
Special issue CARI’12

Some efficient methods for computing the
determinant of large sparse matrices

E. KAMGNIA (1) — L. B. NGUENANG(1)

(1) Department of Computer Science, University of Yaounde I, Yaounde, Cameroon.
Emails: erkamgnia@yahoo.fr, lnguenang@yahoo.fr

ABSTRACT. The computation of determinants intervenes in many scientific applications, as for ex-
ample in the localization of eigenvalues of a given matrix A in a domain of the complex plane.
When a procedure based on the application of the residual theorem is used, the integration pro-
cess leads to the evaluation of the principal argument of the complex logarithm of the function g(z) =

det((z + h)I − A)/det(zI − A), and a large number of determinants is computed to insure that the
same branch of the complex logarithm is followed during the integration. In this paper, we present
some efficient methods for computing the determinant of a large sparse and block structured ma-
trix. Tests conducted using randomly generated matrices show the efficiency and robustness of our
methods.

RÉSUMÉ. Le calcul de déterminants intervient dans certaines applications scientifiques, comme par
exemple dans le comptage du nombre de valeurs propres d’une matrice situées dans un domaine
borné du plan complexe. Lorsqu’on utilise une approche fondée sur l’application du théorème des
résidus, l’intégration nous ramène à l’évaluation de l’argument principal du logarithme complexe de la
fonction g(z) = det((z + h)I − A)/det(zI − A), en un grand nombre de points, pour ne pas sauter
d’une branche à l’autre du logarithme complexe. Nous proposons dans cet article quelques méthodes
efficaces pour le calcul du déterminant d’une matrice grande et creuse, et qui peut être transformée
sous forme de blocs structurés. Les résultats numériques, issus de tests sur des matrices générées
de façon aléatoire, confirment l’efficacité et la robustesse des méthodes proposées.

KEYWORDS : Determinant, eigenvalues, LU factorization, characteristic polynomial, Schur comple-
ment, SPIKE

MOTS-CLÉS : Déterminants, valeurs propres, polynôme caractéristique, factorisation LU, complé-
ment de Schur, SPIKE

ARIMA Journal, vol. 17 (2014), pp. 73-92.



74 A R I M A – Volume 17 – 2014

1. Introduction

The computation of determinants is needed in scientific applications. One such ap-
plication is the localisation of eigenvalues of a given matrix A ∈ Rn×n in a domain of
the complex plaine. When one proceeds as in [2, 3] by applyingthe residue theorem,
the numberNΓ of complex eigenvalues which are surrounded by a given curve(Γ) is
computed by evaluating the integral

NΓ =
1

2iπ

∫

Γ

d

dz
log det(zI −A)dz.

The evaluation of this integral is also applied in works dealing with non-linear eigenvalue
problems [4, 8]. For instance, to compute the numberNΓ of complex eigenvalues which
are surrounded by a given curve(Γ), the procedureEIGENCNT [3] implies evaluating the
characteristic polynomial at many points of(Γ) since the selected points must support the
quadrature of

NΓ =
1

2iπ

∫

Γ

f
′

(z)

f(z)
dz. (1)

Let z andz + h be two points of(Γ). Since

(z + h)I −A = (zI −A) + hI

= (zI −A)(I + hR(z)),

whereR(z) = (zI −A)−1, it follows that

f(z + h) = f(z) det(I + hR(z)).

LetΦz(h) = det(I + hR(z)), g(z) = f
′

(z)
f(z) , then

∫ z+h

z

f
′

(z)

f(z)
dz = log(f(z + h))− log(f(z))

= log

(

f(z + h)

f(z)

)

= log(Φz(h))

= log |Φz(h)|+ i arg(Φz(h)).

Given that this is a multivalued function, the goal is therefore to insure that a branch
corresponding to a given determination of the complex logarithm can be followed while
avoiding any jump to another determination. In [3], a stepsize control is introduced for in-
suring this property. For large matrices, the number of necessary determinant evaluations
may become very high especially when many eigenvalues lie near the boundary(Γ).

In this paper, we present some efficient techniques for computing the determinant
of large matrices that can be put into block structured form.Such matrices arise in the
discretization of partial differential equations especially in combination with domain de-
composition and more generally from many sparse matrices after reordering, e.g. with
the help of some graph partitioning tools see e.g. [1, 6].

A R I M A



Determinants of large sparse matrices 75

Computing a determinant is efficiently done through an LU-factorization of the matrix
with the standard permutation strategies. When the matrix is sparse, the LU-factorization
is either with row permutation PA=LU [11, 12] or with and additional column permuta-
tion PAQ=LU [10], whereP andQ are permutation matrices, and whereL andU are
respectively a lower-triangular matrix with unit main diagonal and an upper-triangular
matrix; thendet(A) = det(P ) det(U) or det(A) = det(P ) det(U) det(Q), where
det(P ) = ±1, det(Q) = ±1 anddet(U) is the product of all the diagonal entries of
U .

