a)[p2(0) + p3(0)ldo

andW11(0,a™,R) is a usual Sobolev space.
Let us first derive the following lemma on operatbr

Lemma 1. 1) The operatorA is generator of aCy-semigroup of linear bounded
operators{T(t) };+>o such that
_ pla—t) if a—t>0 n
T(t)p(a) = { Clt—a) if a—t<0 for t<a

and T (t)p(a) = Ogs for t > at; whereC(t) = (C1(t),Ca(t),0) € R? is the unique
solution of the following Volterra integral equation

Ct)=G(t)+ (¢, C),
with

G(t </f (p1(s —t) + (1 =p)pa(s —t) + @3(s — t))d /f s)pa(s —t)d 0)

C) = </Otf(5)(01(t8)+ (1 =p)Ca(t = s5))ds ; p/otf(S)Cz(tS)dS; 0)-
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2) The domairD(A) of operatorA is dense inX and A is a closed operator.

Proof. The proof of this result is rather standard. Standard metlogiks apply to pro-
vide item 1 (see Pazy 1983(])). Item 2 is a direct consequence of the fact that the
operatorA is generator of @y-semigroup of linear bounded operators (see Corollary 2.5
in Pazy 198340)). O

Therefore, one obtains that Systei)-(2) re-writes as the following densely defined
Cauchy problem

dt (4)
(sﬁs, Pr, <PL)T-

{ dp(t) Ap(t) + F(p(t)),

BS)

~
o

=
Il

3.2. Existence and unigueness of solutions

We setX,, := D(A) and X, the positive cone oK. In general we can not solvé)(
in this strong formulation, ity € X+ \ D(A). So, for arbitrarypg € Xy, , we solve it
in the integrated form:

ot) = potA / o(s)ds + / Flp(s))ds > 0. (5)

0 0

A solution of §) is called amild solutionof the initial value problem4). So, in the
following, we are looking for mild solution of abstract Cdnyeproblem &).

We can easily find that:

Lemma 2. On Assumptior, the nonlinear operato¥' from X to X is continuous and
locally Lipschitz.

Using Lemmasl and2 the main results of this section reads as (see Theorem 1.4 in
Pazy 1983{0).

Theorem 1. Recalling Assumptiod and let Lemmad and 2 be satisfied. Ifpq €
Xoy := L'(0,a™,R3). Then there exists a unique bounded continuous solyti¢m
the integrated probler(b) defined orf0, +co) with values inXo .

4. Equilibria

4.1. Disease-Free Equilibrium (DFE)

The following proposition gives the characteristics of ttisease-free equilibrium
(DFE) of system1)-(2).

Let us introducé(a) = exp (— [, u(s)ds) the average lifetime of individuals at age
a.
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at

Proposition 1. Let/ f(a)l(a)da < 1 be satisfied. Then, systett){2) has a unique
0
Disease Free Equilibrium (DFE)yy = (So,0.1,071), whereSy is given by

+

B 1 @ “A(s)
SRR A flatta) (A I(s) ds) e ©
So(a) = l(a) [SO(O) + Aa /lx((;))ds} for0<a<at.
Proof. : ¢ is an equilibrium of problend) if and only if
v € D(A)andAp + F(p) =0x. (7)

For the DFE we haves = ¢35 = 0p1. Hencela, p] = 07:. From where the result
follows using straightforward computations. O

4.2. Endemic equilibrium (EE)

 is an endemic equilibrium o if and only if (7) is satisfied. That is,

pila) = @r(0)a)exp ( / "\ ga]do)

4 /0 a%exp (— / "\, go]da) A(s)ds: @)
el = [ HOE e (< [ r(o)eto)de ) Blo)eals) + s e (9]

i@ e (= [ r)otorao ) ©)
wal) = wOi@r@ e (- [*(0)a0)

# [ R8ED wp (= [* (01 ) re)otehen(eras (10)
p1(0) = /O(ﬁf(a)[<P1(a)+(1—p)(¢2(a)+<ﬁ3(a))]da; (11)
22(0) = Aﬁf(a)(%z(a)ﬂps(a))da; (12)
@3(0) = 0. (13)

where "
Ti(a) = exp (= [y (di(s) +7(s)p(s))ds) ;
Ta(a) = exp(— [3(da(s) +(s))ds) .

Let us set\(s) = A[s, ¢] for s € [0,a™). Equation 8) re-write as

p1(a) = ©1(0)A11(A,a) +ui(Aa). (14)
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Equations §) and Q) give
p2(a) = @1(0)A21(A,a) + 2(0)Azz(a) + uz(A, a). (15)
Equations 10), (13) and (L4) give
ps(a) = ¢1(0)As1(A a) + 2(0)As2(X, a) + us(X, a); (16)

with
Ani(M ) = I(a) exp (— /O )\(U)da) :
Aor (M, @) = /O " o1(a, $)A(s) exp (— /O SA(a)da) ds:
Az (a) = l(a)l'1(a);

A = [ xala e e < I A(o)da> ds

Asa(a) = 1(a)T2(a) /Oa E;Egr s

<
)
>~
&
Il
ﬁ
5E 5
S~—
=
0\g
| =
= =
|
NG
=
3
SN—
@
]
e}
/T
o\
3
=
S)
SN—
QU
q
N—
QU
[Va)

+ /Oa ll((gggz)) exp < /Sa T(g)(ﬁ(ﬂ')dg) ()3 (s)ds:

and

n0,9) = o) o xalas) = ) [ 2O rotar.

