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ABSTRACT. We present in this paper the formulation of a non-dissipative arbitrary high order time
domain scheme for the elastodynamic equations. Our approach combines the use of an arbitrary
high order discontinuous Galerkin interpolation with centred flux in space, with an arbitrary high order
leapfrog scheme in time. Numerical two dimensionnal results are presented for the schemes from
order two to order four. In these simulations, we discuss of the numerical stability and the numerical
convergence of the schemes on the homogeneous eigenmode problem. We also show the ability
of the computed schemes to carry out more complex propagation probems by simulating the Garvin
test with an explosive source. The results show the high accuracy of the method, both on triangular
regular and irregular meshes.

RÉSUMÉ. Nous présentons dans ce papier une méthode Galerkin discontinu d’ordre arbitrairement
élevé pour les équations de l’élastodynamique en domaine temporel. Notre approche combine une
interpolation spatiale d’ordre arbitraire, des flux centrés ainsi qu’un schéma saute-mouton d’ordre
arbitrairement élevé pour l’intégration temporelle. Des résultats numériques de la propagation d’un
mode propre 2D sont présentés dans le cas des schémas saute-mouton d’ordre 2 et 4. Une étude
numérique de la stabilité et de la convergence de la méthode est également proposée, ainsi qu’une
application du schéma à la résolution d’un problème de propagation plus complexe: le test de Garvin.
Ces différentes simulations montrent que le schéma développé est très précis, aussi bien sur des
maillages réguliers que non réguliers.
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1. INTRODUCTION

We call elastic waves, waves which propagate within elastic media. They can pass
through a medium without modifying it durably. There are two main classes of elastic
waves: body waves which travel through the volume of a material, and surface waves
which travel along its surface. Concerning body waves, we can differentiate pressure
waves (P−waves) which deform the medium in the same direction as their propagation
direction, and shear waves (S−waves) which deform the medium in the orthogonal direc-
tion to their propagation direction. In an anisotropic medium, we have two types of shear
waves: SH−waves with a horizontal polarisation, and the SV−waves with a vertical po-
larisation. Surface waves are the consequence of interactions of body waves with the free
surface, and are constituted of a linear combinaison of these. We have two types of sur-
face waves: Love waves which result from the combinaison of P−waves with SH−waves
and Rayleigh waves which result of the combination of P−waves with SV−waves. Body
waves are known to be non-dispersive, while surface waves are dispersive.

For the study of the propagation of waves in elastic media, it is more and more neces-
sary to use numerical simulation, as the existence of analytical solutions is only valid in
few cases like homogeneous domains with simple geometries. The modelling of this phe-
nomenon is given by the wave equations of elastodynamic. Various numerical methods
have been developped to solve such problems. Among them, we can mention the finite
difference method [18][12], the classical finite element method [11][13], the spectral and
pseudospectral methods [10], and the finite volume method [3].

We choose to use a high-order discontinuous Galerkin method (DG) applied to trian-
gular meshes. The DG method was initially introduced by Reed and Hill for the solution
of the neutron transport equation [15]. Neglected during many years, it is now very pop-
ular to solve hyperbolic problems. An advantage of this method is the fact that, due to
the linearity of an equation, the solution can be computed element by element when the
elements are suitably ordered, according to the characteristic direction. The discontinuity
of the method provides a natural upwind. It had been used to solve nonlinear hyperbolic
systems and convection-dominated problems, and it is now applied to various problems
in applied mathematics [4]. It has shown its ability to capture strong discontinuties and
shocks for solid and fluid mechanic problems [4], and it is now also used for the solution
of different wave propagation problems, coupled with various time integration schemes.
Inspite of its success in many domains of application, this method has been rarely applied
to seismic wave propagation problems. Käser et al. ([9] and many references therein)
proposed a DG finite element scheme based on upwind fluxes and the ADER approach in
order to solve the elastodynamic system with the same high accuracy in space and time.
Antonietti et al [2] compared the Mortar spectral element method and the DG spectral el-
ement method, both on non conforming rectangular meshes, with a second order leapfrog
scheme for the time integration. They found that those two methods have a good accuracy
while used for the simulation of the elastodynamic equations. Agut et al [1] developped a
new high order method based on the "Modified Equation" technique in time, coupled with
a DG method in space for the discretisation of the additional biharmonic operator, for the
solution of the acoustic wave equations. Their results show that the computational cost of
their scheme is the same as the one of the leapfrog scheme. In general, the advantages of
DG methods are:
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– the ability to achieve a high order of accuracy by simply increasing the interpolation
order of the basis functions locally in the elements,

– the fact that for an explicit scheme we do not have to invert a global linear system,
– the wide range of choice offered for the time integration scheme,
– the ability to have complex geometries and the possibility to use complex 3D meshes

(including non conforming, mixed and locally refined meshes),
– the possibility to have different local interpolation orders within the elements [6],
– their capability of capturing discontinuities,
– the fact that they remain highly parallelizable.

