
Component reuse methodology for multi-clock
Data-Flow parallel embedded Systems

Anne Marie Chana* — Patrice Quinton** — Steven Derrien***

* National Advance School of Engineering, University of Yaounde I, Cameroon
anne_chana@yahoo.fr
** ENS Cachan Bretagne, Campus de Ker Lann, 35170 Bruz, France
Université européenne de Bretagne, France
Patrice.Quinton@bretagne.ens-cachan.fr
*** Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
Université européenne de Bretagne, France
Steven.Derrien@irisa.fr

ABSTRACT. The growing complexity of new chips and the time-to-market constraints require funda-
mental changes in the way systems are designed. Systems on Chip (SoC) based on reused com-
ponents have become an absolute necessity to embedded systems companies that want to remain
competitive. However, the design of a SoC is extremely complex because it encompasses a range of
difficult problems in hardware and software design. This paper focuses on the design of parallel and
multi-frequency applications using flexible components. Flexible parallel components are assembled
using a scheduling method which combines the synchronous data-flow principle of balance equations
and the polyhedral scheduling technique. Our approach allows a flexible component to be modelled
and a full system to be assembled and synthesized with automatically generated wrappers. The work
presented here is an extension of previous work. We illustrate our method on a simplified WCDMA

system. We discuss the relationship of this approach with multi-clock architecture, latency-insensitive
design, multidimensional data-flow systems and stream programming.

RÉSUMÉ. La complexité croissante des nouvelles puces et les contraintes de mise sur le marché
exigent des changements fondamentaux dans la démarche de conception des systèmes. Les sys-
tèmes sur puce (SoC) basés sur les composants réutilisables sont devenus une nécessité absolue
pour les entreprises de systèmes intégrés pour rester compétitives. Cependant, la conception d’un
SoC est extrêmement complexe car elle englobe une série de problèmes difficiles du domaine de la
conception matérielle/logicielle. Cet article présente une approche de réutilisation de composant pour
la conception d’applications parallèles et multi-fréquences. Les composants flexibles sont assemblés
à l’aide d’une méthode d’ordonnancement qui combine les principes des équations d’équilibre du
modèle flot de données et la technique d’ordonnancement du modèle polyédrique. Notre approche
permet de modéliser les composants flexibles, d’assembler et de synthétiser un système complet
avec des interfaces (ou Wrapper) générés automatiquement. Le travail présenté ici est une exten-
sion des travaux antérieurs, nous illustrons notre méthode sur un modèle simplifié du WCDMA. Nous
discutons aussi dans cet article de la relation entre cette approche et celles des architectures multi-
horloge, des systèmes insensibles à la latence, du modèle flot de données multidimensionnels et de
la programmation par flux.

KEYWORDS : flexible component, SoC, polyhedral model, data-flow model, parallelism, multi-clock
architecture

MOTS-CLÉS : réutilisation de composants flexibles, SoC, modèle flot de données, modèle poly-
édrique, parallélisme, systèmes multi-fréquences

Received, December 12, 2012
Revised, February 18, 2014
Accepted, March 17, 2014

ARIMA Journal, vol. 18 (2014), pp. 67-92.

68 Arima – Volume 18 – 2014

1. Introduction

Over the past 20 years, embedded systems have become the basis of the most advanced
hardware and software technologies. During this period, the implementation of embed-
ded systems has evolved from microcontroller to fully integrated systems-on-chip (SoC).
SoCs and related technologies are driving embedded systemstoday and seem likely to do
so in the foreseeable future. New demanding applications interms of processing power
appeared over the past 20 years, driven by PC boom, especially Multicore PC, Internet
and wireless environments. These applications are found both in scientific computing and
signal processing (telecommunications, multimedia processing, etc.) and more generally
in cyber-physical systems [24, 25]. Processing such applications requires computing high
capacity data that can be achieved only through parallel anddistributed computing. There-
fore, difficulties to develop those applications are primarily due to the exploitation of data
and arithmetic parallelism, time and resource constraints.

Usually such systems are designed by re-using existing software or hardware modules
often calledflexible blocks. These flexible components are available as software or hard-
ware module and represent specific application blocks for signal processing (DCT, FFT,
etc.), telecommunications (Viterbi codes, Turbo-codes, etc.), or Multimedia (MPEG2,
MPEG4, JPEG, etc.)[1]. In practice, it is not easy to assemble and operate components
from different designers. Even if they are tested beforehand, there is no guarantee that,
when put together the system will work correctly[32]. Integration of the components must
take into account several aspects first of all, the components must be synchronized to al-
low a correct overall operation of the system, and to ensure proper data exchange and
valid communication protocols. On the other hand, input andoutputs must sometimes be
buffered in order to meet synchronization constraints.

There are several Electronic System-Level (ESL) design approaches [18] based on
IP reuse that aim to reduce the impact of data exchange between components or power
consumption.We present in our paper a systematic method to automatically generate a
hardware architecture for multi-clock, parallel data-flowsystems with flexible generic
components. Our design flow follows the top-down approach ofESL synthesis tools [18].
The method is based on Latency Insensitive Systems (LIS) theory and the synthesis pro-
cess is preceded by the synchronous Data-flow (SDF) system description. Our scheduling
technique combines the method used in thesynchronous data-flow model[23, 30] and the
polyhedral modelmethod, as described in [11]. This allows to deduce the different logic
sub-clocks that meet the I/O constraints of each component,and the number of additional
registers that may be needed between some of the components.We also present in this pa-
per the implementation of our approach as an extension of thehigh-level synthesis envi-
ronment MMALPHA. MMALPHA is an academic high level synthesis tools as Spark[21],
Compaan/Laura[41], GAUT[37] and UGH[2]. Note that Compaanand MMALPHA have
focused on the efficient compilation of loops, and they use the polyhedral model to per-
form loop analysis and/or transformations.