2. Avoiding overflows and underflows when computing a
determinant

For any non singular matrixA ∈ Cn×n, let us consider its LU factorizationPAQ =
LU whereP andQ are permutation matrices of signaturesσP andσQ. Thendet(A) =
σPσQ(

∏n

i=1 uii) whereuii ∈ C are the diagonal entries ofU . When the matrixA is not
correctly scaled, the product(

∏n

i=1 uii) may generate an overflow or underflow. To avoid
this, we encode the determinant using the triplet(ρ,K, n) so that

det(A) = ρKn (2)

where:

ρ = σPσQ

n
∏

i=1

uii

|uii|
, (ρ ∈ C with |ρ| = 1), (3)

K = n

√

√

√

√

n
∏

i=1

|uii| (K > 0). (4)

The quantityK is computed through its logarithm:

log(K) =
1

n

n
∑

i=1

log(|uii|).

In this way, the value of the determinant is safely computed even when the matrix is not
properly scaled; i.e. diagonal elements of U vary sharply inmagnitude. Before raising to
powern, and to protect from under- or overflow, the positive constant K must be in the
interval[ 1

n
√

Mfl

, n
√

Mfl] whereMfl is the largest representable number in the underlying

floating point system; otherwise the value of the determinant is not computed because it
will lead to an overflow or underflow.

3. Preliminary result

If A can be put in the formA = I + UV , whereU ∈ Cm×n, V ∈ Cn×m, then the
following proposition shows how to efficiently compute the determinant ofA.

Proposition 3.1 If U ∈ Cm×n,V ∈ Cn×m then,det(Im + UV ) = det(In + V U).

Note: this proposition appears as exercice 6.2.7 in [9].

A R I M A



76 A R I M A – Volume 17 – 2014

Proof. Any eigenvalue ofUV is either zero or is an eigenvalue ofV U . Indeed, letλ
be a nonzero eigenvalue ofUV andw 6= 0, an associated eigenvector:(UV )w = λw.
Therefore(V U)(V w) = λ(V w). Let us prove by contradiction thatV w 6= 0: if V w = 0,
and sinceU(V w) = λw, thereforeλw = 0, and finally,λ = 0.

SinceV w 6= 0, it follows that(λ, V w) is an eigenpair ofV U ; therefore the nonzero
eigenvalues ofUV are nonzero eigenvalues ofV U . SinceU andV can be interchanged
without affecting the result, the two matrices have the samenonzero eigenvalues. An
argument of continuity proves that their algebraic multiplicities are the same. For any
square matrixM , let us denote its spectrum byΛ(M). It then follows that,Λ(UV ) ∪
{0} = Λ(V U) ∪ {0}, which impliesΛ(Im + UV ) ∪ {1} = Λ(In + V U) ∪ {1} and
therefore,det(Im + UV ) = det(In + V U). ⋄

This proposition is especially useful when, eitherm ≪ n, or n ≪ m, since it may
drastically reduce the order of the matrix for which determinant is sought. We make use
of this proposition in the following sections.

4. Computing the determinant of a q-block tridiagonal matri x

We now assume that the matrixA is q-block tridiagonal:



















A1 A1,2 0 . . . 0

A2,1 A2
. . .

. . .
...

0
. ..

. . .
. . . 0

...
. ..

. . .
. . . Aq−1,q

0 . . . 0 Aq,q−1 Aq



















, (5)

where fori = 1, · · · , q − 1 the blocksAi+1,i andAi,i+1 are corner matrices defined by:

Ai,i+1 =

(

0 0
Bi 0

)

,

Ai+1,i =

(

0 Ci+1

0 0

)

;

with Ai ∈ Cni×ni , Bi ∈ Cbi×li , Ci+1 ∈ Cci+1×ri+1 . We assume throughout that
ci ≤ ni, bi ≤ ni andli−1 + ri+1 ≤ ni.

4.1. Sequential method

We begin with a block sequential algorithm with partial pivoting. From the LU fac-

torizationP1A1 = L1U1 and by partitioningÃ = PA whereP =

(

P1 0
0 I

)

and

A =

(

A1 A12

A21 A22

)

, thenÃ admits the following LU decomposition:

Ã =

(

I 0
A21(P1A1)

−1 I

)(

P1A1 P1A12

0 S1

)

A R I M A



Determinants of large sparse matrices 77

with the Schur complementS1 = A22 −A21U
−1
1 L−1

1 P1A12. Thus

det(A) = det(P1) det(A1) det(S1). (6)

Consider the block partition

U−1
1 =

[

(U−1
1 )11 (U−1

1 )12

0 (U−1
1 )22

]

∈ C
n1×n1 ,

where(U−1
1 )

22 ∈ Cr2×r2 .