From equationsi(l) and (L2), we respectively deduce that

<1 - /a f@)[An (A a) + (1 —p)(A21 (A a) + Az (A, a))]da> ©1(0)
i ) (a7)
— (1= p)es(0) / £(@)[A52(a) + Aga(a)da = v1 (V);

and

per(0) [ " (@) An (0 a) + Agi (\, a)lda
’ (18)

+2(0) <p /Oa f(a)[Azz(a) + Aszz(a)lda — 1) = —02(N);
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where
a+

v1(A) fla)fur (A a) + (1 = p)(ua(A, a) + us (X, a))|da;

6O = p / F(@us (0 @) + us (), a)lda.

Ai(D)
AN

Ax(N).

AN ; with

Therefore, we find thap, (0) =

andep»(0) =

A = (1 pp / " (@) Aa(a) + Ay (a)da x / " @) An(ha) + Ag (A, )lda

+ (1 - Oaf(a)[Au(A,a) +(1-p)(An (N a) +A31<A,a>>1da> x

<p /Oaf(a)[Agg(a) + As2(a)]da — 1) ;

Ar(A) = vi(A) (p Oaf(a)[A22(a) + Asa(a)]da — 1)
— - [ " F(a) [ Ana(a) + Asa(a))da:

Az(N) = va(N) (/Oaf(a)[An()\v a) + (1 = p)(A21 (A, a) + Az1(\, a))]da — 1)

at

—a) [ F(@)A (3 0) + An (A, a)lda.

Equations {5) and (L6) give

A0V iy 9)
esa) = AAl&)Am(A,aHAAQ(%)Aw(aHug(A,a)

{‘”(‘I) - AI(A)Aﬂ()‘va)*AQ(A)A22(G)+U2(>\,a)

SinceA(a fo ©a(s) + w3(s))ds; then we have
Aa) = H(M)(a); (20)

whereH is the operator defined from' (0, o™, R) into itself by

/ﬂ[

)(AQQ( ) + Agg( )):| dS. (21)

(90, ) + Az (507 8)) + UQ(QO, S) + U3(30, 5)

A(so
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Hence, systeml{j-(2) have an endemic equilibrium if and only if the fixed point atjan
(20) has at least one positive solution.

Now let us introduce the following technical assumptionglotransmission raté
asin Inabal6, 28, 29:
Assumption 2. 1) 8 € LY (R xR) such thatd(a, s) = 0 forall (a, s) ¢ [0, a™] x
[0,a™].
2) lim [*7|B(a+ h,€) — f(a.€)|da =0 for € € R.
—

3) It exists a functiom such that:(s) > 0 for s € (0,a™) and3(a, s) > &(s) for
all (a, s) € (0,a™)?.

On the above assumption, some properties of opefatare given by the following
lemma.

Lemma 3. Let Assumptio2 be satisfied.

(i) H is a positive, continu operator. There exist a closed, bedrethd convex subset
D c LY (0,a*,R) such thatd (D) C D.

(ii) Operator H has a Fréchet derivativél, at the pointy = 0 defined by22) and
H, := H'(0) is a positive, compact and nonsupporting operator.

Proof. (i) The positivity and the continuity of operatéf are obvious. Lep € L1(0,a™, R, ),
then

a
Asi(p,a) < 15 Agi(pya) < /
0

ui(p,a) < /0 %A(s)ds; uz(p,a) < al|A|| and

us(p,a) < ||A|lsAsi(a) + su

s€(0,a

p ()l

SinceAAl((;) = 1(0); AAQ(EZ’)) = (0) and the flow of systemi}-(2) is bounded (The-
orem1), we can findMq > 0 such thateq(0)] < Mg and|p2(0)] < Mq. Therefore,

||H ()|l < M; with

M = |Bls /Oa lMQ(l + Aga(s) + (As1(s) + Asa(s)) + :1[1013 ]7(5)) + |A]|oo (As1(s) + 5) | ds.

SettingD = B, (0, M) with B, (0, M) := {p € L*(0,a™,R) : ||¢||z: < M}. Hence
H(D) C D. This end the proof of item (i).

(i) We find that

+

)@ = [ 60.5) | T DA2(0.9(0) + DA (0.5)(6) + Dus(0,5)(0)
+Dus(0, s)(¢¥) + %(flm(s) + Aszz(8))| ds.
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whereDw denotes the derivative of the functierand

a

Duxmaxw>=1/axxmsnwgds Duxaaxw>=3/ x3(a, 5)(5)ds;

0 0

D@ﬂm@@)Aﬂmmww@w;DAmm@w>Aﬂmmﬁmwa

DAxmwo=p/“xuwwWMw

0

with
x21(a,s) = ll((gEEZ)) ( /Sa r(a)qb(a)da) I(s)
“ l(a)T'2(a)
Xm@ﬁ)tllmwﬂmﬂmﬂmmﬂmﬁﬁ
x2(a, s) = x21(a, s) 1; dn; xs(a,s) X31(a,8)/5&dn,

/ f(o)l(o)do — So(0 ]/ f(8) [x21(s; a) + xs1(s,a)] ds.