The paper is organized as follows: in section 2 we present some related work; in sec-
tion 3, we introduce the design flow of our integration approach and the system specifi-
cation using ALPHA language [29]; in section 4, we present the wrapper architecture, the
components assembling methodology and our model of time. Insection 5 we present an

Arima

Component reused methodology 69

implementation ofWCDMA using our approach and in section 6 we compare our approach
with some related work. Finally section 7 is devoted to the conclusion.

2. Related Work

In this section, we present some works related to (1) synthesis under constraints, (2)
multidimensional synchronous dataflow graph, (3) latency insensitive systems, (4) multi-
clock architectures and (5) stream programming.

2.1. Synthesis under constraints

As we said in the introduction, there are several other ESL Design approaches based
on IP reuse. Chavet et al [13] for example provide a design methodology to automati-
cally generate an adapter named Space-Time Adapter (STAR). This approach relies on
the formal modeling of communication constraints based on aResource Compatibility
Graph (RCG) describing timing relations between data. The architecture synthesis is per-
formed by using library of designed and characterized storage elements as FIFO, LIFO
and Registers (see Figure 1). The synthesis needs a specification of interleave scheme
and a file containing user requirement (latency, throughput, communication interface, I/O
parallelism ...) to generate a register transfer level (RTL) VHDL architecture.

Figure 1. STAR architecture [13]

This is the design and integration method under I/O and timing constraints as de-
scribed in[16]. This solution allows the adaptation of the communications between com-
puting elements; however it does not handle the scheduling problem, as the data sequenc-
ing is considered here as a constraint[12]. The approach described in [27] allows to slow
down the clock frequency in some of the parts of the design, todecrease the complexity

Arima

70 Arima – Volume 18 – 2014

of the clock-network, to reduce the number of long wires and to perform clock-gating.
This is to reduce the power consumption of FPGA architectures.

2.2. Multidimensional Synchronous Dataflow Model

The Synchronous DataFlow (SDF) model introduced by Lee and Messerschmitt[23,
30] and its extensions [26, 33] are very popular for the design of digital signal processing
systems, especially because of their formal properties, which allow deadlock detection,
static schedulability and the possibility to model multi-frequency systems. Initially, the
SDF model was proposed for single-dimensional signal processing but work has been
done to extend it to multidimensional signals, which are found for example in image
processing system[23]. Besides having a greater expressive power than SDF, multidimen-
sional synchronous dataflow (MDSFD)[30, 15] can detect dataparallelism in a system.
This model gives the ability to implement nested resetable loops and facilites data paral-
lelism exploitation.
As described in [30], scheduling tasks in MDSDF consists in repeated calculation and
schedule generation; it uses the same algorithms as in the SDF model. These algorithms
are presented in [4].

2.3. Latency Insensitive Design

The theory of Latency Insensitive System (LIS) was introduced by Carloni [8] for
the design of complex systems by assembling flexible components. It is based on the as-
sumption that communications between the components is done by means of channels
havingzero delay. This theory has enabled the development of a new design methodol-
ogy for large systems on a chip. The main idea for communication is pipelining : critical
interconnections are partitioned into interconnections whose durations meet the time con-
straints imposed by the clock period by inserting logic blocks called relay stations. The
relay stations are responsible for traffic regulation and deadlock management.

Carloni et al [8] propose an approach where a wrapper provides all signal activations
that are necessary for a component. The wrapper here is composed of a combinational
logic. The component is activated only if all its input are valid and if one has enough
memory to store the results of its next execution.

As shown in Figure 2, receiving the signal"valid" for each input port means that the
data is available and the signal"ready" for each output port means that the output device
is ready to receive the results. If all these signals do not take the value "1" simultaneously,
then a signal"stall" is sent to all input/output and the input/output process is interrupted
thus freezing the component through a clock enable signal.

Bomel et al [5] propose to use a specific processor that reads and executes cyclically
the operations stored in a memory. This Synchronization Processor (SP) communicates
with the LIS ports through FIFO like signals. These signals are formally equivalent to
valid, ready andstall of [8] and [39]. The SP model is specified by a Finite States
Machine (FSM) with three states : a reset state at power up, anoperation-read state, and
a free-run state. This FSM run concurrently with the component and contains a data path.
Operation’s format is the concatenation of an input-mask, an output-mask and a free-run
cycles number. The masks specify respectively the input andoutput ports the FSM is
sensible to. The number of running cycles represents the number of clock cycles the com-
ponent can execute until the next synchronization point. Toavoid unnecessary signals and

Arima

Component reused methodology 71

(combinational)

=AND gate

stall logic

synch

Module

clock

ck_enable

valid

valid

valid

stall

stall

stall

stall

ready

ready

in
pu

t c
ha

nn
el

s
output channels

stall

Figure 2. Wrapper internal logic with combinational logic [38]

save area, the memory is an asynchronous ROM (or SRAM with FPGAs) and its inter-
face with the SP is reduced to two buses : the operation address and operation word (as
shown in Figure 3). The execution of the program is driven by an operation"readcounter"
incremented modulo the memory size.

Casu and Macchiarulo [9] show that, in order to reduce the hardware cost due to the
use of component activation signals, it is possible to replace the synchronization protocol
used in the previous approaches by a periodic scheduling algorithm applied to the compo-
nent’s clock. The component activation control is implemented with Shift registers. This
approach relies on the hypothesis that there is no irregularity in data streams : it is never
necessary to randomly freeze the component.