Let
X = C2(U

−1
1 )22 ∈ C

c2×r2

and

G = L−1
1 P1

[

0
B1

]

=

[

G1

G2

]

, (7)

with G1 ∈ Cn1−r2×l1 andG2 ∈ Cr2×l1 ; thusXG2 ∈ Cc2×l1 .
Then the Schur complementS1 can be easily built by

S1 = A22 −
[

I
0

]

[

0 X
]

L−1
1 P1

[

0
B

]

[

I 0
]

,

= A22 −
[

I
0

]

[

0 X
]

[

G1

G2

]

[

I 0
]

,

= A22 −
[

XG2 0
0 0

]

.

Thus, only the leadingc2 × l1 block ofA2 is affected whenA22 is transformed intoS1.
The computation ofXG2 requires solvingl1 triangular systems of ordern1 for G, c2
triangular systems of orderr2, for X and a(c2× r2)× (r2 × l1) matrix multiplication for
XG2.

Let Ã2 be the transformed block; this approach is then recursivelyapplied to the
trailing matrix

A22 =



















Ã2 A2,3 0 . . . 0

A3,2 A3
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . Aq−1,q

0 . . . 0 Aq,q−1 Aq



















, (8)

afterA22 has been corrected. Repeating this process(q − 1) times we deduce

det(A) =

q
∏

i=1

det(Pi) det(Ui). (9)

Definition 4.1 The method based on the formula (9) is called q-block sequential method.

A R I M A



78 A R I M A – Volume 17 – 2014

It is worth pointing out that when the LU factorization is carried out with left and right
permutation, i.e, whenP1A1Q1 = LU , the same process applies. Indeed letF = U−1

1 G,

whereG is given by equation (7) and letY = Q1F =

[

Y1

Y2

]

, with Y1 ∈ Cn1−r2×l1 and

Y2 ∈ C
c2×l1 ; thusC2Y2 ∈ C

c2×l1 and

S1 = A22 −
[

C2Y2 0
0 0

]

.

Thus as is the previous case, only the leadingc2 × l1 block ofA2 is affected whenA22 is
transformed intoS1; but computingC2Y2 is more expensive than computingXG2 in the
previous case asc2 triangular systems of orderr2 to be solved are replaced byl1 triangular
systems of ordern1.

4.2. Parallel method

We now describe a parallel method for computing the determinant; the correspond-
ing parallel algorithm is sketched in Algorithm 1. Considering the SPIKE transforma-
tion [7], let D = diag(A1, A2, · · · , Aq) be assumed to be nonsingular, and fori =
1, · · · , q, let PiAiQi = LiUi a sparse LU factorization of the diagonal blocks. Let
P = diag(P1, P2, · · · , Pq), Q = diag(Q1, Q2, · · · , Qq and

S
def
= D−1A = In + T,

where

In = diag(Is1 , Ir2 , Il1 , Is2 , Ir3 , Il2 · · · , Irq , Ilq−1
, Isq ),

T =















































0s1 0 V ′

1 0 0
0 0r2 V b

1 0 0
0 W t

2 0l1 0 0 V t
2

0 W ′

2 0 0s2 0 V ′

2

0 W b
2 0 0 0r3 V b

2

W t
3 0l2 0 0 V t

3

W ′

3 0 0s3 0 V ′

3

W b
3 0 0 0r4 V b

3

. . . 0 V t
q−1

0 V ′

q−1

0rq 0 V b
q−1

0 W t
q 0lq−1

0
0 W ′

q 0 0sq















































and where the block vectors are defined by:

V1 ∈ C
n1×l1 ≡ V ′

1 s1
V b
1 r2,

(10)

= (A1)
−1

(

0
B1

)

= Q1U
−1
1 L−1

1 P1

(

0
B1

)

, (11)

A R I M A



Determinants of large sparse matrices 79

and fori = 2, · · · , q − 1,

Vi ∈ C
ni×li ≡

V t
i li−1

V ′

i si
V b
i ri+1,

(12)

= (Ai)
−1

(

0
Bi

)

= QiU
−1
i L−1

i Pi

(

0
Bi

)

, (13)

Wi ∈ C
ni×ri ≡

W t
i li−1

W ′

i si
W b

i ri+1

(14)

= (Ai)
−1

(

Ci

0

)

= QiU
−1
i L−1

i Pi

(

Ci

0

)

, (15)

and

Wq ∈ C
nq×rq ≡ W t

q lq−1

W ′

q sq
(16)

= (Aq)
−1

(

Cq

0

)

= QqU
−1
q L−1

q Pq

(

Cq

0

)

. (17)

These blocks are called spike vectors in [7]. With this partition, it is clear that:

det(A) =

(

q
∏

i=1

sign(Pi)sign(Qi) det(Ui)

)

det(S).

Let J ∈ Rm×n be obtained fromIn after deleting its block rowsIs1 , Is2 , · · · , Isq , and
U ∈ Cn×m from T after deleting its block columnsIs1 , Is2 , · · · , Isq , wherem = l when
q=2 andm = n − (

∑q

i=1 si) =
∑q

i=2 (li−1 + ri) when q>2. Then it can be shown that
T = UJ , so that

S = In + UJ. (18)

The matrix J is a rectriction/extension matrix; when it post-multiplies a matrix, it extends
it and when it pre-multiplies a matrix, it restricts it by selecting some of its block rows.
For example ifVi andWi are defined by equations(12) and(14), thenJU selects the
block entriesV t

i , V b
i , W t

i andW b
i from the matrixU.