Of course this has a cost in terms of computational time and memory usage, especially if
we do not take care of the used time scheme. The DG methods developped in our team
differ from the one used by Kaser and al by the use of centered flux within neigbouring
elements and the choice of leapfrog schemes for the time integration. So we have a cen-
tered scheme in space and in time. The reason for this choice is that centered schemes
are known to be non diffusive. This quality is important for the accurate approximation
of a wave after a long time of propagation as it is the case for seismic simulations over
the entired earth, and also for the conservation of the total elastodynamic energy. The
preliminary results obtained with a leapfrog scheme of order 2 coupled with different in-
terpolation orders of the discontinuous Galerkin scheme varying from one to four confirm
all the benefits expected for this approach [5].

In this paper, we present the extension of the leapfrog time scheme from 2 up to an
arbitrary even order for the elastodynamic equations, in order to have an arbitrary high
order scheme both in space and time, and the results and performances of those schemes
on academic and more realistic simulations. So the paper is structured as follows: In
section 2, we introduce the governing equations in the velocity-stress formulation, with
the boundary conditions used on the physical limits of the simulation domains in order
to reproduce the real behaviour of the waves during their propagation. In section 3, we
present the spatial discretisation with the discontinuous Galerkin finite element method.
In section 4 we present the connection of the DG scheme with the leapfrog scheme for
the time integration. We present a description of the generation of leapfrog schemes of
arbitrary high even order. In section 5, we show the application of the scheme on a two
dimensional “eigenmode” homogeneous academic exemple, coupled with a numerical
stability analysis, a numerical convergence analysis and a performance analysis on trian-
gular regular and irregular meshes. And finally, section 6 is dedicated to the study of the
two dimensional Garvin problem.

2. EQUATIONS

In a linear, isotropic and infinite medium, the P-SV wave propagation is modelled by
the elastodynamic equation, which can be written in velocity-stress formulation [18], with
the velocity and the stress as unknowns,

{
ρ∂t~v = div(σ),

∂tσ = λdiv(~v)I + µ(∇~v + (∇~v)T ),
(1)
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where ~v is the velocity vector, σ the stress tensor, ρ the density of the medium, I is the
identity matrix and λ and µ the Lamé coefficients describing the rheology of the medium,
related to the P- and S-wave velocities by VP =

√
(λ+ 2µ)/ρ and VS =

√
µ/ρ.

System (1) is closed by adding physical boundary conditions at the free surface of the
medium : σ ~n = ~0, where ~n is the unity vector normal to the free surface. External forces
are neglected.

Since the stress tensor is symmetrical, the unknown vector ~W may be written
~W = (vx, vy, σxx, σyy, σxy)t and (1) expressed in matrix form by

∂t ~W −
∑

m∈{1,2}

Am(ρ, λ, µ) ∂xm ~W = 0 . (2)

3. SPATIAL DISCRETIZATION

3.1. Weak form of the problem

As the velocity field ~v and the stress field ~σ are discontinuous, the weak form of the
problem is written element by element. So let us note Ωi an elementary R2 domain in
which ~W (~v and ~σ) is continuous everywhere, unless on the boundary, and let us note
L2(Ωi) the Hilbert space of functions for which the squarre can be integrated on Ωi :
L2(Ωi) =

{
vi ∈ R2,

∫
Ωi
v2
i dΩ <∞

}
, andH1(Ωi) the Sobolev space ofL2(Ωi), defined

by H1(Ωi) =
{
vi ∈ L2(Ωi) | ∇vi ∈ (L2(Ωi))

2
}

.

The problem (2) can be written in the following form:

Search for W̃i ∈ (L2(Ωi))
5, such that, ∀~φk ∈ (H1(Ωi))

5 a test function, we have


∫

Ωi

~φk
∂ ~Wi

∂t
dΩ =

2∑
m=1

Am ·
∫

Ωi

~φk
∂ ~Wi

∂xm
dΩ in Ωi

σi · ~n = ~0 on ∂Ωi ∩ ∂ΩFS

(3)

Now, we can use the Green theorem on the first equation of the system. We then obtain
the weak form of the problem which is

Find W̃i ∈ (L2(Ωi))
5, such that, ∀~φk ∈ (H1(Ωi))

5, we have

∫
Ωi

~φk
∂ ~Wi

∂t
dΩ =

2∑
m=1

Am ·

[
−
∫

Ωi

~Wi
∂~φk
∂xm

dΩ +

∫
∂Ωi

~φk · (nm ~Wi)dΓ

]
, (4)

where ~ni is the outgoing unity vector normal to ∂Ωi.

We note that the consequence of the free surface condition is the vanishing of one part
of the surface integration terms on the free surface of the domain. As σ~n = ~0 on ∂ΩFS .
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3.2. Discretization using simplectic finite elements and a Lagrange
polynomial basis

For the discretization of the computational domain, we choose simplectic conforming
finite elements (triangles in 2D). The interpolation functions used for the approximation
of the field Wh on every element are the Lagrange polynomials. The dimension of the
Lagrange polynomial basis depends on the order of the interpolation chosen and on the
space dimension. We define the set of Lagrange polynomials of degree n on each element
Ωi by Pn. The basis functions are φi and are defined by φi(Xj) = δij . The number nk

of basis functions is nk =
(n+ 1) · · · (n+ d)

d
, where n is the order of the interpolation

functions and d the space dimension.