Figure 3. Wrapper with Synchronization Processor [5]

Arima

72 Arima – Volume 18 – 2014

2.4. Multi-clock Architecture

Singh et al[39, 38] proposed an extension of Carloni’s approach where it is assumed
that components are frozen if no data is available for the next execution. So, instead
of generating one stall signal for all input and output, it generates one signal for each
port. In this approach the combinatorial logic that drives component clocks is replaced by
Mealy type FSM as shown in Figure 4. This FSM tests the state ofonly the relevant input
and output at each cycle and drives the component clock only when they are all ready.
The approach can be implemented only if one disposes of input/output scheduling which
proves that components communication behavior is cyclic and not data-dependant. Singh
et al[38] extended point-to-point communication to more general communication topolo-
gies (fork, joint) and proposed an adaptation of the basic LID approach to multi-clock
Latency-Insensitive Architecture.

synch

Module

clock

in
pu

t c
ha

nn
el

s
output channels

stall logic

(state machine)

ck_enable

stall

valid

stall

stall

valid

valid

stall

ready

stall

ready

Figure 4. Wrapper internal logic with State machine [38]

Bormann et al [7] proposed a method for creating Globally Asynchronous Locally
Synchronous (GALS) circuits. Each local synchronous module is surrounded by an Asyn-
chronous Wrapper which provides an asynchronous interfaceto an otherwise module.
Each data exchange is accompanied by a request-acknowledgepair of handshake signals
so that it is unnecessary to consider the communication delay between blocks. The authors
use a four-phase bundled data handshake protocol. There arefour events per handshake
cycle :Req+, Ack+, Req- andack- (see Figure 5) and data is guaranteed to be valid when
a Req- occurs and may change at any time afterack-. The wrapper synchronizes the
asynchronous date to the local clock by stretching or pausing the clock.

2.5. Stream Programming

Stream programming expresses the parallelism inherent in aprogram by decoupling
computation and memory accesses. The explicit parallelismand locality of data in a
stream program makes it easier to compile efficiently using standard compiler optimiza-

Arima

Component reused methodology 73

Figure 5. Bormann/Cheung wrapper scheme and boolean equations [7]

tions. Initially targeted only for media/regular application, stream programming have
evolved into a more general applications such as Fluid dynamic, sparse matrix compu-
tation or image processing. Programming streaming style can be summarized in three
steps :gather, operate, and scatter. Using Direct Memory Access (DMA) units, the data
is first gathered in bulk from arbitrary memory locations in main memory (MM) into lo-
cal memories (LM) also called Stream Register Files (SRF). Then the data stream from
the local memory is directly operated upon by one or more kernels, where each kernel is
comprised of several operations. Finally, the output is scattered back in the main memory.
In essence, a stream program decouples computation and memory accesses by boosting
the memory reads before the computation, and postponing writes of the live data to mem-
ory after the computation. Stream programming, therefore,converts the memory latency
problem into a memory bandwidth problem [19, 42]. The gathers and scatters of data may
be from or to sequential, strided, or random locations in an array depending on the type
of application.

Stream program is first compiled into an abstract machine model called Stream Virtual
Machine (SVM) containing processors(control processor, computational/kernel proces-
sor, DMA units) and memory (global memory, SRF, local registers). The computational
model can be described as follows[19]:

– The control processor schedules computational kernels and bulk memory operations
on kernel processors and DMA units.

– The DMA units load the stream of data needed by computational kernels from the
main memory to the SRF.

– The computational kernels work with the data in the SRF, using local registers to
store temporary and intermediate results and writing live data in the SRF.

– After all the computational kernels having producer-consumer locality have finished
computation, the DMA units write the live data back to the main memory.

Once generated, the SVM is compiled using a machine specific compiler, to the under-
lying stream architecture. While compilers do not have any control on processor caches,
SRF can be sized to fit into processor caches, thus guarantying that the processor will
bring into cache the SRF and does not write it back or replace it until the computational

Arima

74 Arima – Volume 18 – 2014

kernel has finished its execution. Since computational kernels only access data store in
the SRF, they don’t suffer cache misses.

for j=1:n,

for i=1:n,

sum=0;

for k=1:n,

sum=sum+A(Arindex(i),Acindex(k))*B(Brindex(k),Bcindex(j));

end;

D(Drindex(i),Dcindex(j))=sum+C(Crindex(i),Ccindex(j));

end;

end;

Figure 6. MATLAB code for computing matrix-matrix product update D=A*B+C

As an example, Consider the MATLAB code segment in Figure 6 for computing a
matrix-matrix product update A*B+C; such a code will not parallelized by a standard
Fortran and C compilers because of the index vectors used to access the elements of the
arrays A, B, C and D. Stream programming will first transform the code into a form
suitable for parallelism.

Kernel_dot(as, bs, sum, n)

sum=0;

for i=1:n,

sum=sum+as(i)*bs(i);

end;

Kernel_matvect(bs, ys, A(Arindex(1 .. n),Acindex(1 .. n)), Acindex, n)

for i=1:n,

/* gathers the Rrindex(i)-th row of A into a regular vector as*/

Streamgather(as, A(Arindex(i),Acindex(1 .. n)), Acindex);

Kernelcall("Kernel_dot",as, bs, sum, n);

ys(i)=sum;

end;

Kernel_vectadd(ys, cs, ds, n)

for i=1 :n,

ds(i)=ys(i)+cs(i) ;

end ;

Figure 7. Kernels codes:

Arima

Component reused methodology 75

The k-th loop is an inner product (aT b) of the Arindex(i)-th row (A(Arindex(i), Acin-
dex(1..n)) of A and the Bcindex(j)-th column (B(Brindex(1..n),Bcindex(j)) of B; let as-
sign this computation to kernel Kernel_dot. The i-th loop isa matrix-vector product update
D(Drindex(1..n),Dcindex(j))=A*B(Brindex(1..n),Bcindex(j))+C(Crindex(1..n),Ccindex(j)).
Let break it up into two kernels: the matrix-vector product ys= A*B(Brindex(1..n),Bcindex(j)),
assigned to kernel Kernel_matvect and the vector addition ds = ys+C(Crindex(1..n),Ccindex(j)),
assigned to kernel Kernel_vectadd. The codes for these kernels are given in (Figure 7).