Let us denote:
Ŝ = Im + JU. (19)

It follows from Proposition (3.1) and from equations (18) and (19) that the determinant of
S and the inverse ofS can be computed at reduced cost fromŜ as shown in the following
proposition:

Proposition 4.2 If S = I + UJ, U ∈ Cn×m, J ∈ Cm×n, withm ≤ n, then

det(S) = det(Ŝ)

and
S−1 = In − UŜ−1J.

A R I M A



80 A R I M A – Volume 17 – 2014

Proof. The second identity is a direct application of the Sherman-Morison-Woodbury
formula [5]. The cost for computing the determinant ofS is therefore reduced since the
dimension ofŜ is smaller than that ofS ⋄

After having applied the block odd-even permutationΠ on both sides of̂S, we get a nice
pattern forŜ:

S̃ = ΠT ŜΠ =































Ir2 V b
1

W b
2 Ir3 V b

2

. . .
. . .

. . .
W b

q−1 Irq V b
q−1

W t
2 Il1 V t

2

. . .
. . .

. . .
. . .

. . . V t
q−1

W t
q Ilq−1































∈ C
m×m. (20)

Thus
det(S) = det(Ŝ) = det(S̃).

5. Special Case with only two blocks

We consider the special case of a two-block tridiagonal matrix because the formulas
in that case simplify. Let the matrixA ∈ Cn×n be defined by:

A =

(

A1 A12

A21 A2

)

, (21)

whereA1 ∈ Cn1×n1 , A2 ∈ Cn2×n2 (n = n1 + n2), and whereA12 andA21 are corner
matrices defined by:

A12 =

(

0 0
B 0

)

, andA21 =

(

0 C
0 0

)

,

with B ∈ Cb×l, andC ∈ Cc×r, b ≤ n1, c ≤ n2, l ≤ n1 andr ≤ n2. Two cases will be
considered: the case where the LU factorization is carried out with left and right permu-
tations, and the case where the LU factorization is carried out without right permutation.

5.1. Case of two-block with sparse LU factorization with lef t and
right permutation

For the case of two-block, with the sparse LU factorization using left and right per-
mutation,P1A1Q1 = L1U1 andP2A2Q2 = L2U2 we have:

S =









In1−r 0 V ′

1 0
0 Ir V b

1 0
0 W t

2 Il 0
0 W ′

2 0 In2−l









= In + UJ andŜ = Im + JU,

A R I M A



Determinants of large sparse matrices 81

with

V1 ∈ C
n1×l =

V ′

1 n1 − r
V b
1 r

= Q1U
−1
1 L−1

1 P1

(

0
B

)

W2 ∈ C
n2×r =

W t
2 l

W ′

2 n2 − l
= Q2U

−1
2 L−1

2 P2

(

C
0

)

wherem = l,

U =









0 V ′

1

0 V b
1

W t
2 0

W ′

2 0









∈ C
n×m, J =

(

0 Ir 0 0
0 0 Il 0

)

∈ C
m×n.

Therefore

Ŝ =

(

Ir V b
1

W t
2 Il

)

=

(

Ir 0
W t

2 Il

)(

Ir V b
1

0 Z

)

,

in whichZ = I −W t
2 V b

1 ∈ C
l×l.

Thus we obtain the following proposition which follows straight from Proposition 4.2
when q=2:

Proposition 5.1 If A ∈ Cn×n, can be written in the form

A =

(

A1 A12

A21 A2

)

,

whereA1 ∈ Cn1×n1 , A2 ∈ Cn2×n2 (n = n1 + n2), and whereA12 andA21 are corner
matrices defined by:

A12 =

(

0 0
B 0

)

, andA21 =

(

0 C
0 0

)

,

with B ∈ Cb×l, andC ∈ Cc×r, b ≤ n1, c ≤ n2, l ≤ n1 andr ≤ n2.

Let P1A1Q1 = L1U1, P2A2Q2 = L1U2 be the sparse LU factorization ofA1 and
A2. Let: P = diag(P1, P2), Q = diag(Q1, Q2), L = diag(L1, L2), U = diag(U1, L2),
then

det(A) = det(P1) det(P2) det(Q1) det(Q2) det(U1) det(U2) det
(

Il +W t
2V

b
1

)

where

V b
1 =

[

0 Ir
]

Q1U
−1
1 L−1

1 P1

(

0
B

)

and

W t
2 =

[

Il 0
]

Q2U
−1
2 L−1

2 P2

(

C
0

)

.

Details on the computation ofW t
2 V b

1 :
SinceV b

1 =
[

0 Ir
]

V1 andW t
2 =

[

Il 0
]

W2, it follows thatW t
2 V

b
1 can be written

as:

W t
2 V b

1 =
[

Il 0
]

Q2U
−1
2 L−1

2 P2

(

C
0

)

[

0 Ir
]

Q1U
−1
1 L−1

1 P1

(

0
B

)

.

