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ABSTRACT. The computation of determinants intervenes in many scientific applications, as for ex-
ample in the localization of eigenvalues of a given matrix A in a domain of the complex plane.
When a procedure based on the application of the residual theorem is used, the integration pro-
cess leads to the evaluation of the principal argument of the complex logarithm of the function g(z) =
det((z + h)I — A)/det(zI — A), and a large number of determinants is computed to insure that the
same branch of the complex logarithm is followed during the integration. In this paper, we present
some efficient methods for computing the determinant of a large sparse and block structured ma-
trix. Tests conducted using randomly generated matrices show the efficiency and robustness of our
methods.

RESUME. Le calcul de déterminants intervient dans certaines applications scientifiques, comme par
exemple dans le comptage du nombre de valeurs propres d’'une matrice situées dans un domaine
borné du plan complexe. Lorsqu’on utilise une approche fondée sur I'application du théoréme des
résidus, I'intégration nous ramene a I'évaluation de I'argument principal du logarithme complexe de la
fonction g(z) = det((z + h)I — A)/det(zI — A), en un grand nombre de points, pour ne pas sauter
d’une branche a I'autre du logarithme complexe. Nous proposons dans cet article quelques méthodes
efficaces pour le calcul du déterminant d’'une matrice grande et creuse, et qui peut étre transformée
sous forme de blocs structurés. Les résultats numériques, issus de tests sur des matrices générées
de facon aléatoire, confirment I'efficacité et la robustesse des méthodes proposées.
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1. Introduction

The computation of determinants is needed in scientificiegjgbns. One such ap-
plication is the localisation of eigenvalues of a given nxatt € R™*" in a domain of
the complex plaine. When one proceeds as in [2, 3] by appliiegesidue theorem,
the numberNt of complex eigenvalues which are surrounded by a given c(iryes
computed by evaluating the integral

/—1ogdet (21 — A)dz

~ 2inm
The evaluation of this integral is also applied in works d@&glith non-linear eigenvalue
problems [4, 8]. For instance, to compute the numBgrof complex eigenvalues which
are surrounded by a given cur{#), the procedur&IGENCNT [3] implies evaluating the
characteristic polynomial at many points(@f) since the selected points must support the
guadrature of

oL [,
2im Jr f(2)

Let z andz + h be two points of I'"). Since

1)

(z+h)I—-A = (2I—-A)+hl
= (2I —A)I + hR(z)),

whereR(z) = (21 — A)~}, it follows that

f(z+h) = f(z) det(I + hR(2)).

Let®. (h) = det(I + hR(2)), g(z) = L&, then

z+h ' Py

fz)

= 1Og(q)z (h))
— log |0, ()| + 1 arg(®. (k).

Given that this is a multivalued function, the goal is therefto insure that a branch
corresponding to a given determination of the complex litigiar can be followed while
avoiding any jump to another determination. In [3], a stepsiontrol is introduced for in-
suring this property. For large matrices, the number of s&mey determinant evaluations
may become very high especially when many eigenvalues &iethe boundaryT’).

In this paper, we present some efficient techniques for cdimgthe determinant
of large matrices that can be put into block structured fo8uch matrices arise in the
discretization of partial differential equations esp#gim combination with domain de-
composition and more generally from many sparse matrides efordering, e.g. with
the help of some graph partitioning tools see e.g. [1, 6].
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Computing a determinantis efficiently done through an Ltkdazation of the matrix
with the standard permutation strategies. When the matsparse, the LU-factorization
is either with row permutation PA=LU [11, 12] or with and atidinal column permuta-
tion PAQ=LU [10], whereP and (@ are permutation matrices, and whereandU are
respectively a lower-triangular matrix with unit main doaal and an upper-triangular
matrix; thendet(A) = det(P)det(U) or det(A) = det(P)det(U)det(Q), where
det(P) = =+1, det(Q) = +1 anddet(U) is the product of all the diagonal entries of
U.