Hence, operatofl, read as a kernel operator:

+

IMW@AGWMW@M (22)

where the kernel(a, s) is defined by

(a;m) (x21(n,8) + x31(n, 5)) dn

x(a, s)

(o) + Asa(0))do. (23)

The positivity of Hy is obvious. Let us show the compactness of the opetdtoon
Assumption2. Lety € L' ande > 0. From Assumptior®; there existy = p(e) > 0

such that, foh| < p we havefoa+ |B(a + h,&) — Bl(a,&)|da < e. Is thereforeh € R
+

such thaﬂh| < p. ||ThH()(’LZ)) — H()(’L/))HLI = / |H()(’LZ))(CL -+ h) — H()(d))(a)|da Itis
easily checked that ’

+

[Ho(¢)(a + h) — Ho(¢)(a)| < (|4 /Oa B(a+ h,s) = B(a, s)|C1(s)ds

where

Cila) = (I|A||oo + AAl((OO))) (1+ /O Zl({iiiiig r(s)‘é(s)ds)

—||A||OO a a ’ a ’ Z(a)FQ(a)T S s)as a
e Cnt) + @) [ sl (14 [ O 0p0(e)as ) d
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Since(|h| <p= fO“+ |B(a + h,s) — B(a, s)|da < e), it comes that

+

|[7n Ho(1)) — Ho(¥)|[zr < € </ Cl(a)da> Y]l
0
LetB a bounded subset @f' such thaty € B. Then

+

[T Ho(v) — Ho()[|zr < € </ Cl(a)da> x sup{||¢|[r1}.

0 peB
Applying the Riesz-Fréchet-Kolmogorov theorem Hp(B) we conclude thati,(B) is
relatively compact. From whet#, si a compact operator.
Now, let us check thati, is a nonsupporting operator. We define the operétpre
(LY(0,a™,R;))* (dual space of.}(0,a™, R, )) by

+

(Fo; ) = /Oa e(s)[Du2(0, s)(¥) + 6(s)Dus(0, s)]ds;

wheree is the positive function given by Assumpti@end(Fy; «) is the value off},
(LY(0,a™,Ry))* atey € L1(0,a™,Ry). Thenfory € L1(0,a™, R, ) we haveH, () >
(Fo;1b) -e(withe = 1 € L'(0,a™, R, )). Fromwhered[ (1) > (Fo; ¥) (Fo;e)™" -e Vn €
N. Hence for allh € N*; F € (L'(0,a™,R;))*\ {0} andy € L*(0,a™,R;) \ {0} we
have(F; Hi (y)) > 0. Therefore Hy is a nonsupporting operator. O

The main results of this section reads as

Theorem 2. Let Assumptioi? be satisfied. Let us not®, = p(H,) the spectral radius
of operatorH,.

1) If Ry < 1, system1)-(2) has a unique DFE defined I§g);

2) If Ry > 1, in addition to the DFE, systeni)-(2) has at least one endemic
equilibrium.

Proof. The operatoid always has\ = 0 as fixed point. This corresponds to the perma-
nent DFE for systeml{j-(2). For the rest, we are looking for the positive fixed pointte t
operatorH. From LemmeB we know that there exists a closed, bounded and convex sub-
setD of L1(0,a™,R) which is invariant by the operatdi. Moreover, from Lemma,

H has a Fréchet derivativig, at the poin) andHy = DH (0) is a compact and nonsup-
porting operator. Therefore, there exists a unique pasgigenvector), corresponding

to the eigenvalué&, = p(H,) of Hy. Using the same arguments as for the Krasnoselskii
fixe point theorem34], it comes that ifRy = p(Hy) > 1, then the operatadd has at least
one positive fixed poind* € L'(0,a™,Ry) \ {0}, corresponding to the EE of system
(D-).

Let us suppose thd, = p(Hy) < 1. If the operato{ has a positive fixe point*
LY(0,a*,R;)\ {0} then\* = H(A\*). Letus notice that/ — Hy € L'(0,a*, R, )\ {0};
hence\* < Hy(\*). Let Fy € (L(0,a™,Ry))* \ {0} be the positive eigenfunctional
corresponding to the eigenvall®y = p(Hy) of Hy (Sawashima44]). Therefore

0 < (Fo; Ho(A") = A*) = (Fo,; Ho(\")) — (Fo; \*);
= p(Ho) (Fo; \*) — (Fo; \);
= (p(Ho) — 1) (Fo; \").
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From where(p(Hy) — 1) (Fo; A*) > 0. Since(Fp; \*) > 0, it follows thatp(Hy) > 1;
which is a contradiction. O

5. Stability analysis for equilibrium

In order to investigate the local stability of the equililori solution.S* (a); I*(a); L*(a))
we rewrite ()-(2) into the equation for small perturbations. Let

(S(t,a), I(t, a), L(t, a)) = (S*(a),I"(a), L*(a)) + (x(t, a), y(t, a), 2(t, a)).

Then from system1) we have

(% + %) z(t,a) = =X\t a)(S*(a)+ z(t,a))

~(u(a) + N (@)a(t, o) (24)
(5 + 55 ) w60 = Ata)(alt.a) +"(@) + N (@pslt.a

(o) + da(a) + r{@)8(@)y(t,); (25)

<a+§) 2(ta) = r(a)d(a)y(t.a) — (u(a) + dy(a))z(ta);  (26)

and from @) we also have

y(t,0) pfy fla)(y(ta)+ 2(t, a))da; (27)
0

z(t,0) = féﬁf(a)[ﬂf(t a) + (1 —p)(y(t,a) + 2(t,a))|da;
z(t,0) ;

with \(a,t) = / Bla, s)(y(t,s) + z(t,s))ds and \*(a / Bla,s)(I*(s
0

L*(s))ds.
Let us noteu(t) = (x(t),y(t), 2(t))T. Then from equation2¢), (25) and 6) we have

Su(t) = Au(t) + Glu(t)); (28)
whereA is the operator defined b). The nonlinear ternds is defined by
—P(uz,usg)(ur +S*) — (A* + p)us
G(u) = P(uz,us)(ur +5*) + Nup — (n+di +ro)ug |3
rous — (@ + dz)us

andpP is linear operator defined air' x L' by
at

Pug,us)(a) = Bla, s)(ua(s) + us(s))ds. (29)