The SVM code for the computation is as follows(Figure 8):

for j=1..n

/* gathers the Bcindex(j)-th column of B into a regular vector bs*/

Streamgather(bs, B(Brindex(1..n),Bcindex(j),Brindex);

/* gathers the Ccindex(j)-th column of C into a regular vector cs*/

Streamgather(cs, C(Crindex(1..n),Ccindex(j),Crindex);

Kernelcall("Kernel_matvect",bs, ys, A(Arindex(1 .. n),

Acindex(1 .. n)), Acindex, n);

Kernelcall("Kernel_vectadd",cs, ys, ds, n);

/* scaters a regular vector ds into the Dcindex(j)-th column of D */

Streamscater(D(Drindex(1:n),Dcindex(j)),ds, Drindex);

end

Figure 8. SVM computation code

Stream programs can be naturally represented as a graph of independent actors that
communicate explicitly over data channels. In general the input and output rates of actors
are known at compiler time. It can be simply represented using Synchronous DataFlow
(SDF) graphs [19]. The input and output to the computation kernels, and the dependen-
cies between the kernels are explicitly indicated. For the example above, the SDF graph is
given in Figure 9. Gummaraju et al describe in [19] the procedure for executing a stream
programme on a stream processor, the stream execution modeland methodology to map-
ping the stream execution model on general purpose processor. The interest in streaming
applications has spawned a number of programming languagesthat target the streaming
domain, including StreamIt [42], Streamware [20], StreamC/KernelC [22].

kernel_Vectaddkernel_dot
bs bs

as

cs

sum ys ds

kernel_Matvect

Figure 9. SDF graph of a stream program of the matrix-matrix computation. The Ker-
nel_matvect receives bs; stream loads as and produces ys. It uses Kernel_dot, which
receives bs and as and produces sum. The Kernel_vectadd receives cs and ys, and pro-
duces ds.

Arima

76 Arima – Volume 18 – 2014

3. New Integration Approach

Our approach to integrating components consists of 3 main steps, namely:

– The system specification: behavioural description of the system as SDF graph and
checking the system hardware feasibility.

– The automatic synthesis: this stage takes as input an ALPHAdescription of the
system and automatically computes the scheduling, determines logical clocks period, and
generates the VHDL controller code and the VHDL code of the whole system.

– Components Assembling: the last phase combines the codes obtained from the pre-
vious step with the VHDL code of the various components. The final code can thus be
submitted to a physical synthesis tool such as Xilinx ISE or Quartus of Atera.

3.1. System Specification

The system is modeled using the synchronous dataflow graph. This model is more
suitable for periodic multi-frequency applications. It offers to the designer the possibility
to verify the feasibility of the specification before starting the synthesis.

Consider for illustration the system described by the SDF graph in Figure 10. This
exemple consists of elementary hardware components (rectangles)cal1, cal2, cal3 and
synchonization components (circles). The nodes representthe treatments and the arcs are
communication (FIFOs) which are bounded and unidirectional memory; a value on the
arcs are the number of data produced or consumed at each iteration.

C

(3)

(5)

(1)

(2) (4)

(6)

B

1 1

1

A

1

Cal1

Cal2

Cal3

16

1 6

1 3

3

Figure 10. SDF graph Sample

This system can be described by a system of linear equations also referred to a balance
equations. A balance equation is based on the following condition: when iterating, the
amount of data produced by the source block is equal to the amount of data consumed by
the target block. for the above exemple the description is asfollows :

x1 − 6x3 =0
x2 − 3x4 =0
3x3 − x5 =0
16x4 − x5=0
x5 − x6 =0

where thexi
′s are the frequencies at which the nodes must be invoked.

Arima

Component reused methodology 77

Finding a solution to this systems means ensuring that the SDF graph can be executed
with a limited amount of memory.

We can write the system in the matrix formΓx = 0 or













1 0 −6 0 0 0
0 1 0 −3 0 0
0 0 3 0 −1 0
0 0 0 16 −1 0
0 0 0 0 1 −1





























x1

x2

x3

x4

x5

x6

















=

















0
0
0
0
0
0

















.

Γ is called topological matrix : the columns represent nodes and the lines represent
arcs.Γ(i, j) represents the amount of data produced or consumed by the node j on arci
each time it is invoked. This quantity is positive or negative if information is produced or
consumed. It is zero if nodej is not connected to arci.

Γ ∈ R
s−1×s andrank(Γ) = s − 1; sincerank(Γ) + null(Γ) = s is follow that

null(Γ) = 1 and the null space is reduced to a single element which is the vector solution
of the systemΓx = 0. This is the necessary condition for the existence of a statical and
periodical system scheduling. The components of this vector are frequencies indicating
how often a giving node of the graph should be invoked during aperiodT for the system
to remain consistent [23, 10]. For the above example the unique solution is,

x =

















96
9
16
3
48
48

















.

The period being defined as the inverse of the frequency, one can deduce the period of
each node by taking the inverse of its frequency. To reduce these periods to integer values,
they are multiplied by the lowest common multiple (LCM) frequencies. The resulting
vector contains the logic clocks period denoted byCE. It is worth pointing out that if
specification leads to a solution with very high clock frequency, it may not possible to
generate an architecture for the system.

After the system specification, one can verify the assembly conditions by checking the
existence of a periodic schedule using this topological matrix. Lee et al propose in [23]
some verification algorithms. If the assembly is possible, we move to the next step; if not
we must review the specification.