We then have the following approximations:

Ωh =
⋃

Ωi,
~Wh =

∑
Ωi∈Ωh

~Wi,

~Wi =

nk∑
j=1

~Wij ,

~Wij = Wij
~φij ,

~φi =

nk∑
k=1

αk
~φik,

where nk is the dimension of the Lagrange polynomial basis, and ~φik the vectors of
that basis.

3.3. Discrete weak form of the problem

Let Ωh be a conforming finite element triangulation of Ω and suppose that we have
Ωh =

⋃N
i=1 Ωi.

We define the following spaces:

Wh =

{
~Wh =

∑
Ωi∈Ωh

~Wi| ~Wi ∈ (L2(Ωi))
5

}
, Vh =

~φh =

nk∑
j=1

~φij |~φij ∈ H1(Ωi)


The integrals of the weak form of the problem (4) can then be written in the following

discrete form:

Find W̃h ∈ Wh such that, ∀~φh ∈ Vh, we have

nk∑
j=1

nk∑
k=1

∂ ~Wij

∂t

∫
Ωi

~φik~φijdΩ =

nk∑
j=1

nk∑
k=1

2∑
m=1

Am ·

[
− ~Wij

∫
Ωi

~φij
∂~φik
∂xm

dΩ

+

∫
∂Ωi

(~φik · ~φij)(nim ~Wij|∂Ωi
)dΓ

] (5)
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The term ~Wij|∂Ωi
has two different expressions, depending on whether ∂Ωi is part of

the boundary of the computational domain or not. For the term ~Wij|∂Ωi∩∂Ωk
we use the

following centrered approximation:

~Wij|∂Ωi∩∂Ωk
=

~Wij + ~Wkj

2

On the boundary of the computational domain we have the following approximation:

~Wi|∂Ωi∩∂Ωh
= ~Wi

3.4. Expression of the terms of the discrete form

The first integral of the discrete form is the time integral. It can be express, using
a scalar B representing the integral of the scalar product of the basis functions, in the
following form:

∂ ~Wij

∂t

∫
Ωi

~φik · ~φijdΩ = B
∂ ~Wij

∂t
,

Following the same approach, we can express the spatial integrals in the elements or in
the intersection of two neighbouring elements as:

Am
~Wij

∫
Ωi

~φij
∂~φik
∂xm

dΩ = Gi{j,k}m
Am

~Wij ,

∫
∂Ωi∩∂Ωl

~φik( ~Wij|∂Ωil
nm)dΓ =

∫
∂Ωi∩∂Ωl

~φik
1

2
( ~Wij · ~φij + ~Wlj · ~φlj)nmdΓ

=
1

2

(
~Wij

∫
∂Ωi∩∂Ωl

nm~φik · ~φijdΓ

+ ~Wlj

∫
∂Ωi∩∂Ωl

nm~φik · ~φljdΓ

)

4. TIME DISCRETIZATION

For the time discretization, we use leapfrog schemes, that are centered schemes, there-
fore not diffusive, and that are adapted to the mixed structure of the equations. Also, when
combined with the flux, the resulting time domain scheme is non-dissipative [5]

We propose a leapfrog scheme derivation methodology that may give the temporal
approximation to every even order desired for the elastodynamic problem, as Jeffrey L.
Young [19] and Spachmann et al [17] did for the Maxwell’s equations.

The idea is to use the Taylor limited development, to estimate a centered approxima-
tion of the arbitrary even high order temporal derivative of the velocity field and of the
stress field respectively.

For a scalar differentiable function f, the Taylor development at time n+ 1 is given by
the following centered expression:
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fn+1(x) = fn−1(x) + 2∆t
∂fn(x)

∂t
+ 2

∆t3

3!

∂3(fn(x))

∂t3
+ · · ·

+2
∆t2N−1

(2N − 1)!

∂2N−1fn(x)

∂t2N−1
+O(∆t2N+1)

(6)

So, for such a scheme and for a time step of ∆t, we have to approximate the function
every two time steps. The leapfrog approach applied to problem (1) simply consists in
the solution of one of the two equations to odd time steps, and the other to even time
steps. Another way to obtain the leapfrog scheme which is popular, is to divide the time
step by 2, and to use ∆t′ = ∆t

2 instead of ∆t. We then evaluate the first equation of the
elastodynamic system at time steps n∆t+ 1/2, and the second equation of the system at
time steps n∆t. In our case, we chose this second approach. Finally, we have to evaluate
the successive derivatives of the function up to the desired order.

4.1. Construction of an arbitrary high order leapfrog scheme for the
continuous elastodynamic problem

Let us apply the previous discretization to the elastodynamic problem (1). We decide
to divide the normal time step by two and to calculate the velocity field at time step
n+1/2, and the stress field at time step n. Finally, the scheme obtained has the following
form:



~vn+1/2 = ~vn−1/2 + ∆t
∂~vn

∂t
+

∆t3

24

∂3~vn

∂t3
+ · · ·

+
∆t2N+1

22N (2N + 1)!

∂2N+1~vn

∂t2N+1
+O(∆t2N+3)

~σn+1 = ~σn + ∆t
∂~σn+1/2

∂t
+

∆t3

24

∂3~σn+1/2

∂t3
+ · · ·

+
∆t2N+1

22N (2N + 1)!