2. Avoiding overflows and underflows when computing a
determinant

For any non singular matrid € C™*", let us consider its LU factorizatioRAQ =
LU whereP and( are permutation matrices of signaturgs andog. Thendet(A) =
opog (1, ui;) whereu;; € C are the diagonal entries &f. When the matrixA is not
correctly scaled, the produdf]’"_; u;;) may generate an overflow or underflow. To avoid
this, we encode the determinant using the triptetk’, n) so that

det(A) = pK" (2)
where: .
pzameij,@€CWMWM:U, (3)
i=1 "

n

I luiil (K > 0). (4)
=1

The quantityK is computed through its logarithm:
1 n
log(K) = 3 log(us).

In this way, the value of the determinant is safely computeshevhen the matrix is not
properly scaled; i.e. diagonal elements of U vary sharpiypagnitude. Before raising to
powern, and to protect from under- or overflow, the positive consférmust be in the
interval[ﬁ, /My wherelMy; is the largest representable number in the underlying

floating point system; otherwise the value of the deterntirmnot computed because it
will lead to an overflow or underflow.

3. Preliminary result

If A can be put in the formd = I + UV, whereU € C™*", V € C"*™, then the
following proposition shows how to efficiently compute theterminant ofA.

Proposition 3.1 If U € C™*™,V € C"*™ then,det(I,,, + UV) = det(I, + VU).

Note: this proposition appears as exercice 6.2.7 in [9].
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Proof. Any eigenvalue of/V is either zero or is an eigenvalue GU. Indeed, let\
be a nonzero eigenvalue bfl andw # 0, an associated eigenvectdt/V)w = Aw.
Thereforg VU)(Vw) = A(Vw). Let us prove by contradiction theitw # 0: if Vw = 0,
and sincdJ (Vw) = Aw, therefore\w = 0, and finally,A = 0.

SinceVw # 0, it follows that(\, Vw) is an eigenpair 0¥/ U; therefore the nonzero
eigenvalues ot/ V' are nonzero eigenvalues BfU. SinceU andV can be interchanged
without affecting the result, the two matrices have the sam@zero eigenvalues. An
argument of continuity proves that their algebraic muitipes are the same. For any
square matrix\/, let us denote its spectrum by(M). It then follows thatA(UV) U
{0} = A(VU) U {0}, which impliesA(Z,,, + UV) U {1} = A(l, + VU) U {1} and
thereforedet(7,,, + UV') = det(I,, + VU). o

This proposition is especially useful when, either < n, or n < m, since it may
drastically reduce the order of the matrix for which deteramt is sought. We make use
of this proposition in the following sections.

4. Computing the determinant of a g-block tridiagonal matri X

We now assume that the matrikis g-block tridiagonal:

Al Al,g 0 . 0
Ayy Ay :
N (5)
: L Ay
0 o 0 Agga Ay
where fori =1,---, ¢ — 1 the blocksA;; ; andA; ;11 are corner matrices defined by:

0 O
A’i,i+1 - ( Bq/ 0 ) )

(0 Gy,
A1+1,z—<0 0 )a

with A; € Cv>xni B, € Chixli, 0y, € Ce+1 X1, We assume throughout that
ci <ng, by <mgandl—y +rip < ny.

4.1. Sequential method
We begin with a block sequential algorithm with partial gimg. From the LU fac-

torization P A; = L,U; and by partitoningd = PA whereP = ( PS ? ) and

A= < Ar Av ) , then A admits the following LU decomposition:

A1 Az
121 - I 0 PlAl P1A12
o Aoy (PlAl)_l I 0 S1
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with the Schur complemerst; = Aoy — Ao Uy 'Ly PiAys. Thus
det(A) = det(Py) det(A;) det(Sh). (6)
Consider the block partition

B Ufl 11 U71 12

g [ @ @)

where(U; 1) € Crexr2,
Let

X — 02(U1—1)22 c (CC2><7~2

and
_ -1 0| _| G
G_LlPl{Bl}—{Gz], (7)

with G; € C" 72Xl and Gy € C2%h: thus X Gy € Ce2xh
Then the Schur complemefit can be easily built by

S = AQZ—:é][o X]LflPl{g}[I 01,
= AQQ_:*(’)][O X}{g;}[l 0],
- Azg—:XOG? 8}

Thus, only the leading, x [y block of A, is affected whem,s is transformed int;.
The computation ofX G5 requires solving; triangular systems of order; for G, co
triangular systems of ordesg, for X and a(ce X r2) x (r2 x 11) matrix multiplication for
XGo.