3.2. Automatic Synthesis using MMALPHA Environment

In this section we present an ALPHA description of parallel data stream application
whose modules run at different frequencies. Those applications called Multirate Parallel
Alpha DataFlow Systems (MP&DFS) were introduced by [11, 10].

Notice that, an ALPHA structured system is an ALPHA system that uses subsystems
or components.

Arima

78 Arima – Volume 18 – 2014

3.2.1. Hardware Component Modeling

The components aresynchronous elements, and their synchronization is based on a
fundamental clock signal denoted byclk. Each component is physically synchronized
with a clock validation signalclock-enabledenoted byCE [35]. For the system in Fig-
ure 10 we have

x̂ =

















9
96
54
288
18
18

















In other words, all registers of the component are loaded under the control of thisCE
signal.

So, each elementary hardware component is considered ascombinational element
component, computing stream in term of input streams and storing the result in a register.
As illustrated in Figure 11, this component is synchronizedby a clock-enable signal, to
operate at a period of 9 clock cycles, and with an initial shift of 2 clock cycles or with
period 18 without shift.

We can see that, by changing the pattern of theCE signal, we may use the same com-
ponent with different periods and different shifts: indeed, all registers of the component
operate at a virtual clock whose period and shift are specified byCE. The combination of
clk andCE is denoted by a pair(λ, ϕ) whereλ represents the period of the signal andϕ

its initial shift.

Arima

Component reused methodology 79

clk

CE

a

b

cCombinational
Logic

〈λ, ϕ〉

(a) A combinational component (b) Register representation

clk

CE

 0 1 2 3 4 5 6 7 8 9 10 11 12

Shift Périod

(c) A clocking with initial shift 2 and period 9

CE

clk

 Périod

5210 3 6 7 8 9 10 12 13 16 17 184 11 14 15

(d) A clocking with period 18 without shift

Figure 11. A combinational component (a) and its synchronization can be (c) using a
clock-enable signal with period 9 and initial shift is 2; or (d) with period 18 without shift. (b)
shows the representation of a register with period λ and shift ϕ.

3.2.2. System Specification using ALPHA

ALPHA programs are functional (declarative) description that operate on variables
which are functions from a polyhedral domain to some type of data. This is best explained
by the example of Figure 12 which presents a sketch of the system describe in Figure 10.

Line 1 is the declaration of asystemof ALPHA equations. Lines 2 and 3 define the
input of this system, namely, theA andB variables. Both variables correspond to a semi-
infinite sequences of 2-bit signed integers, that we callstreamsfor the purpose of this
paper. Similarly, line 6 defines the outputC. Lines 8 and 9 contain the declaration of local
variables. Lines 11 and 13 are simple assignment ofA andB to the local streamAmirr
andBmirr which are stored in the registers (lines 12 and 14) before being used by the
modulesCal1 andCal2 respectively. Line 12 makes use of an ALPHA subsystem, here

Arima

80 Arima – Volume 18 – 2014

representing a register file of length 1. Lines 15, 16 and 17 instantiate componentsCal1,
Cal2 andCal3 respectively.

Eachuse statement allows one to instantiate the definition of another, pre-defined,
ALPHA subsystem.

1 system Compute

2 (A : {i|0<=i} of integer[S,2];

3 B : {j|0<=j} of integer[S,2])

4 returns

5 -- output data and control

6 (C: {i|0<=i} of integer[S,2]);

7 var

8 out_cal1, out_cal2, in_cal3: {i|0<=i} of integer[S,2];

9 Amir, AmirReg, Bmir, BmirReg, mul, Cmir: {i|0<=i} of integer[S,2];

10 let

11 Amir = A;

12 use registerFile[1] (Amir) returns (AmirReg);

13 Bmir = B;

14 use registerFile[1] (Bmir) returns (BmirReg);

15 use Cal1(AmirReg) returns (out_cal1);

16 use Cal2(BmirReg) returns (out_cal2);

17 use Cal3 (out_cal1,out_cal2) returns (in_cal3);

18 use registerFile[1] (in_cal3) returns (Cmir);

19 C = Cmir;

20 tel;

Figure 12. The ALPHA Program of the example of figure 10

3.3. Scheduling

In [11] it is explained how to schedule stream components, but we summarize here
in order to illustrate its power. The method that we use has two steps: first, find out the
periodof each subsystem, then compute an overallaffineschedule for the entire system.
Consider a subsystemS with input I and outputO (to simplify the matters, we assume
only one input and one output). Assume that this subsystem admits an integral schedule
of the formTI(i, ...) = i + αI, andTO(i, ...) = i + αO, wherei denotes the index of
the input and output streams. (Notice that streams of valuesare multi-dimensional, and
the other dimensions of the streams are represented by dots.) Such schedules are called
data-flowschedules, since they are monotonically increasing functions of the first index
i of the stream.

In other words, we assume that whenever an outputO(i, ...) depends on an input
I(j, ...) through the equations which defineS, thenTO(i, ...) > TI(j, ...), and moreover,
we assume thatT is non-negative.

Arima

Component reused methodology 81

Note that for all positive integersλ, λTI andλTO are also a valid schedule for this
system. Indeed, ifTO(i, ...) > TI(j, ...), thenλ(TO(i, ...)) > λ(TI(j, ...)), sinceT is
nonnegative for alli. We call this aλ-slowversion ofS.

To implement such a system, it suffices to clock the corresponding hardware subsys-
tem with aλ times faster clock, that enables to have valid signal every 2clock tick. Note
that, with this implementation,the number of registers is unchangedinside the hardware
subsystem.