∂2N+1~σn+1/2

∂t2N+1
+O(∆t2N+3)

(7)

We then have to approximate the successive derivatives of the velocity field and of the
stress field up to the desired order, using the mixed structure of equation (1) which can be
written in the following form:


∂~vn+1/2

∂t
= f(~σn)

∂~σn+1

∂t
= g(~vn+1/2)

(8)

– Construction of the second order leapfrog scheme

We have to evaluate
∂~vn

∂t
and

∂~σn+ 1
2

∂t
.

For that purpose, from equations (8), we obtain:
~T1 = ∆tf(~σn)
~T

′

1 = ∆tg(~vn+1/2)

~vn+1/2 = ~vn−1/2 + ~T1

~σn+1 = ~σn + ~T
′

1

(9)
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As this time discretization scheme is only second order accurate, the global accuracy
of the scheme can be penalized when higher-degree polynomials (m > 2) are used for
spatial approximation [5]. Then, we propose a higher-order leapfrog scheme following
the method proposed for the Maxwell’s equations by Young [19] or Spachmann et al. [17]
and applied to a DG method by Fahs [6].

– Construction of the fourth order leapfrog scheme

We have to evaluate
∂3~vn

∂t3
and

∂3~σn+1/2

∂t3
.

For that purpose, we use equation (7) and equation (8). We then obtain:

~T1 = ∆tf( ~σn)
~T2 = ∆tg(~T1)
~T3 = ∆tf(~T2)

~vn+1/2 = ~vn−1/2 + ~T1 +
~T3

24
~T

′

1 = ∆tg(~vn+1/2)

~T
′

2 =
∆t

ρ
f(~T

′

1)

~T
′

3 = ∆tg(~T
′

2)

~σn+1 = ~σn + ~T
′

1 +
~T

′

3

24

(10)

– Construction of the arbitrary high even order leapfrog scheme
We generalize the technique shown in the previous paragraph, and we obtain, for an

arbitrary even order 2N,

~T0 = ~σn

~T2k+1 = ∆tf(~T2k) ∀k ≥ 0
~T2k = ∆tg(~T2k−1) ∀k ≥ 1

~vn+1/2 = ~vn−1/2 +

N∑
k=1

~T2k−1

(2k − 1)!22k−2
at order 2N

~T
′

0 = ~vn+1/2

~T
′

2k+1 = ∆tg(~T
′

2k) ∀k ≥ 0
~T

′

2k = ∆tf(~T
′

2k−1) ∀k ≥ 1

~σn+1 = ~σn +

N∑
k=1

~T
′

2k−1

(2k − 1)!22k−2
at order 2N

(11)

4.2. Application of the arbitrary high order leapfrog scheme on the
discontinuous Galerkin spatial discretization for the elastodynamic
equations

The consequence of the use of the leapfrog scheme is that we have to split the vector
W of unknowns and then solve the two equations at different times: the velocity un-
knowns are evaluated at time n+1/2 and the stress unknowns are evaluated at time n. So
the spatial discretization of the equations, coupled with the time scheme has the following
form for the velocity equation:
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∫
∂Ωi

φij
~vn+ 1

2 − ~vn− 1
2

∆t
dΩ =

N/2∑
l=1

∆t2l−2

22l−2(2l − 1)!

∫
∂Ωi

φij
∂2l−1~vn

∂t2l−1
dΩ

=

∫
∂Ωi

φijf(~σn)dΩ + · · ·

+
∆t2l−2

22l−2(2l − 1)!

∫
∂Ωi

φijf(
∂2l−2~σn

∂t2l−2
)dΩ

(12)

For the stress equation, we have the following form:

∫
∂Ωi

φij
~σn+1 − ~σn

∆t
dΩ =

N/2∑
l=1

∆t2l−2

22l−2(2l − 1)!

∫
∂Ωi

φij
∂2l−1~σn+1/2

∂t2l−1
dΩ

=

∫
∂Ωi

φijg(~vn+1/2)dΩ + · · ·

+
∆t2l−2

22l−2(2l − 1)!

∫
∂Ωi

φijg(
∂2l−2~vn+1/2

∂t2l−2
)dΩ

(13)

The weak form of those equations are then written using the Green theorem.

In practice, for a given approximation in space, the fourth-order leapfrog scheme needs
three times the number of arithmetic operations (to calculate the fluxes F and G) than the
classical leapfrog scheme and twice as much memory storage since additional arrays have
to be defined. And for the memory storage of the arbitrary high order scheme, we just
have to forecast two additionnal arrays for ~T2k and ~T2k+1 to the second-order scheme. So,
the memory required for the leapforg scheme of order N is the same as for the leapfrog
scheme of order four.

5. APPLICATION TO THE EIGENMODE HOMOGENEOUS
PROBLEM

A first application of our scheme has been carried out on the eigenmode homogeneous
problem. In this exemple, the system is initialised with a sinusoidal wave on the unity
square domain, with the free surface condition applied at all its boundary surface. We
consider the (1,1) mode whose exact solution is [8]

vx = a cos(πx) sin(πy) cos(at) σxx = −b sin(πx) sin(πy) sin(at)
vy = −a sin(πx) cos(πy) cos(at) σyy = b sin(πx) sin(πy) sin(at)

σxy = 0
(14)

where a =
√

2πVs and b = 2πµ.