0
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The linearized equation o26) aroundu = 0 is given by

d
Eu(t) = (A4 Q)u(t); (30)

where the linear operatdr is the Fréchet derivative @f(u) atu = 0 and it is given by
—P(uz,us3)S* — (\* + p)uy
Clu) = Plug,uz)S* + Nuyp — (u+ di + rd)us
rous — (p + d2)us
Now let us consider the resolvent equation for C:

(z—(A+C)Y = 0; veD(A), veX, zeC. (31)

Applying the variation of constant formula t81) we obtain the following equations:

bi(a) = T(a)i(a)e [w1<o>+ /Oaml(s)ﬂl(s)Tu<s>7><w1,w2><s>>ds] (32)

(@) = [0+ [ 02(6) 4 X () + Pl i) (95 ()|
xT'1(a)l(a)e™*% (33)

Ys3(a) = Ta(a)l(a)e” ™ [¢3(0)+/0 W(%(S)+T(S)¢(S)¢2(S))d8] -(34)

withII(a) = exp | — [ A (o)do |; Thi(s) = T(s)i(s) andTia(s) = S*(s)Th1(s).

Equations 82)-(33) an& B5)-(34) respectively gives
00 = Ta@i@e [020) + Ta(aia0) + [ T 9Pl ) (9)ds
0

+ /Oa To4(z,a, )91 (8)ds + /a Tos(z, 5)192(3)653] (35)

0

and

¥a(a) = Tala)l(@)e** [T32<a>w2<o> +Ta () (0)+ 4a(0)+ [ " Tas(z.a, )P (. ) (5))ds

+/O T34(2,a, s)ﬂl(s)ds—l—/o T35(z,a,s)192(s)ds+/0 T36(2, a, 8)193(8)d8:|;
(36)

where

ezs

TOR (nl(s) ), 06 ”“)d") |

Tos(z,a,8) =
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Sincey € D(A); it comes that

bi(0) = / F(@)ib1(a) + (1 — p)(tbala) + s a))]da; @37)
6a(0) = p / F(@)(a(a) + a(a))da: (38)
P3(0) = 0. (39)

Equations 86)-(39); (32)-(35)-(40)-(37) and @35)-(40)-(38) respectively lead to
3(0) = Ta(a@l(a)e ™™ | Tia(a)a(0) + Ton(@)in(0) 4 + [ Tin(e.a, /P (01, ) (9)ds

+ /O ' Ts4(z, a, )01 (s)ds + /O aT35(z,a,s)192(s)d8+ /O ’ Tsa(w)ﬁs(s)ds];

(40)
(B11(2) = 1)¢1(0) + (1 — p) Br2(2)2(0) + /Oa Bis(z,a)P(¢1,2)(a)da
+ /Oa Bi4(z,a)91(a)da + /Oa Bis(z,a)92(a)da + /Oa Big(z,a)93(a)da = 0;
(41)

and

+

pBar (=)0 (0) + (pBaa(z) — 1)ha(0) + p / " Bus(z.a)P (. i) (a)da

a+ a+ a+
+p/ Bay(z,a)¥1(a)da +p/ Bas(z,a)¥2(a)da +p/ Bag(z,a)¥3(a)da = 0;
0 0 0
(42)

with

Bu() = [ " f(@)i(@)e " [IT(a) + (1 - p)(Ts (a)To1(a) + Ta(a)Tin (a)] da:
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Bia(z / f(a 21 (a) + T'y(a)Ts2(a)] da;
Bls(z,a):/ f(s)l(s)e™** [=T12(a)ll(s) + (1 — p)(T'1(s)T23(2, s, a) + I'a(s)T33(2, 5, a))] ds;

Bu(z,a) = /“ f(s)l(s)e™** [Tri(a)ll(s) + (1 — p)(T'1(s)T2a(2, 5, a) + Ta(s)T34(z, 5, a))] ds;

Bus(z,a) / F(8)I(s)e™%* [Ty (8)Tas (2, @) + (1 — p)Ta(8)Tss (2, 5, a)] ds:
Big(z,a) = (1 — / F($)I(s)e*Ta(s) Tho (2, s)ds:
Box (2 / F(@)l(a)e"*[T (a)Tor (a) + T (a)Tsy (a)]das
Bas(z / f(a U (a) 4 T2(a)Ts2(a)]da;
Bas(z,a) / F($)I(s)e* [Ty (s)Tos (2, 5, @) + Da(s)Tha (2, 5, a)]ds:
Baa(z,a) / F($)I(s)e* [Ty (s)Toa(2, 5, @) + Da(s)Tha (2, 5, a)]ds:

Bos(z,a) = Tas(z, a)/ F(s)l(s)e *°[[1(s)To5(2,a) + Ta(s)T35(z, s, a)]ds;

BQG(Z;G) - T36(Z,a) /a f(S)Z(S)F2(8)6725d5

System {41)-(42) is a linear system with respect#g (0) andi)2(0), hence

+ +

1(0) = /Oa detu(z,a)P(z/Jl,z/)g)(a)daJr/Oa det12(z, a)¥1(a)da +

+/Oa d€t13(2,a)’l92(a)da+/0a det14(z, a)¥3(a)da; (43)
2(0) = /0 deto1(z,a)P(11,19)(a)da +/O detas(z,a)V(a)da
+/Oa d6t23(2,a)’l92(a)da+/0a detoy(z, a)¥3(a)da; (44)
where
deti1(2,0) = —— [(PB22(2) = 1)Bis(2, a) — p(1 = p) Bua(2) Bas(2, a)]
detrz(z,0) = - 1 [(pB22(z) — 1)Bi4(z,a) — p(1 — p)B12(2)Baa(z, a)] ;
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detys(2,a) = — [(pBas(2) — 1) Brs(2,a) — p(1 — p)Bra(2) Bas(z, )]

det

det14(z,a) = ;—; [(pB22(z) — 1)Bis(z,a) — p(1 — p)Bi2(z)Bas(z, a)] ;