Thus the computation involves2 r triangular systems of dimensionn2 and2 l triangular
systems of dimensionn1 which can be solved in parallel, and a matrix multiplicationof
dimension(l × r)× (r × l).

A R I M A



82 A R I M A – Volume 17 – 2014

5.2. Case of two-block with sparse LU factorization without right
permutation

We now consider the case of a two-block, with the sparse LU factorization without
right permutationP1A1 = L1U1 andP2A2 = L2U2.

If Q1 = In1
, Q2 = In2

, then

V b
1 =

[

0 Ir
]

V1, (22)

=
[

0 Ir
]

U−1
1 L−1

1 P1

(

0
B

)

, (23)

= (U−1
1 )22

[

0 Ir
]

L−1
1 P1

(

0
B

)

, (24)

W t
2 =

[

Il 0
]

W2, (25)

=
[

Il 0
]

U−1
2 L−1

2 P2

(

C
0

)

, (26)

=
[

(U−1
2 )11 (U−1

2 )12
]

L−1
2 P2

(

C
0

)

, (27)

where(U−1
2 )11 ∈ C(n2−r)×(n2−r), (U−1

2 )12 ∈ C(n2−r)×r, and(U−1
2 )22 ∈ Cr×r.

Details on the computation ofW t
2 V b

1 :
From equations(24) and (27), it follows that the computation ofW t

2 involves solving
2 r triangular systems of ordern2 while the computation ofV b

1 involves less operations
than in the previous case: r triangular systems of orderl are solved instead of l triangular
systems of ordern1. These systems can be solved in parallel. The solution of these
system is followed by a(l × r) × (r × l) matrix multiplication. The parallel algorithm
corresponding to this case is sketched in Algorithm 2.

6. Parallel algorithms

We now describe the parallel algorithms for the computationof the determinant of
a q-block tridiagonal matrix A. The algorithm for the case ofq-block with sparse LU
factorization using row and column interchanges is sketched in Algorithm 1 and for the
case of two-block without column interchange in Algorithm 2. We have assumed that
local data needed by each processor have been provided in a preprocessing step. The
factorization ofS̃ is carried out by one processor. This of course penalizes theefficiency
of the algorithm, as the size of̃S increases with the number of blocks, especially when
the spikes have large bandwidth.

7. Numerical tests

Numerical tests were conducted on a desktop, equipped with two processors, each
with 6 cores Intel(R) Xeon(R) ; clock : 3.47GHz; RAM: 48GB. The parallel code was

A R I M A



Determinants of large sparse matrices 83

Algorithm 1 PARALDETER1: Parallel algorithm: case of q-block - Programof proces-
sorPk

Require:
p = number of processors;
q = number of blocks;
in local memoryAk, Bk, Ck if 2 ≤ k < p, A1, B1 if k=1, Ak, Ck if k=p.

Ensure: number of processor = number of block ;
1: Form the sparse LU factorizationPkAkQk = LkUk ;
2: Compute(ρk, Kk) as defined by equations (3) and (4)for the determinant ofAk;
3: if 2 ≤ k ≤ p− 1, then

4: SolvePkLkUkQ
T
k Vk =

(

0
Bk

)

for Vk;

5: SolvePkLkUkQ
T
kWk =

(

Ck

0

)

for Wk;

6: end if
7: if k = 1, then

8: SolveP1L1U1Q
T
1 V1 =

(

0
B1

)

for V1;

9: end if
10: if k = p, then

11: SolvePpLbUpQ
T
p Wp =

(

Cp

0

)

for Wp;

12: end if
13: if 2 ≤ k < p− 1, then

14: sendZ1

k =

(

ρk
Kk

)

, Z2

k =

(

V t
k

V b
k

)

, andZ3

k =

(

W t
k

W b
k

)

to processorPp

15: end if
16: if k = 1, then

17: sendZ1

1 =

(

ρ1
K1

)

, Z2

1 =

(

V t
1

V b
1

)

to processorPp

18: end if
19: if k = p, then
20: receiveZ1

1 , Z2

1 from processorP1

21: do for i=2· · · p-1,
22: receiveZ1

i , Z2

i andZ3

i from processorPi

23: end
24: AssembleS̃ as defined by equation(20);
25: Form the sparse LU factorizationPS̃ S̃QS̃ = LS̃US̃

26: Compute(ρS̃,KS̃) as defined by equations (3) and (4) for the determinant ofS̃

27: ComputeρA =
∏p

i=1
ρiρS̃ for the determinant of A

28: ComputeKA =
∏p

i=1
KiKS̃ for the determinant of A

29: end if
written in MPI using theC programming language and compiled using the parallel op-
tion (mpice of openMPI version 1.6 ) of the compiler. The codedesigned for q-block
sequential method described in section 4.1 was written inC programming language and
compiled using the sequential option (GCC version 4.6.5) ofthe compiler. The parallel
code was executed using q cores, and only one core was runningwhen the sequential code
was used.UMFPACK [12, 15] procedures were used for the sparse LU factorizations. Test
matrices are listed in increasing order of size in Table 1. All the matrices are real; the first
two belong to the Matrix Market [16] set of tests matrices , the third matrix is obtained as
iteration matrix when solving a BDF step in two discretizations of a transport diffusion

A R I M A



84 A R I M A – Volume 17 – 2014

Algorithm 2 PARALDETER2: Parallel algorithm: case of two-block without right per-
mutation - Program of processorPq

Require:
in local memoryA1, B if q=1, A2, C if q=2.