The homogeneous material parameters are ρ = 1, λ = 0.5 and µ = 0.25, leading
to the constant wave propagation velocities of vp = 1 and vs = 0.5, for P−waves and
S−waves respectively. The initial condition is v0

x = αsin(~k · ~x) + βsin(~k · ~x), with the
wave number ~k = 6π(1, 1)t. The initialisation of the leapfrog scheme is done from the

A R I M A



102 A R I M A – Volume 17 – 2014

exact solution (14) at t = 0 for v and t = ∆t
2 for σ, ∆t being the time step of the scheme.

The notation DGk-LFi (k=2,..., 4 and i=2 or 4) refers to a spatial discretization based on
a polynomial basis of degree k and a classical second-order leapfrog time scheme (LF2)
or its extension (LF4).

5.1. Numerical study of the stability

In table (1) we present the evolution of the numerical CFL value of the program for
the DG2 space interpolation as a function of the time scheme. These results show that
the CFL value is multiplied by about 2.6 when we use the leapfrog scheme of order four
instead of the leapfrog scheme of order two, both on regular and irregular meshes.

Time scheme associated with the DG space discretisation LF2 LF4
CFL coefficient for the DG2 scheme on structured meshes 0,2322 0,5928

CFL coefficient for the DG2 scheme on unstructured meshes 0,2322 0,5928
CFL coefficient for the DG3 scheme on structured meshes 0,1498 0,3821

CFL coefficient for the DG3 scheme on unstructured meshes 0,1498 0,3821
CFL coefficient for the DG4 scheme on structured meshes 0,0939 0,2644

CFL coefficient for the DG4 scheme on unstructured meshes 0,0939 0,2644

Table 1. Evolution of the CFL value for the DG space discretisations as a function of the
order of the leapfrog time scheme

The figure 1 shows the evolution of the numerical CFL value of the program for a given
time scheme, as a function of the DG space interpolation order. This figure shows that
the evolution of the CFL value of the program is linear when we increase the polynomial
interpolation order from two to three and from three to four.

 0.1  1 2
 2.5

 3
 3.5

 4

log(CFL)

Order of the space interpolation

"LF2"
"LF4"

Figure 1. Evolution of the numerical CFL for a given leapfrog scheme
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5.2. Numerical study of the convergence and CPU time analysis

In this section, we numerically determine the convergence orders of the proposed
DG-LF schemes without the source term. As test case, we solve the two dimensional ho-
mogeneous elastic wave equations on the unity square domain, with a sinusoidal periodic
initial condition and four free surface boundaries (eigenmode problem), as presented in
the previous section. The numerical experiments to determine the convergence orders of
the schemes are performed on two sequences of triangular regular and irregular meshes.
Each sequence consisting of four meshes with decreasing width. For the regular meshes,
the refinement is controlled by multiplying by 2 the number of mesh elements in each
direction. For the irregular meshes, we use the so-called red− refinement, where each
triangle is refined subsequently by dividing it into four similar subtriangles. We charac-
terize the refinement state of a mesh by the minimum edge of all the triangular elements.

Scheme Order of conv. for struct. meshes Order of conv. for unstruct. meshes
DG2/LF2 2.44 2.57
DG2/LF4 3.04 2.92
DG3/LF2 2.07 2.42
DG3/LF4 3.5 3.03
DG4/LF2 2.00 2.01
DG4/LF4 4.47 4.01

Table 2. Value of the order of convergence for the different time/space schemes on
structured meshes

In figure 2, we present the convergence curves of the DG2, DG3 and DG4 schemes,
coupled with the leapfrog scheme of orders two and four (LF2 and LF4) for structured and
unstructured meshes. The respective values of the orders of convergence are summarized
in table 2. An analysis of the LF2 schemes shows that the order of convergence is about
2 for all of them. That shows that the theoretical order of convergence given by the
DG space discretization is not reached. This affirmation is confirmed by the curves of
figure 3 and figure 4 for structured and unstructured meshes, which show an increase
of the order of convergence for those schemes while using the leapfrog scheme of order
four. The leapfrog of order four scheme achieves a higher order of convergence than the
leapfrog scheme of order two in terms of orders of convergence, level of the L2 error,
stability limits, and CPU time. Indeed, we can notice that the increase of the stability
limits while using the LF4 scheme compensates the additional CPU time necessary to
compute this scheme from the LF2 scheme. Therefore we observe a small decrease of
the CPU time as shown in figure 5. An analysis of figure 6 shows that the gain obtained
while increasing the time scheme is more important, as the level of the L2 error is also
more important for the 2nd-order leapfrog scheme. This implies that, to have a 2nd-order
leapfrog scheme equivalent for a given 4th-order leapfrog scheme, we must proceed to
an important coarsening of the mesh of the 4th-order leapfrog scheme. Figure 7 also
shows that the 4th-order leapfrog scheme coupled with the DG3 interpolation in space
is equivalent in terms of cpu time to the 2nd-order leapfrog scheme coupled with the
DG2 interpolation in space, and so are the 4th-order leapfrog scheme coupled with the
DG4 interpolation in space and the 2nd-order leapfrog scheme coupled with the DG3
interpolation in space. But in terms of level of the L2 error, figure 8 shows that the 4th-
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order leapfrog schemes are better than their equivalent 2nd-order leapfrog schemes. This
remark suggests that we need less points per wavelength if we increase the order of the
time scheme. Finally, we can state that the developped schemes achieve the expected
convergence orders on both regular and irregular meshes.