= 2 [(Boi(2)Bus(z,a) - (Bui(2) — 1)Bas(z,a)]

detor(z, a) i

detgg(z, a) = % [(Bgl (2)314(2, a) — (BH(Z) — 1)324(2:, a)] ;

detas(z,a) = d_ [(B21(2)B15(z,a) — (B11(2) — 1) Bas(z, a)] ;

detoy(z,a) = @

det = (B11(z) — 1)(pB22(2) — 1) = p(1 = p) B21(2) B12(2).
From equations9)-(35)-(40)-(43)-(44) it follows that

[(Ba21(2)Bi6(z,a) — (B11(2) — 1) Bag(z, a)] ;

P, ) (n) = (I = Vo) "L [(U00)(n) + (Wada) (n) + (Vada)()]; (45)

whereV,, U,, W, andY, are the Volterra operator define @A (0, a™, R) into itself by

+ at

(U-)(a) = / 6. (1. a)p(a)da; (Vap)(a) = / - (1, @) (a)das

/ E.(n,a)p(a)da; (W,p)(a / K.(n,a)p

Xz(na ) - Cfe( )detll(z a) + Cée(n)detm (Za a)

(46)

where

(47)
/ B(n,s T2T1(8)T23(z, s,a) + Da(s)Ts3(z, s, a)]ds;

6.(n,a) = Ci(n)det12(z, a) + CL¥(n)detaz (2, a)

/ B(n,s “2T1(8)T2a(z, 8, a) + Do(s)Ts4(2, s, a)]ds;
K.(n,a) = Cf°(n)deti3(z, a) + C5° (n)detas (2, a)

/ Bn, $)I(s)e " [Ts () Tas (2, 5, @) + Ta(s)Tis (2, 5, 0)]ds:

E.(n,a) = Ci(n)det14(z, a) + Cy (n)detaa(z, a) + /a B(n, s)l(s)e”**T2(s)T36(z, 5, a)ds;
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and
a+

Ci(n) = B(n,a)l(a)e”**[I'1(a)T21(a) + Ia(a)Ts1(a)]da;

Cle(n) / " B(n a)l(a)e Ty (@) + Ta(a)Tio(a))da:

Let us recall some definitions related taCg-semi-group{T'(¢)}:>o on a Banach
space with infinitesimal generatét. Thetypeor the growth boundof the semi-group
{T'(t)}+>0 is the quantity:

wo(R) =
inf{o € R: IM > 1suchthat|T(t)|| < Me* Vt > 0}
O

t—0 t
Thespectral bounaf the Cy-semi-group{7'(¢) } ;>0 is the quantity:
s(R) = sup{ReA: XA €0,(R)},
whereo,(R) denote the point spectrum &f.
Wow, we conclude that

Lemma 4. Recalling Assumptiorisand2. Then
1) The perturbated operatot + C' has a compact resolvent and

0(A+C)=0,(A+C)={z€C: 1€0,(Vo)};

whereo (A) ando, (A) denote the spectrum dfand the point spectrum of respectively.

2) Let{U(t)}+>0 be theCy-semigroup generated by + C. Then{U(¢)}, ¢t >0
is eventually compact and
CLJ()(A —+ C) = S(A + C)

Proof. 1) From equations32), (43) and ¢@6) we find that
Yi(a) = I(a)l(a)e™**P1(0) + J1(91)(a) + Ki(V1,92)(a);
with

Ji(01)(a) = H a)T11(s)e **01(s)ds

K1(191,192)(a) = H T11 )S*(S)eizs(]'*‘/z)il

e

[(U=01)(s) + (W2192)(s) + (Y203)(s)]ds.

11 IS a compact operator if and only if, and K, are compact. Sincéd, is a Volterra
operator with continue kernel, we deduce tliais a compact operator afa. Using the
same arguments as for the proof of the compactness of opéfgt.emma3), we can
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show that the operatofs., W, andY, are compact for alt € C. Letus set := {z €

C: 1€ 0,(V.)}. Hence, ifz € C\ X then,K; is a compact operator frof' x L' to L*.

In the same way, we can show that(a) andiys(a) are represent by a compact operators.
Therefore, the resolvent of + C' is compact. From where(A + C) = 0,(A+ C) (see
Kato, p.187 B1])i.e. C\ X C p(A+C) andp(A+ C) denotes the resolvent gf+ C. In
otherwordsE D o(A + C) = g,(A + C). SinceV, is a compact operator, we know that
o(V.)\ {0} = 0,(V.)\{0}. If z € &, thenitexistap, € L'\ {0} such thal’, ¢, = ..

Let us set

+

a za
e

det11(z,a).(a)da — /a 7¢z(s)d5] ;

¢1(a) = I(a)l(a)e " l ; o T(s)i(s)

+ za

detgl(z,a)wz(a)daf/ I’l(e
0

$2(a) = T(a)l(a)e~>* [ / eTe

(A" (s)p1(s) + S*(S)wz(S))dS] ;

za

¢3(a) =Ta(a)l(a)e™* /Oa T, ¢ r(s)p(s)h2(s)ds.

(s)I(s)
Then(¢1, ¢2, ¢3)T is an eigenvector oft + C associated to the eigenvalue Hence,
z€d(A+C)=0,(A+C)ie. X C o(A+C) = o0,(A+ C). This end the proof of
item 1.

2) Fory € X, let us set
01?/} (_P(wQa¢3)S*)P(w27w3)5*50)T;
Cop (—(N* + e, X1 — (u+ dy + r)hardths — (u+ da)ips) ™.