Let A, be the transformed block; this approach is then recursigplylied to the
trailing matrix

[ /IQ A273 0 c. 0
Aso  As :
Agg = 0 0 , (8)
: .. . . Aq—l,q
L0 0 Ay A,

after A»» has been corrected. Repeating this pro¢gss 1) times we deduce
q
det(A) = [ ] det(P) det(U5). (9)
=1
Definition 4.1 The method based on the formula (9) is called g-block seguien¢thod.
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It is worth pointing out that when the LU factorization is gad out with left and right
permutation, i.e, whe®; A,Q; = LU, the same process applies. Indeedilet U; 'G,
where( is given by equation (7) and 1&t = Q. F' = { }};1 } ,with Y; € C™~"2*h and

2
Y, € Ce2%l1; thusCyYs, € Ce2*h and
B CyYs 0
S [0 0],

Thus as is the previous case, only the leading [/; block of A, is affected whems; is
transformed intd5y ; but computing”s Y5 is more expensive than computing=s in the
previous case as triangular systems of ordes to be solved are replaced bytriangular
systems of ordei; .

4.2. Parallel method

We now describe a parallel method for computing the deteantjrthe correspond-
ing parallel algorithm is sketched in Algorithm 1. Considerthe SPIKE transforma-
tion [7], let D = diag(A:, As,---,A,) be assumed to be nonsingular, and fo¢=
1,---,q, let P,A;Q; = L;U; a sparse LU factorization of the diagonal blocks. Let

3

P:dia'g(PlaP27"' 7Pq)l Q :diag(QlaQQa"' 7Qq and

S pta—1, 4T,

where
In = diag(Isl ) IT‘27 Il1 ) 1527 Irg,a Il2 Ty Irq7 Iqul ) Isq)7
0, 0 V/ 0 0
0o 0, VZ 0 0
o Wi o, 0 0 WV
0o Wy 0 0, 0 W
o W& o o0 o0, WV

qg—1

i

O, 0 Vb,
0 Wt o 0

and where the block vectors are defined by:

S1

Vl c (Cn1><l1 = ‘

(10)

T2,
_ (A1)1< f(?)l ) _QlUl_lLl_lP1< f(?)l ) (11)
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andfori =2,--- ,q—1,

‘/Z‘t Z’Lfl
V; c (C"ini = ‘/il i (12)
VP Tit1,
_ 0 1, 0
= (Az) ! ( B; ) = QiUi lLi IPz' ( B; >7 (13)
wi li_1
W; e CviXri = | W S (14)
Wib Terl
_ Ci — — Ci
= (Az) ! ( 0 ) = QiUi 1Li IPi ( 0 ) ) (15)
and
wt lg—1
NgXTq — q q
W,eC = | L (16)

— (G )=o) an

These blocks are called spike vectors in [7]. With this piarti it is clear that:
q
det(A) = (H sign(P;)sign(Q;) det(Ui)> det(9).
i=1

Let J € R™*" be obtained fron,, after deleting its block rows;,, I,, ---, I,,, and
U € C*™ from T after deleting its block columns,, Is,, - - -, I, wherem = [ when
g=2andm =n— (>}, si) = >.¢_, (li—1 + ;) when g>2. Then it can be shown that
T =UJ, so that

S=1,+UJ. (18)

The matrix J is a rectriction/extension matrix; when it pogtltiplies a matrix, it extends
it and when it pre-multiplies a matrix, it restricts it by eeting some of its block rows.
For example ifV; andW; are defined by equatior{$2) and(14), thenJU selects the
block entriesV, Vi, W! andW? from the matrixU.

Let us denote: K
S=1,+JU. (29)

It follows from Proposition (3.1) and from equations (18}g@9) that the determinant of
S and the inverse of can be computed at reduced cost frSras shown in the following
proposition:

Proposition 4.2 IfS=1+UJ, U € C"*™, J € C™*"™, withm < n, then
det(S) = det(9)
and

S t=1,-US '
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Proof. The second identity is a direct application of the Shermamisbn-Woodbury
formula [5]. The cost for computing the determinantis therefore reduced since the
dimension ofS is smaller than that of S

After having applied the block odd-even permutatibon both sides of, we get a nice
pattern forS":

IT2 Vlb
Wy I, vy
= A W‘;—l ITq ‘/qb—l
S=1"S= | 77 L. W} € Cm™. (20)
Vica
w} I, .,

Thus
det(S) = det(S) = det(S).