In general, adataflowALPHA scheduleis a linear functionT which assigns to each
variableA of an ALPHA data-flow system a schedule of the formTA(i, ...) = λAi + βA,
with the constraints that:

1) if A depends onB through a regular data-flow system, thenλA = λB;

2) if A depends onB through aK-up-sampler, thenλB = KλA;

3) if A depends onB through aK-down-sampler, thenλB =
λA
K

;

4) βA = λAαA, for all A.

Theλ’s are positive integers, and theα’s are non-negative integers. This definition ensures
that all elements of the system are scheduled with buffers whose length don’t depend oni.
The conditions on theλ coefficients give a system of homogeneous integral equations of
a special type, since all equations have the formλ1 = Kλ2, whereK is a strictly positive
rational number.

In [23], it is explained how such a system can be solved in timelinear in the number of
equations. Once the periods are found, they can be combined with the schedule constraints
that correspond to each component (i.e. ALPHA subsystem), and any solution provides a
scheduling for the whole system. A structured polyhedral scheduling approach can be
taken to solve this problem, as explained in [11].

4. Wrapper Architecture and Components Assembling

4.1. Wrapper Architecture

The method we propose is to add to the hardware description ofeach component a
wrapper that allows this component to be executed according to its imposed schedule.
Figure 13 illustrates the model of the wrapper we have developed. Besides its data inputs
and outputs, a component has a clock signal (clk), a general clock-enable signal (CE)
and a reset signal (rst).

Arima

82 Arima – Volume 18 – 2014

FSM

clk CE_genrst

rst1

rst2

CE1 rst1 clk

λ1periode

input Component1

CE generator
CE1

CE2

CE2 rst2 clk

λ2periode

output
Component 2

CE generator

Figure 13. Wrapper architecture. In this representation we have two components which
use clock-enable signals CE1 and CE2 generated with periods λ1 and λ2 respectively.

The wrapper includes also clock-enable generators, one foreach period used in the
system. These clock-enable signals are used to generate thevarious delayed clock-enables,
by means of delay lines. Clock-enable generators are simplymodulo counters, the register
of which is triggered by the general clock-enable signal of the wrapper (see Figure 14).

IP
data_in data_out

D Q D Q data

CE_gen

Modulo Counter

 clkenable

data

Figure 14. Wrapper process model

In order to enhance the synchronization of the whole system with its environment, a
further activation signal has been added, this is a general clock enable signal. We use for
this purpose a model based on FIFO queue. This type of interface is widely used in the
systems that operate on data streams input and produce a datastream as output. According
to the status of FIFO, the general clock enable signal can freeze or not the system. This
signal denoted byCE_gen is generated according to equation:
enable = (NOT(full_fifo_out) AND NOT(empty_fifo_in))

Arima

Component reused methodology 83

CE

CE_gen

Reset

Clk

Modulo counter

λ=4

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

Figure 15. Enable signal CEλi whith λ = 4.

1 ENTITY FSM IS

2 PORT(

3 clk : IN STD_LOGIC;

4 CE_gen : IN STD_LOGIC;

5 rst : IN STD_LOGIC;

6 reset0 : OUT STD_LOGIC;

7 reset1 : OUT STD_LOGIC);

8 END FSM;

9 BEGIN

10 ---- Synchronous reset process

11 PROCESS(rst,clk)

12 BEGIN

13 IF clk = ’1’ AND clk’event THEN

14 IF CE_gen = ’1’ THEN

15 IF rst=’0’ THEN

16 curstate <= state0;

17 count <= 0;

................................

................................

................................

18 END archiOfFSM;

Figure 16. Entity FMS generated by MMALPHA

It is part of activation signals of each component. Thus the enable input signal of the
various components is a combination ofCEλi andCE_gen according to Figure 15 with
λ = 4.

4.2. Components Assembling

After the system scheduling, theMMALPHA environment produces two VHDL codes,
the controller code and the all system code. For illustration consider the application de-

Arima

84 Arima – Volume 18 – 2014

scribed in Figure 12 we obtain : (i)the controller codewhich has two entities; the entity
FMS (Figure 16) that takes as inputsclk, rst andCE_gen generated as described in sec-
tion 4. It produces two outputs because we have only two logical clocks in this case: the
outputreset0 is used by the componentFFT as shown at lines21 and22 of Figure 18,
and the outputreset0 used by the componentPeriodEnable128 (see Figure 17). The
role ofPeriodEnable128 is to produce the periodic validation signalCEwith period128.

(ii) The VHDL code of the all systemis presented in Figure 18, this code has several
parts: Lines4 to 12 correspond to the system declaration(the entity here isTwoFFT); lines
14 to 15 are the declaration of the flexible component (IP), wehave here one component,
theFFT component. The componentsRegistersenable1_1 is register (lines16 and17).
Line 21 to 24 are the instantiations of all the components with the appropriates signal.

1 ENTITY PeriodEnable128 IS

2 PORT(

3 clk : IN STD_LOGIC; -- global clock

4 ceGen : IN STD_LOGIC; -- general clock enable signal

5 rst : IN STD_LOGIC; -- reset signal

6 periodicGe : OUT STD_LOGIC -- periodic clock enable);

7 END PeriodEnable128;

...........................

...........................

8 PROCESS(clk)

9 BEGIN

10 IF rising_edge(clk) THEN

11 IF ceGen=’1’ THEN

12 IF rst=’0’ THEN -- enable is 0 when rst

13 counter <= "0000000";

..............................

14 periodicGe <= ’1’ WHEN (counter = "0000000" AND ceGen = ’1’) ELSE ’0’;

15 END archiOfPeriodEnable128;

Figure 17. Entity Periodic enable generated by MMALPHA

Arima

Component reused methodology 85

1 -- VHDL Model Created for "system TwoFFTs"

2 -- 28/12/2010 16:19:56.283228

3 -- Alpha2Vhdl Version 0.9

......................................