ThenC' = C;+C5. The operatorl+C, generated a nilpoteiity-semigroug( Sa(t) }+>o,
from where{S2(t) }+>0 is norm continuous. Using Assumptiohsind2, we find thatC
is compact operator oX. From Theorem 1.30 of Nagel(1986)7 it comes thatC; is
generator of a norm continuod%-semigroup{ S (t)}+>o. Therefore,S;(t) + S2(t) is
a Cy-semigroup generated by + C and it is norm continuous (Spectral theorem P.87
Nagel (7). O

Let us remark that itvg(A + C) < 0, the equilibriumu = 0 of system 28) is
locally asymptotically stable (linearized stability, Weth985[( ). Therefore, to study
the stability of equilibrium states, we have to know the ctiute of the sekE := {z € C :

1 € 0,(V2)}. Since||V,||r — 0if 2 — 400, I =V, isinversible for the large values of
R.z.

By theorem of Steinberg(1968)]], the functionz — (I — V,)~! is meromorphic in
the complex domain, and hence the Xeis a discrete set whose elements are poles of
(I —V,)~! of finite order.

In the following, we will use elements of positive operatoeory.
For the positivity of operatov, we make the following assumption
Assumption 3.

+

/Oa (di(o) +r(0)p(0))do < exp (— /Oa

+

A (U)do’) ; (48)

whereA*(o) = [ B(a,n)(I* (n) + L*(n))dn.
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Lemma5. Let Assumptiol be satisfied. Then
1) The operatol,, z € R, is nonsupporting with respect #' (0, o™, R, ) and

lim p(V.) =+oc0 ; lim p(V;)=0.
zZr—-400

Z——00
2) There exists a uniqug € R N X such that

z0>0 if p(W)) > 1,
p(Vyy) =1 and z20=0 if p(Vp) =1,
20 <0 if p(Vo) < 1.

3) zo > sup{Rez: z€ X\ {z0}}.

Proof. 1) Let = € R. Unconditionally,V, is a positive operator whei*(a) = 0
(case of DFE). When\*(a) > 0, V. is a positive operator oncg (s)Tz3(z,a, s) +
I2(s)T33(2,a,s) > 0forall0 < a < s < a™. To have the previous inequality, it suffices
that inequality 48) of Assumption3 holds. We can checked that

Vi 2 (f2,9) - & (49)

wherey € L'(0,a™,R,);e=1 € L'(0,a™,R,) andf, is a positive linear functional
defined by

e - mAm /aa+ ez(aS)% (Fll(a) B H(la) /as E((Z)) )\*(o)da> dsda:

with m = inf, 5ej0,0+)2 B(a, s). From @9), we show thal/" 'y > (f., ) (f.,e)" - e
for all n € N. Sincef, is positive operator and € L'(0,a™,Ry) \ {0}, we have
(F, V) > 0V € (LY(0,a™,R4))* \ {0} Voo € L1(0,a™, Ry )\ {0}. ThatisV, is
nonsupporting.

Let F., be the eigenfunctional df, that corresponds to the eigenvajp@’,). Taking
the duality pairing into inequality4©), we have

Takingy = e and sinceF, is positive, it follows thatp(V,) > (f.,e) — +oo when
z — —oo. From where lim p(V.) = +o0. since||V.||,: — 0 whenz — +o0, we
22— —00

deduce that lixf p(V,) = 0. This end the proof of item 1.

2) Leth : R — C; z — p(V.). The kernely, defined by 47) is strictly decreasing
with respect toz € R. Let z1,2z; € R such thatz; < 2z, theny,, < x., thatis
V., > V.,. SinceV,, andV,, are compact and nonsupporting operators we deduce from
Marek(1970) Bd] that p(V.,) > p(Vs,). Therefore, the functioh is strictly decreasing.
The limits of the functiorh(z) = p(V,) at —oco and+oco give that there exist a unique
zo € RN X such thap(V,,) = 1. If p(V) > 1thenh(0) > h(z) i.e. zo < 0 (strictly
decreasing of) and the other cases is show in the same way. This end the gfrdem
2.

3)Letz € ¥, then there existg, € L' suchthatl,¢, = 1.. Let|y.| be a function
defined byj¢,|(s) := |1 (s)|. The definition ofV, leads to

|wz| = |Vzwz| < VRgz|wz|' (50)
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Let Fz, . be the positive eigenfunction associated to the eigenvalug,.) of Vi, ..

From (60) we deduce thatFg, ., [V:[) < (Fr.z, Vr.:|¥:]) = r(Vr.2) (FRr.2, [¥z]).

The positivity of Fg, . implies thatr(Vg,.) > 1 thatish(R.z) > h(z) i.e. zo < Rez.

To end the proof, let us show that:4§ = R.z thenz = z.