1: Form the sparse LU factorizationPqAq = LqUq

2: Compute(ρq, Kq) as defined by equations (3) and (4)for the determinant ofAq;
3: if q=1, then

4: SolveL1T1 = P1

(

0
B

)

for T1

5: else

6: SolveL2T2 = P2

(

C

0

)

for T2

7: end if
8: if q=1 then
9: LetX1 =

[

0 Ir
]

T1

10: SolveU1Y1 = X1

11: else
12: SolveX2U2 =

[

Il 0
]

for X2

13: ComputeY2 = X2 ∗ T2

14: end if
15: if q=1, then
16: Send(ρq, Kq), Y1 toP2

17: else
18: ReceiveY1, (ρ1, K1) from P1

19: AssembleS̃ = Il − Y2 ∗ Y1

20: Compute(ρS̃ , KS̃) as defined by equations (3) and (4) for the determinant ofS̃;
21: ComputeρA =

∏

2

i=1
ρiρS̃ for the determinant of A

22: ComputeKA =
∏

2

i=1
KiKS̃ for the determinant of A

23: end if

process, the fourth and the fifth matrices were generated randomly usingMATLAB function
sprand and the last matrix derives from the discretization on the Poisson Equation 2D.

7.1. Efficiency of the q-block parallel method

In this section we present the results for the q-block parallel method. Test results
show that the efficiency of the parallel algorithm increasesuntil the cost of computing the
determinant of̃S, which in our case is carried by one processor, becomes dominant w.r.t
the cost for handling one block; several factors may contribute to this situation among
which: the size of̃S, its fill-in and its conditioning. LetK̂ denote the number of blocks
for which the maximum efficiency is achieved andK̃ the number of blocks for which m
the size ofS̃ is equal to average block size i.e.m = n/K̃. For the matrix of Figure 1,
Table 2,K̂ = 6 while K̃ = 5 andK̂ is slightly larger thañK; the same observation for the
matrix of Figure 2, Table 3 wherêK = 10 andK̃ = 8. For the matrices of Figure 3, Table
4 and Figure 6, Table 7,̂K = 7 andK̂ = 9 respectively, but in both cases̃K > 12; the
fill-in and conditioning factors may have significantly influenced the cost for handling̃S;
it is worth mentioning that inUMFPACK, the LU factorization algorithm seeks to minimize
fill-in and to guarantee numerical stability. Finally for matrices of Figure 4, Table 5 and
Figure 5, Table 6, botĥK andK̃ are greater than 12.

A R I M A



Determinants of large sparse matrices 85

7.2. Efficiency of the q-block sequential method

Test results show that the q-block sequential method is faster when n and k are large.
As shown by the speedup curves of Figure 7 and Figure 8, in somecases the sequential
q-block method performs even better than the q-block parallel method, especially when
the number of blocks is small. For the matrices of Figure 1 andFigure 6, the sequential
algorithm performs better whenk < 4 and for the matrix of Figure 1 whenk ≥ 10.

7.3. Consequences from the efficiency of the proposed algori thms

From the test results obtained for the set of matrices, the following consequences could
be drawn:

– the q-block sequential method allows one to consider on oneprocessor large matri-
ces that cannot be handled in one unit.

– The q-block parallel method is efficient on̂k processors when̂k is such that the
average block sizên = n

k̂
is not small when compared to m, the size ofR̃.

Table 1. Characteristics of the test matrices (Name: Matrix Market name (if from Matrix Mar-
ket);n : order of the matrix ;m: order ofS̃ for 12 blocks; NZ/line: number of non zeros elements
par line.)
Name n NZ/line Type m
ER40R5000 17,281 32.03 Real non-symmetric 13,002
S3DKQ4M2 90,449 48.95 Real symmetric 16,980
ITERATION MATRIX 300,000 7.4 Real non-symmetric 12,280
RANDOM MATRIX 500,000 30.99 Real non-symmetric 330
RANDOM MATRIX 1,000,000 40.99 Real non-symmetric 440
POISSONMATRIX 1,000,000 4.99 Real symmetric 15,694