4 ENTITY TwoFFTs IS

5 PORT(

6 clk: IN STD_LOGIC;

7 CE : IN STD_LOGIC;

8 Rst : IN STD_LOGIC;

9 A : IN SIGNED (1 DOWNTO 0);

10 B : IN SIGNED (1 DOWNTO 0);

11 C : OUT SIGNED (1 DOWNTO 0));

12 END TwoFFTs;

...............

................

13 -- Insert missing components here!

14 COMPONENT FFT IS

15 PORT(

...............)

16 COMPONENT Registersenable1_1 IS

17 PORT(

................)

18 -- Controller

19 COMPONENT PeriodEnable128 IS

20 PORT(

................)

21 G1 : FFT PORT MAP (clk, enable1_1, reset1, AmirReg, fft1);

22 G2 : FFT PORT MAP (clk, enable1_1, reset1, BmirReg, fft2);

................................

23 G11 : Fsm PORT MAP (clk, CE, rst, reset0, reset1);

24 G14 : PeriodEnable128 PORT MAP (clk, CE, reset0, enable128);

..

25 END behavioural;

Figure 18. VHDL Code of the all system generated by MMALPHA

4.3. Time Model

The interface between our system model and the physical world constitutes a simple
model of time, whose characteristics can be summarized as follows:

– Our systems aresynchronized, in the sense that computations are triggered by a
common background clock.

Arima

86 Arima – Volume 18 – 2014

– The time behavior of our components isaffine-periodic. Each component in the
system is supposed to execute at periodic instants of time, after an initial shift. This model
does not support exceptional events, as true reactive systems do, unless these events were
watched at regular, periodic instants of time.

– Our model of time supports some forms of parallelism. Indeed, each component can
be an affine-parameterized assembly of parallel components, either pipeline (or systolic)
components, or true parallel systems operating on vectors of data.

– The systems that we consider aretime-delayable. This means that a component can
be scheduled several clock ticks later or earlier, without affecting the semantics of the
whole system. In other words, provided the final implementation of the system meets the
dependence constraints expressed by the initial description, we consider that its behavior
is correct. This contrasts with the underlying hypothesis of synchronous languagessuch
as Signal [40], where the description of the flows of data represents a strict specification
of the behavior of the physical constraints put on the system, and therefore, cannot be
relaxed.

– Components areslowable. This means that they can operate at any sub-clock of
their fundamental clock, under the control of the clock-enable signal. This property has
some relationship withdelay-insensitivitywhere components can be executed even in the
presence of some delays in their inputs.

– Time isstretchable. As summarized in figure 19, the clocks used here are logical
clocks. They are based on a global clock and activation signals which depend on the
period (stretch) of each component.

Period/stretch

Global Clock

Clock

Figure 19. A stretchable clock made using external clocks.

5. WCDMA Implementation

These methods were implemented as part of theMMALPHA environment. Components
are defined by means of ALPHA systems and can be synthesized using theMMALPHA

software.

Arima

Component reused methodology 87

4

256

4

4

 FIR

 FIR

1 4

1

1

256 1

1

1

1

1

1

1

1

1

4 1

14 1

1

 Data

Channelization

Channelization

Control

Scrambling

Kasami code

OVSF code

OVSF code

Figure 20. Graph of a simplified WCDMA emitter;

To evaluate the methodology that we have presented, we have realized theWCDMA

emitter. Figure 20 represents a simplified version of aWCDMA emitter[14]. It consists
of elementary hardware components (rectangles), synchronization components (circles),
connected together with arcs. Following the SDF actor notation[4], an arc carries at its
origin the number of values produced by a component during one of its execution, and
at its extremity, the number of values consumed by a component during one execution of
the receiving component.

The inputs to thisWCDMA graph are a data signal and a control signal. Frequencies of
data and control are different: there is one control value for 64 data values. TheWCDMA

emitter contains, from the left to the right:

– Two up-sampling components, one for the data signal, and one for the control signal
(round up-samplers). Their role is to reduce the signal frequencies to theWCDMA standard
frequency which is 3.84MHz, by spreading by a factor of 4 for data and 256 for control.

– Channelization components, whose role is to multiply the signals previously up-
sampled by orthogonal codes of variable length OVSF (Orthogonal Variable Spreading
Factor). Spreading transforms every bit into a given numberof chips, hence increasing
the bandwidth. For the sake of simplicity, we do not represent here the memory system
for storing and supplying these data and control OVSF codes.

– A scrambler, which is a complex multiplication of signals by Kasami codes; this op-
eration allows the system to distinguish the information coming from different terminals,
mobile and base stations.

– Up-sampling by a factor of 4 before filtering.

– Two Finite Impulse Response filters (FIR) which aim to cancel inter-symbol inter-
ference between different information.

The outputs of this system consist of the two signals emittedby the filters, at the same
frequency.

These components are executed at different frequencies. Taking as reference the filters
which are executed at the highest frequency, the clock period of the filters is 1, for the
scrambling and channelization the period is 4, the period ofthe input data is 16 and that

Arima

88 Arima – Volume 18 – 2014

of the input control is 1024. The periods are calculated as described in section 3 and
represented in the Figure 21. In this Figure the components are represented in terms of
combinational element (circle) and register as described in section 3.2.