5. Special Case with only two blocks

We consider the special case of a two-block tridiagonal imagcause the formulas
in that case simplify. Let the matridA € C™**" be defined by:

Al A12
A = 21
( o ) , (21)
whered; € C"*™ Ay € C"*"2 (n = ny + no), and whered;, and Ay, are corner
matrices defined by:

0 0 0 C
A12=(B O>’andA21:(O 0>7

with B € Ct*!, andC € C*", b < nq1, ¢ < ng, | < ny andr < n,. Two cases will be
considered: the case where the LU factorization is carnigdwith left and right permu-
tations, and the case where the LU factorization is carrigdvithout right permutation.

5.1. Case of two-block with sparse LU factorization with lef t and
right permutation

For the case of two-block, with the sparse LU factorizatising left and right per-
mutation,P; A1Q, = L1U; andP, AsQ2 = LoUs we have:

Iniw 0 V] 0
o I V¢ o0
o Wi I 0
0 W) 0 I

= I,+UJandS = I, + JU,
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with )
n Viln—r 1, 0
ViecC 1”:‘ V;b 1T = QU 'L P ( B )
%% l 1 C
noXr __ 2
WQE(C = WQ/ ny — 1 Q2U2 L2 P2(O)
wherem =1,
0o v
_ 0 Vlb nxm _ O IT O O mxn
U= W0 eC ,J = 0 0 I 0 eC
Wi 0
Therefore

g L. v\ _ (I, 0 I V¢
\wi ) \ws )\ o Zz )
inwhichZ =1 — W} v e C™*L.
Thus we obtain the following proposition which follows sgfat from Proposition 4.2

when g=2:

Proposition 5.1 If A € C™*™, can be written in the form
Al A12
A =
( A1 Az > ’
whereA; € C™M*™ | Ay € C"2*"2 (n = nj + ng), and whered,, and As; are corner
matrices defined by:

0 0 0o C
A12=<B 0)=andA21:<0 O>’

with B € C**!, andC € C*", b < ny, ¢ < ns, I < ny andr < ns.

Let PLA1Q1 = 11Uy, PoA2Q2 = L1Us be the sparse LU factorization of; and
Ay, Let: P = diag(Py, P2), Q = diag(Q1,Q2), L = diag(Ly, Lo), U = diag(Uy, L),
then

det(A) = det(P;) det(P,) det(Q1) det(Q2) det(Uy) det(Us) det (I, + WiVY)
where

Vi=[0 I ]QU'LT'Py ( Jg )
and
Wi=[1L 0]QUy'Ly'P, ( g ) :

Details on the computation of W V:
SinceVY =[ 0 I |ViandW{ = [ I, 0 ]| Wa,itfollows thatiW} v} can be written
as:

Wivt=[1 0 }QQU;L;PQ( g ) [0 I |QU 'Ly Py ( Jg )

Thus the computation involvesr triangular systems of dimensiory and2 [ triangular
systems of dimension; which can be solved in parallel, and a matrix multiplicatain
dimension(l x r) x (r x 1).
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5.2. Case of two-block with sparse LU factorization without right
permutation

We now consider the case of a two-block, with the sparse Litbfaation without
right permutationP, A; = L1U; and Py Ay = LyUs.

If Ql = In1 s Qg = Inz, then

VPo= [0 L ]V, (22)
= [0 Ir]U11L11P1<g>, 23)

= Wh2[0 I | LR ( s ) (24)

Wi o= [1 0w, (25)
= [ 1 O]U{le‘ng(g), (26)

= [@H" uyhHe ]L21P2< g > 27)

Where(UQ_I)ll c (C(ng—r)x(ng—r), (U2—1)12 c (C(ng—r)xr, and(Ugl)QQ e Crxr,

Details on the computation of W V¥

From equationg24) and (27), it follows that the computation o’y involves solving

2 r triangular systems of order, while the computation of7 involves less operations
than in the previous case: r triangular systems of ot@ge solved instead of | triangular
systems of ordern;. These systems can be solved in parallel. The solution aethe
system is followed by & x r) x (r x I) matrix multiplication. The parallel algorithm
corresponding to this case is sketched in Algorithm 2.