Table 2. Run time table for Matrix Market matrix e40r5000 where n= 17 281 NBlock: num-
ber of blocks; PTime: parallel time; STime: sequential time
NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 11.08 15.76 18.14 19.97 21.16 22.56 23.77 24.12 25.58 24.76 27.00
PTime 25.03 19.69 14.45 13.54 12.92 13.96 16.40 19.54 26.80 31.67 38.97

A R I M A



86 A R I M A – Volume 17 – 2014

Table 3. Run time table for Matrix Market matrix s3dkq4m2 where n= 90 449 NBlock:
number of blocks; PTime: parallel time; STime: sequential time
NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 30.68 38.56 38.50 32.68 34.40 31.51 32.56 33.93 31.45 32.44 33.27
PTime 49.76 32.34 33.01 30.99 25.60 24.05 22.65 21.02 20.51 21.98 21.54

Table 4. Run time table for the Iteration matrix A300000 where n= 300 000. NBlock: num-
ber of blocks; PTime: parallel time; STime: sequential time
NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 116.56 150.43 130.95 126.01 125.64 122.06 117.83 116.12 113.31 109.85 106.35
PTime 112.62 123.36 91.27 82.92 75.03 70.47 70.85 77.26 76.25 75.69 82.62

Table 5. Run time table for random matrix LB500000 where n = 500 000. NBlock: number
of blocks; PTime: parallel time; STime: sequential time
NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 72.79 80.44 71.89 56.60 38.12 12.04 10.69 10.85 10.85 10.99 11.03
PTime 86.70 85.66 51.55 30.21 15.72 3.82 3.06 2.81 2.73 2.72 2.59

Table 6. Run time table the random matrix LBmillion where n = 1 000 000. NBlock: number
of blocks; PTime: parallel time; STime: sequential time
NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 240.22 257.82 222.33 165.60 98.19 34.12 34.52 35.04 35.39 35.76 36.07
PTime 294.35 271.37 147.91 70.38 25.23 10.73 9.73 9.52 8.89 8.85 8.40

Table 7. Run time table for the 3D Poisson Matrix were n = 1 000 000. NBlock: number of
blocks; PTime: parallel time; STime: sequential time
NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 99.86 93.36 103.26 98.95 98.93 98.07 97.02 94.35 94.94 92.33 91.92
PTime 1323.74 270.36 122.30 54.73 54.95 51.81 50.15 46.38 49.42 48.69 53.30

A R I M A



Determinants of large sparse matrices 87

2 3 4 5 6 7 8 9 10 11 12
10

15

20

25

30

35

40

Number of blocks = Number of cores

E
xe

cu
tio

n 
tim

e 
(in

 s
ec

on
ds

)

er40r5000 matrix (N=17281; NZ/N=32.03) 

 sequential kxk method
 Parallel method

Figure 1. Run time curve for the Matrix Market matrix e40r5000 where n= 17 281. Parallel
case: Algorithm 1 used. Sequential case: q-block sequential method used with one core

2 4 6 8 10 12
20

25

30

35

40

45

50

Number of blocks = Number of cores

E
xe

cu
tio

n 
tim

e 
(in

 s
ec

on
ds

)

s3dkq4m2 matrix (N=90449; NZ/N= 48.95)

 sequential kxk method
 Parallel method

Figure 2. Run time curve for the Matrix Market matrix s3dkq4m2 where n= 90 449. Parallel
case: Algorithm 1 used. Sequential case: q-block sequential method used with one core

A R I M A



88 A R I M A – Volume 17 – 2014

2 4 6 8 10 12
70

80

90

100

110

120

130

140

150

160

Number of blocks = Number of cores

E
xe

cu
tio

n 
tim

e 
(in

 s
ec

on
ds

)

A300000 matrix (N=300000; NZ/N= 7.4)

 sequential kxk method
 Parallel method

Figure 3. Run time curve for the Iteration matrix A300000 where n= 300 000. Parallel
case: Algorithm 1 used. Sequential case: q-block sequential method used with one core

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

Number of blocks = Number of cores

E
xe

cu
tio

n 
tim

e 
(in

 s
ec

on
ds

)

LB500000 random matrix (N=500000; NZ/N= 30.99)

 sequential kxk method
 Parallel method

Figure 4. Run time curve for the random matrix LB500000 where n = 500 000. Parallel
case: Algorithm 1 used. Sequential case: q-block sequential method used with one core

A R I M A



Determinants of large sparse matrices 89

2 4 6 8 10 12
0

50

100

150

200

250

300

Number of blocks = Number of cores

E
xe

cu
tio

n 
tim

e 
(in

 s
ec

on
ds

)

LBmillion random matrix (N=1000000; NZ/N= 40.99)

 sequential kxk method
 Parallel method

Figure 5. Run time curve for the random matrix LBmillion where n = 1 000 000. Parallel
case: Algorithm 1 used. Sequential case: q-block sequential method used with one core.

2 4 6 8 10 12
0

200

400

600

800

1000

1200

1400

Number of blocks = Number of cores

E
xe

cu
tio

n 
tim

e 
(in

 s
ec

on
ds

)

poisson equation(N=1000000; NZ/N= 4.99)

 sequential kxk method
 Parallel method

Figure 6. Run time curve for the 3D Poisson Matrix where n = 1 000 000. Parallel case:
Algorithm 1 used. Sequential case: q-block sequential method used with one core.