5.3. Numerical verification of the conservation of the energy

The study of the conservation of the energy property is very important for every
scheme used for the numerical simulation of the propagation of elastic waves in a medium.
For that, we computed the L2 error of the scheme on the eigenmode problem, during 100
periods (300 seconds). The goal was to see the levels and the slopes of the error curves.
As we can see in Figures 9 and Figure 10, the level of the errors decreases when the order
of the scheme increases in time for a given space interpolation, or when the order of the
space scheme increases for a given leapfrog scheme. Thus, we can observe that, for the
DG2 and the DG3 interpolation, coupled with the 4th-order leapfrog scheme, the slopes
of the error curves are nearly zero. This means that the level of the initial error, which
is already very small, is preserved along the whole simulation. For the DG4 interpola-
tion coupled with the order 4 leapfrog scheme, we observe a slight slope for the error
curves. This is certainly due to the fact that we need to increase the order of the time
scheme. Also, we can conclude that the schemes are numerically nearly non dissipative.
This result is in agreement with the theory (our schemes are centered).

6. STUDY OF THE GARVIN PROBLEM

After the eingenmode problem, we studied a problem with an outgoing wave boundary
condition: the Garvin test. The Garvin problem [7] is a classical test which permits to
verify the accuracy of a numerical simulation software of elastic wave propagation. This
problem is a simulation in a homogeneous elastic half space, with an explosive source.
There is an analytical solution to this problem [16]. If the source is inside the medium,
only a direct P−wave is created and propagates in the medium. At the free surface of
the medium, there is a reflection P−wave and a conversion P−S wave which are created.
If the source is directly under the free surface, there is the creation and the propagation
of a strong Rayleigh wave along the free surface. In this case the Rayleigh wave is non
dispersive, as the medium is homogeneous and its surface plane.

For our simulations, we are in this second case. The medium is a rectangular domain
of 400m by 200m. The three surface sensors are located at the epicenter, and at 45m
and 95m from the first sensor respectively, as we can see in Figure (11). The material
parameters of the medium are ρ = 1kg/m3 for the density, vp = 103, 92m.s−1 and
vs = 60m.s−1 for the velocities of P−waves and S−waves respectively. The explosive
source, which is located at a 1m depth, is a Ricker having 4Hz for its central frequency
and 12Hz for its maximum frequency:

s(t) = [−1 + 2a(t− 0, 3)2]exp[−a(t− 0, 3)2]

The coefficient a has been set to 159.42, and the wavelength is approximately equal to 5m.
This source term is introduced as a right hand side on σxx and σyy . Initial conditions for
the system are V = 0 and σ = 0 and solutions are computed until t = 2.5 s. Our objective is
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Figure 2. Convergence curves for LF2 leapfrog time schemes on structured (top) and
unstructured meshes

to compare the results obtained with the DG2-LF2 and DG4-LF4 methods. The analytical
solution is computed using a software written by Sanchez-Sesma and Perez-Rocha [16].
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Figure 3. Convergence curves for LF4 leapfrog time schemes on structured (top) and
unstructured meshes

To highlight the difference of both methods, we first use two uniform and very coarse
meshes : M1 with h = 5.0m and containing 3600 triangles and M2 with h = 2.5m and
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Figure 5. Evolution of the CPU time as a function of the number of elements for a given
space/time scheme

14400 triangles. We define an error (in %) between the solutions and the reference :
for a given sensor and a component of the velocity, the error is the mean value of the
relative errors calculated at the extreme of the profiles (between 3 and 6 values, as seen
on Figures 12 to 14). We plot, in Figures 12, 13 and 14 the profiles of the velocity in
the y direction (vy) as a function of time obtained at the three sensors and for the two
coarse meshes M1 and M2 (first and second lines of all figures). Note that, for a better
visibility, the solutions obtained at the three surface sensors have been plotted for different
time windows. Observing the different figures, it is obvious that the DG4-LF4 method
produces better solutions than the DG2-LF2 method. For the coarsest mesh M1, the
profiles of the DG4-LF4 method contain all the characteristics of the reference solution.
The results obtained with the mesh M2 are clearly closer to the reference solution but
it still remains an important delay on the profile corresponding to the DG2-LF2 method
at sensor C1. Finally, we introduce a finer mesh, M3 for which h=1.0m and containing
90 000 triangles. We plot, in Figures 12 to 14 (last line), the solutions obtained with
the DG4-LF4 method. Except a slight delay of the solutions, especially at sensor C2,
the results constitute a validation of our method. The values of the mean relative errors
on vy , obtained for the different schemes and meshes are given in Table 3. From the
observations of the table, we notice that the errors on the amplitude of the solutions of the
DG4-LF4 method are lower than those of the DG2-LF2 method, at all sensors and with
the three meshes since the values of the mean error are divided by 2. For the finest mesh
M3, corresponding to a mesh spacing equal to Λ/5, the error level is satisfactory. We
also remark that the convergence towards the reference solution is slower than expected,
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Figure 6. Evolution of the L2 error in function of the CPU time