6. Parallel algorithms

We now describe the parallel algorithms for the computatibthe determinant of
a g-block tridiagonal matrix A. The algorithm for the caseggblock with sparse LU
factorization using row and column interchanges is sketéheAlgorithm 1 and for the
case of two-block without column interchange in Algorithm /e have assumed that
local data needed by each processor have been provided gpeopessing step. The
factorization ofS is carried out by one processor. This of course penalizesfftogency
of the algorithm, as the size &f increases with the number of blocks, especially when
the spikes have large bandwidth.

7. Numerical tests

Numerical tests were conducted on a desktop, equipped wihptocessors, each
with 6 cores Intel(R) Xeon(R) ; clock : 3.47GHz; RAM: 48GB. & parallel code was
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Algorithm 1 PARALDETER1: Parallel algorithm: case of g-block - Prograhproces-
sor Py

Require:

p = number of processors
q = number of blocks
in local memoryAy, By, Cy if 2 < k < p, Ay, By ifk=1, A, Cy if k=p.

Ensure: number of processor = number of block ;

1:
2:
3:

4.

10:
11:

12:
13:

14:

15:
16:

17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

© © N2 g

Form the sparse LU factorizatid®. Ay Qr = LxUy ;
Compute(py, K}) as defined by equations (3) and (4)for the determinant;of
if2<k<p-—1,then

Solve Py Ly Up QL V), = ( g )for Vie;
k
SO'VEPkLkUszWk = ( C(;k ) for Wi
end if
if £k =1, then
Solve P LiU1 QT Vi = ( 39 ) for Vi
1
end if
if k = p,then
Solve P, LyU, QL W, = ( %P )for Wp;
end if
if 2<k<p-1,then

, YA . Wi
sendZ} = ( lp{’; ) Z% = ( VZ’ ) andZ; = ( WZ’ ) to processoi?,
end if

if k=1, then .

sendZi = ( [p;l ),Zf = ( “;ib ) to processoP,
end if
if kK = p,then

receiveZ;, Z? from processoP;

dofori=2--- p-1,

receiveZ;, Z? and Z? from processoi;
end

AssembleS as defined by equatiaf20);
Form the sparse LU factorizatidd; SQ5 = L5Ug
Compute(pg, K 5) as defined by equations (3) and (4) for the determinasst of
Computepa = []?_, pipg for the determinant of A
ComputeK s = [[}_, KK for the determinant of A
end if

written in MPT using theC programming language and compiled using the parallel op-

tion (mpice of openMPI version 1.6 ) of the compiler. The caldsigned for g-block

sequential method described in section 4.1 was writtehpnogramming language and
compiled using the sequential option (GCC version 4.6.3hefcompiler. The parallel

code was executed using g cores, and only one core was runhemgthe sequential code
was usedUMFPACK [12, 15] procedures were used for the sparse LU factoriaatidest
matrices are listed in increasing order of size in Table 1t matrices are real; the first
two belong to the Matrix Market [16] set of tests matricesg, tiird matrix is obtained as
iteration matrix when solving a BDF step in two discretinas of a transport diffusion
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Algorithm 2 PARALDETER2: Parallel algorithm: case of two-block withaight per-
mutation - Program of processy,
Require:
in local memoryA,, B if g=1, A,, C'if q=2.
1: Form the sparse LU factorizatiai, A, = L,U,

2: Compute(pq, Kq) as defined by equations (3) and (4)for the determinant of
3: if g=1,then

i Solve T = P, ( g ) for T

5: else

6: SOIVeL2T2 =P ( g ) for Ty

7: end if

8: if g=1then

9: Let X; = [ 0 I ]T1

10: SolvelU Y1 = X3

11: else

12:  SolveX,U; = [ I, 0 |for X,

13: ComputeYs = Xo x Th

14: end if

15: if g=1,then

16:  Send(pq, Kq), Y110 P,

17: else

18: ReceiveY, (p1, K1) from P,

19:  AssembleS =1, — Yz % V3

20:  Compute(pg, K 5) as defined by equations (3) and (4) for the determinast; of
21:  Computeps = Hf 1 pipg for the determinant of A
22:  ComputeK 4 = [[._, K; K5 for the determinant of A
23: end if

process, the fourth and the fifth matrices were generateraly usingMATLAB function
sprand and the last matrix derives from the discretizatiothe Poisson Equation 2D.