A R I M A



90 A R I M A – Volume 17 – 2014

2 4 6 8 10 12
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of blocks = Number of cores

S
pe

ed
up

 

 speedup e40r5000
 Speedup s3dkq4m2
 Speedup A300000

Figure 7. Speedup curves for the Matrix Market matrix e40r5000 where n= 17 281, the
Matrix Market matrix s3dkq4m2 where n= 90 449 and the Iteration matrix A300000 where
n= 300 000.

2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of blocks = Number of cores

S
pe

ed
up

 
 speedup LB500000
 Speedup LBmillion
 Speedup poisson

Figure 8. Speedup curves for the random matrix LB500000 where n = 500 000, the ran-
dom matrix LBmillion where n = 1 000 000 and the 3D Poisson Matrix where n = 1 000
000.

A R I M A



Determinants of large sparse matrices 91

8. Conclusions

We have described some efficient methods for computing the determinant of large
block structured matrices. Test results indicate that the q-block sequential method is effi-
cient when using one processor on large matrices. The q-block parallel method is efficient
when k the number of processors is such that the average blocksize n

k
is not small com-

pared to the size of̃R. Tests conducted on a set of matrices confirm the efficiency of the
proposed algorithms; the efficiency of the parallel algorithm, however is penalized when
the spikes have large widths and when be number of blocks increases; this is due to the
fact that in our current algorithm, the computation of the determinant ofS̃ is carried by
one processor; i.e. sequentially and Amdahl’s law applies.In future work, we intend to
implement a parallel version of the LU factorization ofS̃.

Acknowledgement

The authors would like to thank Bernard Philippe for all his suggestions and assis-
tance. This work was supported in part by the projet LIRIMA through the projet team
MOMAPLI, and was carried out during the authors visits within the research team SAGE
at the INRIA Rennes-Bretagne Atlantique center.

9. References

[1] G. A. Atenekeng-Kahou, L. Grigori, and M. Sosonkina. A partitioning algorithm for block-
diagonal matrices with overlap.Parallel Computing, 34:332 – 344, 2008.

[2], O. Bertrand and B. Philippe. Counting the eigenvalues surrounded by a closed curve,Sib. Zh.
Ind. Mat.,4:73 – 94, 2001.

[3] E. Kamgnia and B. Philippe. Counting eigenvalues in domains of the complex field.Electronic
Transactions on Numerical Analysis.,40:1 – 16, 2013.

[4] D. Bindel Bounds and error estimates for nonlinear eigenvalue problems,Berkeley Applied
Mathematical Seminar, October 2008

[5] G. Golub and C. V. LoanMatrix Computation, p51; The Johns Hopkins University Press,
Second Edition, 1989.

[6] G. Karypis and V. Kumar. METIS - unstructured graph partitioning and sparse matrix ordering
system, version 2.0. University of Minnesota, CS Dept, Technical report, 1995.

[7] E. Polizzi and A. Sameh A parallel hybrid banded systems solver: the SPIKE algorithm
Parallel Computing, 32:177–194, 2006.

[8] Maeda, Yasuyuki, Futamura, Yasunori, Sakurai and Tetsuya Stochastic estimation method of
eigenvalue density for nonlinear eigenvalue problem on thecomplex planeJSIAM Letters, 3:61
– 64, 2011

[9] C. Meyer Matrix Analysis and Applied Linear AlgebraSIAM, pp 483, 2000

[10] SuperLU; X. Sherry, L. J. Demmel, J. Gilbert, L. Grigori, M. Shao, and I. Yamazaki. SuperLU
is a general purpose bibrary for the direct solution of large, sparse, nonsymmetric systems of

A R I M A



92 A R I M A – Volume 17 – 2014

linear equations on high performance machineshttp://crd-legacy.lbl.gov/ xiaoye/SuperLU

[11] MUMPS; Multifrontal Massively Parallel sparse directSolver http://graal.ens-
lyon.fr/MUMPS/

[12] UMFPACK; Unsymmetric Multifrontal Sparse LU Factorization Package;
http://www.cise.ufl.edu/research/sparse/umfpack/

[13] T. A. Davis Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal methodACM
Transactions on Mathematical Software, 30:2, 196 – 199, 2004.

[14] T. A. Davis and I. S. Duff A combined unifrontal/multifrontal method for unsymmetric sparse
matrices,ACM Transactions on Mathematical Software, 25.1, 1 – 19, 1999.

[15] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method for sparse LU
factorizationSIAM Journal on Matrix Analysis and Applications, 18.1, 140 – 158, 1997.

[16], Matrix Market, Service of the Mathematical and Computational Sciences Division
/ Information Technology Laboratory / National Institute of Standards and Technology,
http://math.nist.gov/MatrixMarket/.

A R I M A