DG2-LF2 DG4-LF4
C1-M1 10 47
C1-M2 60 10
C1-M3 10 5
C2-M1 50 12
C2-M2 26 12
C2-M3 10 4
C3-M1 63 24
C3-M2 33 12
C3-M3 10 6

Table 3. Mean relative error (in %) on vy at the three sensors
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Figure 7. Evolution of the CPU time in function of the number of points/wave length for a
given space/time scheme

especially when compared to the results of the eigenmode problem. It is probably due to
the absorbing condition which is a basic upwind scheme and would gain to be improved.

7. CONCLUSION

We have presented the extention of our explicit leapfrog time scheme from a second-
order to an arbitrary high even order. This scheme seems to be stable under a CFL-like
condition. Numerical results on two problems are presented to illustrate the ability of
the scheme on a test case with free surface and outgoing wave boundary conditions. The
results on the eigenmode exemple are given with a numerical stability analysis of the
scheme and a numerical convergence study. These studies show the gains obtained by
increasing the order of the time scheme in terms of increasing the CFL limit, decreas-
ing of the L2 error, decreasing of the CPU time.The results also show that the expected
convergence rates are reached both on regular and irregular meshes, and that the scheme
is robust and highly acurate, even on problems with free surfaces and outgoing waves
boundary conditions.

A R I M A



Discontinuous Galerkin scheme 111

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 10  100

Lo
g(

L2
 e

rr
or

)

Log(Number of points/Wave length)

’errn
’errn
’errn
’errn
’errn
’errn

Figure 8. Evolution of the L2 error as a function of the number of points/wave length for a
given space/time scheme

8. Acknowledgment

The author thanks the AUF (Agence Universitaire de la Francophonie) for its financial
support which permitted the realization of this work. He also thanks the NACHOS team
of INRIA-Sophia Antipolis-Méditerranée in which this work had been performed and
had been first published as an INRIA research report, expecially Nathalie GLINSKY,
Stéphane LANTERI and Sarah DELCOURTE for their constant help and their precious
advices.

9. References

[1] C. AGUT, J. DIAZ AND ABDELAZIZ EZZIANI, “High-Order Schemes Combining the Modi-
fied Equation Approach and Discontinuous Galerkin Approximations for the Wave Equation”,
Commun. Comput. Phys., Vol. 11, No. 2, pp. 691-708 February 2012.

A R I M A



112 A R I M A – Volume 17 – 2014

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0  50  100  150  200

lo
g
(L

2
 E

rr
o
r)

time (s)

"e
"e
"e

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0  50  100  150  200

lo
g
(L

2
 E

rr
o
r)

time (s)

"e
"e
"e

Figure 9. Evolution of the L2 error of the solution on 100 periods for the LF2 scheme (left)
and for the LF4 scheme (right)

[2] P.F. ANTONIETTI, I. MAZZIERI, A. QUARTERONI, F. RAPETTI, “Non-conforming high order
approximations of the elastodynamics equation”, Comput. Methods Appl. Mech. Engrg. 209-
212 (2012) 212-238, 2012.

[3] M. BENJEMAA, N. GLINSKY-OLIVIER, V. M. CRUZ-ATIENZA, J. VIRIEUX AND S.
PIPERNO, “Dynamic non-planar crack rupture by a finite volume method”, Geophys. J. Int.
209-212 (2007) 212-238, vol. 171, 271-285, 2007.

[4] B. COCKBURN “Discontinuous Galerkin methods for convection-dominated problems. High-
order methods for computational physics”, 69–224, Lect. Notes Comput. Sci. Eng., vol. 9,
Springer, Berlin, 1999

[5] S. DELCOURTE, L. FEZOUI AND N. GLINSKY-OLIVIER, “A high-order discontinuous
Galerkin method for the seismic wave propagation”, ESAIM : Proceedings, num. 27, 2009.

[6] H. FAHS, “Méthode de type Galerkin discontinu d’ordre élevé pour la résolution numérique
des équations de Maxwell instationnaires sur des maillages simplexes non-conformes”, Thèse
de doctorat de l’Université de Nice-Sophia Antipolis, 2008.

[7] W. GARVIN, “Exact transient solution of the buried line source problem”, Proc. R. Soc.
London ser. A, num. 234, 528-541, 1956

[8] N. GLINSKY, S. MOTO MPONG AND S. DELCOURTE, “A High-order Discontinuous Galerkin
Scheme for Elastic Wave Propagation”, Rapport de recherche INRIA, num. 7476, 2010.

[9] M. KÄSER, V. HERMANN AND J. DE LA PUENTE, “Accuracy alalysis of the Discontinuous
Galerkin method for seismic wave propagation”, Geophys. J. Int., vol. 173, num. 3, 2008.