We knowthat,| < Vg, .|1.| = Va, |1, |. Letus suppose thab,| < V,, |v.|; taking the
pairing product with the dual functioF, corresponding to the eigenvalp@’.,) = 1, one
has(Fy, |¢.|) > (Fo, |[¢.|), which is a contradiction. Hende .| = V., |¢.|. Therefore
|¥.| = epo wherec is constant not equal to zero (Sawashima 1958%)[and v is the
eigenfunction corresponding 14V, ) = 1. S0 (a) = ctpo(a)e’*® for a reel function
o; moreover V.o, | = [1.| = cbg = Vi abo. Substituting. (a) = cipp(a)e’ () into

the equality}V, .| = ¢V, one has

Aa /“ B(n, S)l(S)e*zo(s—a) [F1(S)T23(s, a) + FQ(S)T33(S, a)|o(a)dsda =

b

/a /a B, s)l(s)e~ FoTils=aIm Dy (§)Ths(s, a) + Ta(s)Ta3(s, a)]e"* g (a)dsda
0 a

(51)

with

S S (1L [T LY
Tale.5) = g (ms) i) me )

- “Ty(0) -
T = T: do.
33(a, s) /s FQ(J)T(UW(U) b3(a,0)do
Applying two times, Lemma 6.12 of Heijmans(1986)], to the relation 1) it comes
that(s — a)Imz + a(a) = bforall 0 < a < s < at whereb is a constant. From the
equalityV, v, = 1, one has:®V, vy = 1pe’*® i.e.b = a(a). From wherelmz = 0,
thatisz = zg. O

From the above result, we can state the threshold critegdalws:
Proposition 2. Recalling Assumptiof. Then equilibrium(S*, I*, L*) is locally asymp-
totically stable ifp(V)) < 1 and unstable ip(Vy) > 1.

Proof. From Lemméb (items 2. and 3.), we conclude thatip{ R.z; 1 € 0,(V.)} = 2.
Hences(A + C) = sup{Rcz; 1 € 0,(V2)} < 0if p(Vo) < 1, ands(A + C) =
sup{Rcz; 1 € o,(V2)} > 01if p(Vp) > 1. O

In the following, let us noté/) the operato#/, corresponding to the casé (o) = 0
(DFE) andVj the operatoft, corresponding to the case (o) > 0 (EE). It is easily
checked that

Xg(aa S) = X(avs); (52)

wherex(a, s) is the kernel of the \Volterra operatéf, defined by 23).
Now, the main results for the local stability of our epidemmodel reads as

Theorem 3. Let Assumptiond and 2 be satisfied. LeRRy := p(H,) be the spectral
radius of the operatoH,, defined byZ2). Then,
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1) If Ry = p(Hp) < 1 then, the unique equilibrium ofl)-(2) (DFE) is locally
asymptotically stable.
2) If Ry = p(Hy) > 1 then, the DFE is unstable.

3) If Ry = p(H,) > 1 then, in addition to the DFE syster){(2) has at least one
endemic equilibrium (EE). Moreover,s{ V") < 1 and Assumptio holds, then the EE
is locally asymptotically stable.

Proof. For the DFE, one has*(s) = 0. Hence, from %2) it comes thatp(H,) =

p(VY) == p(Vp) (for \* = 0). From Prop.2 we deduce that: ib(Hy) = p(Vp) < 1, the
DFE is locally asymptotically stable; and unstable(#,) = p(V5) > 1. This end the
proof of items 1. and 2.

The case of EE is a direct consequence of P2op. O

Remark 1.

(%) To emphasize the impact of vertical transmission on theapof the disease, let us
observe that the next generation operatfy can be rewrite as follows

+ +

Ho(t)(a) = / " (e syp(s)ds + / " o (p.a s)(s)ds;

where the kernelg(.,.) and ¢ (p, ., .) are

X(a,s) = i(ES) /a B(a,n) (x21(n, 8) + x31(n, 8)) dn;
_ puls) " a,o o o))do
xoas) = B [ fa.0)(Ann(e) + Anlo))de

It is easy to see that when the proportion of infected newb@zero p = 0), then
the kernelx (0, .,.) = 0. Therefore, the vertical transmission of the disease diapli
positively the spread of the disease.

() As a special case, we here briefly consider the proportiemaiking assumption,
that is, the transmission rat8 can be written as3(a, s) = 51(a)f2(s) (see Dietz and
Schenzle14]; Greenhalgh,1988%3)). In this case, the basic reproductive numigeg is
explicitly given by:

+ +

Ry := p(Hy) :/ Xo(s,s)ds-i-/ X (D, s, 5)ds. (53)
0 0

And the same conclusion follows as for ited).( Thus the vertical transmission of the
disease really has an impact on the dynamics and the spretiet afisease into the host
population. We also refer to Figures4 for some illustrations of the state variables of
system J)-(2) whenp takes different valueg).02; 0.2 and0.5.
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6. Numerical analysis

In this section, we propose a numerical scheme for our maukgaves some illustra-
tions.

We adopt a finite differences scheme which is progressiver@érol in time and
regressive of order 1 in age. Our model has a structure obtluing partial differential

equation on the real axe:
ou

ot
For equation®4), the numerical scheme is defined by:

- % = f(t,a). (54)

n+1 n n n
p U Uy T Ui
t L - tn; i)s 55

A T T A, f(tn, ai) (55)
wherei andn are the index of age and time discretization respectivehy &' :=
w(tn, x;).

We recall that, generally, all explicit numerical schemeadrditionally stable (Stricwerdaf)).
To ensure the stability of the schent) the necessary condition is the famous Courant-
Friedrichs-Lewy (CFL) condition given as follow:

u

At

~— S

Aa
For a given age step discretizatitha, the restrictiolA¢ < Aa is necessary for the time
step discretisation?.

1. (56)

We are able now to give the solution of the problef+() on some time interval
[0, T'] using the above numerical scheme.

The age-specific reproduction raté) is taken to be

flo) = 1 gin2 (—”(“37)1@) if 15 < a < 45;
0 if not.

The fecundity functionf(.) is stated here in units of 1 / years for easier readability and
assumes that from agé to 45 years a woman will generally give birth to three children,

a+ . . .
since [, f(a)da = 3, wherea™ = 80 is the largest age allowed for the simulation.
We also consider a low value of recruitmet)

2 [ m(a—17 . .
A= {5 (45 if 17 <a < 60;
0 if not.
This recruitment assume that the total number of recruitraetimet is approximately
+
equal two, thatigf;’ A(a) = 2.15
The transmission coefficiep., .) is assume to be
— 14 — 14
B sin? (La )) sin? (L(S )
Bla,s) = 16 16
0 if not.