7.1. Efficiency of the g-block parallel method

In this section we present the results for the g-block palrafiethod. Test results
show that the efficiency of the parallel algorithm increasas the cost of computing the
determinant ofS, which in our case is carried by one processor, becomes @orwr.t
the cost for handling one block; several factors may coutelio this situation among
which: the size of5, its fill-in and its conditioning. Lefx denote the number of blocks
for which the maximum efficiency is achieved afidthe number of blocks for which m
the size ofS is equal to average block size i.e1 = n/f{. For the matrix of Figure 1,
Table 2,k = 6 while K = 5 andK is slightly larger thark’; the same observation for the
matrix of Figure 2, Table 3wher& = 10 andK = 8. For the matrices of Figure 3, Table
4 and Figure 6, Table Z = 7 andK = 9 respectively, but in both caséé > 12; the
fill-in and conditioning factors may have significantly irdluced the cost for handling;
it is worth mentioning that iIWMFPACK, the LU factorization algorithm seeks to minimize
fill-in and to guarantee numerical stability. Finally for triees of Figure 4, Table 5 and
Figure 5, Table 6, bottk andK are greater than 12.
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7.2. Efficiency of the g-block sequential method

Test results show that the g-block sequential method isrfaghen n and k are large.
As shown by the speedup curves of Figure 7 and Figure 8, in saises the sequential
g-block method performs even better than the g-block palralethod, especially when
the number of blocks is small. For the matrices of Figure 1Rigdre 6, the sequential
algorithm performs better whén< 4 and for the matrix of Figure 1 when> 10.

7.3. Consequences from the efficiency of the proposed algori thms

From the test results obtained for the set of matrices, titeifing consequences could
be drawn:

— the g-block sequential method allows one to consider orpooeessor large matri-
ces that cannot be handled in one unit.

— The g-block parallel method is efficient dnprocessors wheﬁjs such that the
average block sizé = % is not small when compared to m, the sizelof

Table 1. Characteristics of the test matrices (Name: Matrix Market name (if from Matrix Mar-
ket); n : order of the matrix m: order ofS for 12 blocks; NZ/line: number of non zeros elements
par line.)

Name n | NZ/line | Type m
ER40R5000 17,281| 32.03 Real non-symmetri¢ 13,002
S3DKQ4M2 90,449 | 48.95 Real symmetric 16,980
I TERATION MATRIX 300,000/ 7.4 Real non-symmetri¢ 12,280

RANDOM MATRIX 500,000 30.99 Real non-symmetriq 330
RANDOM MATRIX 1,000,000| 40.99 Real non-symmetri¢ 440
POISSONMATRIX 1,000,000| 4.99 Real symmetric 15,694

Table 2. Run time table for Matrix Market matrix e40r5000 where n= 17 281 NBlock: num-
ber of blocks; PTime: parallel time; STime: sequential time

NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 11.08 | 15.76 | 18.14 | 19.97 | 21.16 | 22.56 | 23.77 | 24.12 | 25.58 | 24.76 | 27.00
PTime 25.03 | 19.69 | 14.45| 13.54| 12.92 | 13.96 | 16.40 | 19.54 | 26.80 | 31.67 | 38.97
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Table 3. Run time table for Matrix Market matrix s3dkg4m2 where n= 90 449 NBlock:
number of blocks; PTime: parallel time; STime: sequential time

NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 30.68 | 38.56 | 38.50 | 32.68 | 34.40 | 31.51| 32.56 | 33.93 | 31.45| 32.44 | 33.27
PTime 49.76 | 32.34 | 33.01| 30.99| 25.60 | 24.05| 22.65| 21.02 | 20.51 | 21.98 | 21.54

Table 4. Run time table for the Iteration matrix A300000 where n= 300 000. NBlock: num-
ber of blocks; PTime: parallel time; STime: sequential time

NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 116.56 | 150.43 | 130.95| 126.01| 125.64 | 122.06 | 117.83| 116.12| 113.31| 109.85| 106.35
PTime 112.62| 123.36| 91.27 | 82.92 | 75.03 | 70.47 | 70.85 | 77.26 | 76.25 | 75.69 | 82.62

Table 5. Run time table for random matrix LB500000 where n = 500 000. NBlock: number
of blocks; PTime: parallel time; STime: sequential time

NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 72.79 | 80.44 | 71.89 | 56.60 | 38.12| 12.04| 10.69 | 10.85| 10.85| 10.99| 11.03
PTime 86.70| 85.66 | 51.55| 30.21| 15.72| 3.82 | 3.06 | 281 | 2.73 | 2.72 | 2.59

Table 6. Run time table the random matrix LBmillion where n =1 000 000. NBlock: number
of blocks; PTime: parallel time; STime: sequential time

NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 240.22 | 257.82 | 222.33| 165.60| 98.19 | 34.12 | 34.52 | 35.04 | 35.39 | 35.76 | 36.07
PTime 294.35| 271.37| 14791 | 70.38 | 25.23| 10.73| 9.73 | 9.52 | 8.89 | 8.85 | 8.40

Table 7. Run time table for the 3D Poisson Matrix were n = 1 000 000. NBlock: number of
blocks; PTime: parallel time; STime: sequential time

NBblock 2 3 4 5 6 7 8 9 10 11 12
STime 99.86 93.36 | 103.26| 98.95| 98.93 | 98.07 | 97.02 | 94.35 | 94.94 | 92.33 | 91.92
PTime 1323.74| 270.36| 122.30| 54.73 | 54.95| 51.81 | 50.15 | 46.38 | 49.42 | 48.69 | 53.30
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Figure 1. Run time curve for the Matrix Market matrix e40r5000 where n= 17 281. Parallel
case: Algorithm 1 used. Sequential case: g-block sequential method used with one core
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Figure 2. Run time curve for the Matrix Market matrix s3dkq4m2 where n= 90 449. Parallel
case: Algorithm 1 used. Sequential case: g-block sequential method used with one core
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A300000 matrix (N=300000; NZ/N=7.4)
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Figure 3. Run time curve for the Iteration matrix A300000 where n= 300 000. Parallel
case: Algorithm 1 used. Sequential case: g-block sequential method used with one core
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Figure 4. Run time curve for the random matrix LB500000 where n = 500 000. Parallel
case: Algorithm 1 used. Sequential case: g-block sequential method used with one core
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LBmillion random matrix (N=1000000; NZ/N= 40.99)
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Figure 5. Run time curve for the random matrix LBmillion where n = 1 000 000. Parallel
case: Algorithm 1 used. Sequential case: g-block sequential method used with one core.

poisson equation(N=1000000; NZ/N= 4.99)
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Figure 6. Run time curve for the 3D Poisson Matrix where n = 1 000 000. Parallel case:
Algorithm 1 used. Sequential case: g-block sequential method used with one core.
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Figure 7. Speedup curves for the Matrix Market matrix e40r5000 where n= 17 281, the
Matrix Market matrix s3dkg4m2 where n= 90 449 and the Iteration matrix A300000 where
n= 300 000.
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Figure 8. Speedup curves for the random matrix LB500000 where n = 500 000, the ran-
dom matrix LBmillion where n = 1 000 000 and the 3D Poisson Matrix where n = 1 000
000.
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8. Conclusions

We have described some efficient methods for computing thermeant of large
block structured matrices. Test results indicate that théogk sequential method is effi-
cient when using one processor on large matrices. The deplrallel method is efficient
when k the number of processors is such that the average sitce® is not small com-
pared to the size aR. Tests conducted on a set of matrices confirm the efficienclyef t
proposed algorithms; the efficiency of the parallel aldgont however is penalized when
the spikes have large widths and when be number of blocksases; this is due to the
fact that in our current algorithm, the computation of théedminant ofS is carried by
one processor; i.e. sequentially and Amdahl’s law applieguture work, we intend to
implement a parallel version of the LU factorization$f
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