A R I M A



Discontinuous Galerkin scheme 113

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1 0
 50

 100
 150

 200
 250

 300

log(L2 Error)

time (s)

"err_P2LF2"
"err_P2LF4"
"err_P3LF2"
"err_P3LF4"
"err_P4LF2"
"err_P4LF4"

Figure 10. Evolution of the L2 error of the solution of different schemes on 100 periods

●
▼

1m

150m

Source

300m

45m 40m
x

y

▼▼
C1

C3C2

Figure 11. Geometry and position of the transducers for the Garvin experience

[10] D. KOMATITSCH AND J.-P. VILOTTE, “The spectral-element method: an efficient tool to
simulate the seismic response of 2D and 3D geological structures”, Bull. Seism. Soc. Am.,
vol. 88, 368-392, 1998.

[11] K. MARFURT, “Accuracy of finite-difference and finite-element modeling of the scalar and
elastic wave equations“, Geophysics, vol. 49 (5), 533-549, (1984).

[12] P. MOCZO, J. KRISTEK, V. VAVRYCUK, R.J. ARCHULETA AND L. HALADA, “3D hetero-
geneous staggered-grid finite-difference modeling of seismic with volume harmonic and arith-
metic averaging of elastic moduli and densities”, Bull. Seism. Soc. Am., vol. 92, 3042-3066,
2002.

[13] R. MULLEN, T. BELYTSCHKO, “Dispersion analysis of finite element semidiscretizations of
the two-dimensional wave equation“, Inter. J. Numer. Meth. Engrg., vol. 18 (1), 11-29, 1982.

[14] R. S. PHILLIPS AND L. SARASON, “Singular symmetric positive fisrt order differential op-
erators“, J. Math. Mech. , vol. 15, p. 235-272, 1966

[15] W. REED AND T. HILL, “Triangular mesh method for neutron transport equation”, Tech. Rep.
LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

A R I M A



114 A R I M A – Volume 17 – 2014

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 0  0.2  0.4  0.6  0.8  1

V
E

L
O

C
IT

Y
 (

m
/s

)

Time (s)

Velocity Vy at sensor C1

REFERENCE
P2-LF2, M2
P4-LF4, M2

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 0  0.2  0.4  0.6  0.8  1

V
E

L
O

C
IT

Y
 (

m
/s

)

Time (s)

Velocity Vy at sensor C1

REFERENCE
P4-LF4, M3

Figure 12. Velocities of the computed and the analytical solutions of the Garvin problem
taken at the C1 transducer (Pk means DGk)

[16] F. J. SANCHEZ-SESMA, U. ITURRARAN-VIVEROS, “The classic Garvin’s problem revis-
ited”, Bulletin of the Seismological society of America, vol. 96, no 4A, pp. 1344-1351, 2006

[17] H. SPACHMANN, R. SCHUHMANN, AND T. WEILLAND, “High order explicit time integra-
tion scheme for Maxwell-s equations”, Int. J. Numer. Model., vol. 15, 2002.

[18] J. VIRIEUX, “P-SV wave propagation in heterogeneous media: Velocity-stress finite differ-
ence method”, Geophysics, vol. 51, 1986.

[19] J. L. YOUNG, “High order leapfrog methodology for the temporally dependent Maxwell’s
equations”, Radio Science, num. 36, 2001.

A R I M A



Discontinuous Galerkin scheme 115

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 8e-06

 0.6  0.8  1  1.2  1.4

V
E

L
O

C
IT

Y
 (

m
/s

)

Time (s)

Velocity Vy at sensor C2

REFERENCE
P2-LF2, M1
P4-LF4, M1

-8e-06

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 8e-06

 0.6  0.8  1  1.2  1.4

V
E

L
O

C
IT

Y
 (

m
/s

)

Time (s)

Velocity Vy at sensor C2

REFERENCE
P2-LF2, M2
P4-LF4, M2

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 0.6  0.8  1  1.2  1.4

V
E

L
O

C
IT

Y
 (

m
/s

)

Time (s)

Velocity Vy at sensor C2

REFERENCE
P4-LF4, M3

Figure 13. Velocities of the computed and the analytical solutions of the Garvin problem
taken at the C2 transducer (Pk means DGk)

A R I M A



116 A R I M A – Volume 17 – 2014

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 1  1.2  1.4  1.6  1.8  2  2.2  2.4

V
E

L
O

C
IT

Y
 (

m
/s

)

Time (s)

Velocity Vy at sensor C3

REFERENCE
P2-LF2, M1
P4-LF4, M1

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1  1.2  1.4  1.6  1.8  2  2.2  2.4

V
E

L
O

C
IT

Y
 (

m
/s

)

Time (s)

Velocity Vy at sensor C3

REFERENCE
P2-LF2, M2
P4-LF4, M2

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 1  1.2  1.4  1.6  1.8  2  2.2  2.4

V
E

L
O

C
IT

Y
 (

m
/s

)

Time (s)

Velocity Vy at sensor C3

REFERENCE
P4-LF4, M3

Figure 14. Velocities of the computed and the analytical solutions of the Garvin problem
taken at the C3 transducer (Pk means DGk)
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Figure 15. Sismograms of the horizontal and the vertical velocities of the computed
solution of the Garvin problem
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