) , if a,s € [14,60];

ARIMA



46 ARIMA —Volume 17 — 2014

0.2

0.15¢

0.1t

Transmission rate

0.05¢

80

Reproduction rate at age a

40

0 0 Age (year) 0 20 Age4(§)/ear) 60 80

Age(year)

(@) (b)

Figure 1: (Lg) Transmission coefficiert(., .) when the transmission constatyt= 10~3.
(1b) Fecundity functionf(.) .

Table 1: Numerical values for the parameters of the model

Parameters Description Estimated value

5o Transmission constant Variable

P Vertical tranmission rate ~ Variable

i Natural death rate 0.0101A4r

r Rate of effective therapy 1/yr!

o Rate at witch infectious ~ 0.75/yr
become loss of sight

v Rate at witch lost of sight  0.02/yr
return to the hospital

dq Death rate of infectious 0.02/yr

da Death rate of lost of sight  0.2/yr

Note: Source of estimates.
1 Assumed.

wherein the nonnegative constaht (transmission constant) will be variable. Figure
illustrates the transmission coefficight(for 3 = 10~3) and the fecundity functiorf.
The other parameters of our system are arbitrarily chossnTablel).

We provide numerical illustrations for different valuesseftical transmissiop: 0.02,
0.2 and0.5

In Figure2, the vertical transmission rate of the disease is fixed tp be0.02. We
observe that infectious individuals (infected and lostight are between 17 and 70 of
age. The number of young infectious (namely infectious &ika < 17) is negligible,
because the value of vertical transmission gaitelow.

In figure 3, the vertical transmission rate of the disease is fixed tp be 0.2. We
observe that much of the infectious individuals (infected #ost of sight) are between
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17 and 70 of age. Let us also observe that the number of infecthdividuals with age
between 17 and 70 is approximately the same than the numligfiecfious individuals

with age between 17 and 70 when= 0.02 (see Figs2-3). But now, there are also
infectious individuals with age < 17 which was not the case when= 0.02.

The same observation is given by Figdrevhere the vertical transmission rate of the
disease is fixed to he= 0.5. Hence Figure&-4 emphasize that the vertical transmission
of the disease really has an impact on the dynamics and thadgpf the disease into the
host population. See also Taldéor the impact of the vertical transmission of the disease
on the spread of the epidemic.

Infected Lost of sight

100.

NI
IIIll“m“““{“l“lllllllllllllh.
llllll lllllllllllllll

llllln

Il i i
r"”‘",,,lmm iy o
gy 8
I//I/I/ II”
e

|lll|lll|ll|l T lll IIl

Cases

100

50

Cases

60

40

80 80 Time(year) Time(year) so 20
Age(year) Age(year)
@ (b)
Infected newborn Population after 15 years
- - - - 30 - - - - - - -
m— infected
e |_OSt Of Sight
251 E
Total cases (I g 96. 043
Total cases (L): 875.52

i Total cases (l+L): 971.56

n

[}

@ 15t

o
10F
J /\

. f . . . . . 0 . .
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time(year) age(year)
(© (d)

Figure 2: The transmission constant and the vertical tréssom rate are fixed to be
Bo = 1073 andp = 0.02. The other parameters are given by Tahlg23a) Distribution
of Infected individuals. Zb) Distribution of Lost of sight. Zc) Distribution of infected
newborn. 2d) Distribution of Infected and Lost of sight individuals@f80 years of time
observation.
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10

20

30 40 50 60 70 80
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Figure 3: The transmission constant and the vertical trégssiom rate are fixed to be
Bo = 1072 andp = 0.2. The other parameters are given by Tablg3a) Distribution
of Infected individuals. §b) Distribution of Lost of sight. §c) Distribution of infected
newborn. 8d) Distribution of Infected and Lost of sight individuals@f80 years of time

observation.

Table 2: Impact of the vertical transmission of the disease.

Vertical transmission rate] Rate increase over the case whes 0

p=0.02
p=20.2
p=20.5

1.8%
17.5%
43.8%

Total cases (I+L) when p = 0: 954.85 cases. (i.e. when the vertical transmission of the disease is
neglected in the host population.
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Figure 4: The transmission constant and the vertical trégssiom rate are fixed to be
Bo = 1073 andp = 0.5. The other parameters are given by Tablg4a) Distribution
of Infected individuals. 4b) Distribution of Lost of sight. 4c) Distribution of infected
newborn. #d) Distribution of Infected and Lost of sight individuals@f80 years of time
observation.

7. Conclusion

In this paper, we consider a mathematical model for the sipppéa directly transmit-
ted infections disease in an age-structured population @#émographics process. The
disease can be transmitted not only horizontally but alsticadly from adult individuals
to their children. The dynamical system is formulated wittubdary conditions.

We have described the semigroup approach to the time esolptoblem of the ab-
stract epidemic system. Next we have calculated the basiodection ratio and proved
that the disease-free steady state is locally asympthtistble if Ry < 1, and at least
one endemic steady state exists if the basic reproductitan/fg is greater than the unity.
Moreover, we have shown that the endemic steady state isfdiywbifurcating from the
disease-free steady statefat = 1. Finally we have shown sufficient conditions which
guarantee the local stability of the endemic steady stadeigRly speaking, the endemic
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steady state is locally asymptotically stable if it corr@sgs to a very small force of in-
fection.

However the global stability of the model still an interagtbpen problem. Moreover,
biologically appropriate assumptions for the unique exise of an endemic steady state
is also not yet know.
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