Output FIFO
FIR

Control FIR

(4,2)

Data FIR
Data Scrambling

(4,2)

Control output

Data output

Scrambling

(1,35)

Control Scrambling

(1,35)

Input FIFO

(16,0) (4,1)

Channelization

Channelization

Control FIFO

Data FIFO Data

ControlControl spreading

(4,1)(1024,0)

Data spreading

Figure 21. WCDMA emitter representation after scheduling process

We also know the detailed schedule of the components, in particular the frequency of
their inputs and outputs and when needed a reference starting time for their controller.
In this particular example, only the filters need a controller, which explain the(1, 35)
for Data FIR andControl FIR in Figure 21. So, the filters behavior must therefore
be taken into account in the overall controller that we generate. The wrapper, and the
controller were generated automatically.

The generation of the completeVHDL description byMMALPHA takes1.10s on a
current MacBook laptop, including the scheduling that is done in 0.03s using MATHE-
MATICA .

The whole system was simulated with the Mentor Graphics toolModelsim SE-2d [43]
for the functional verification. The hardware synthesis of each component as well as the
entire system were made within the Xilinx ISE environment [28]. Table 1 presents the
results of the synthesis for theWCDMA emitter produced by this method. For each com-
ponent, the number of slices, multiplier-accululators (MAC), latches and the estimated
clock frequency are given. This example shows that the area of the wrapper is negligible,
compared to the components of the emitter. Moreover, it has no influence on the estimated
frequency of the whole architecture.

Component #Slices #MAC #Latch Frequency (MHz)
FSM 24 0 34 -
Logical clock 4 2 0 2 -
Logical clock 16 10 0 13 -
Logical clock 1024 10 0 13 -
Wrapper (total) 41 0 53 415,6 MHz
Emitter (total) 1962 68 7528 129,5 MHz

Table 1. Results of the synthesis for the upstream WCDMA emitter on a Xilinx Virtex4 FPGA

Arima

Component reused methodology 89

6. Comparison with Related Work

In this section we compare our work with some related work.

– Synthesis under constraints:In our approach we implicitly take into account the
size of storage elements because, in the behavioural description of the system we know
how many data is produced or consumed by each block. So it is possible to guarantee as
describe in section3.1 that system can be executed with a limited amount of memory. This
solves the problem of memory size required to store data. Unlike the methods of synthesis
under constraints ([12, 16]) we consider that data are produced and consumed in the same
order.

– Multidimensional Synchronous Dataflow Model: MDSDF shares a lot of prop-
erties with the model presented in this paper. The calculation of the periods of our com-
ponents appears as a transposition, in the domain of recurrence equations, of the balance
equations of SDF. But in our approach the expression of ALPHA programs is much more
suited to the description of parallel systems, and closer toa loop-like description of cal-
culations.

– Latency Insensitive Design:These models generate a significant additional hard-
ware resource in order to take into account the different control signals. Our approach,
just like the extension proposed by Casu and Macchiarulo, does not use activation sig-
nals ("Stall" or read) but periodic scheduling process. In addition, our model issuit-
able for modelling multi-frequencies systems where components are executed at different
frequencies.

– Multi-clock Architecture: similar to the approaches described in section 2.4, we
propose a multi-clock system design approach with the advantage that scheduling allows
us to know exactly at what time each component must be enabled. We do not need activa-
tion signals as in [7] and [38], thus reducing hardware cost due to the use of component
activation signals. But we use the point-to-point communication and system throughput
is limited by the throughput of the slowest synchronous module. We generate a systolic
architecture which is a network of processors that rhythmically compute and pass data
through the system. So the system globally synchronous.

– Stream programming: The stream programming is a programming paradigm that
generate a Stream Virtual Machine (SVM) and ALPHA is a hardware synthesis language
that generate systolic architecture. But despite this, they share a lot in common. They are
based on the same model, the synchronous dataflow graph. Stream programming have
been developed to handle systems computing on streams of data. The extension we added
to ALPHA makes it able to generate architecture for stream applications. ALPHA can
generate parallel SIMD architectures. In our approach the flexible components communi-
cate through bounded FIFO and exploit the producer-consumer principle. The data pro-
duced are consumed directly without going through the main memory.

The originality of this work is the introduction of relationship between synchronous
dataflow model the polyhedral model, thus enabling the use ofvery powerful techniques
to detect, handle parallelism in stream applications and tomanage the transformation of
parallel programs to architectures. The systems that we obtain aretime-delayablesome-
thing that is not possible for those described usingsynchronous languagessuch as Sig-
nal [17, 3], which useaffine-periodictime behavior also.

Arima

90 Arima – Volume 18 – 2014

In our approach, we replace the clock based on the combinational logic in the initial
approaches to LIS by finite state machine of Moore type that ismuch easier to implement
than those used by [38, 39] which are Mealy machines. The complexity of the wrapper
that we offer does not depend on the number of component computation cycles as in other
approaches, but only on the number of ports; thus reducing the hardware cost.

7. Conclusion

We have presented a model for the automatic hardware synthesis of stream systems.
A simple model of time was introduced, and its properties were shown to allow a detailed
scheduling to be found automatically. A hardware implementation was presented, based
on the addition of a simple wrapper.

Our work combines the synchronous data-flow approach and thepolyhedral model
to achieve a fully automated synthesis for some kinds of streams systems which are of-
ten found in Cyber physical systems. Our main contribution is a model that combines
both stream processing and parallel management. Indeed, the polyhedral model is a very
powerful framework for exploiting loop parallelism, either for programming parallel ar-
chitectures or for the high-level synthesis of hardware devices.

Further research will aim at investigating the limits of oursimplified model of time,
both in terms of potential for tractable automatic methods,and in terms of interfacing with
complex Cyber physical systems, where the interaction withthe physical world cannot be
represented only asregularstreams of data.

8. References

[1] F. ABBES, E. CASSEAU, M. ABID , P. COUSSY, J.B. LEGOFF, “IP Integration methodology
for SoC design ”,IN ICM04 International Conference on Microelectronics, Tunis, dec, 2004.

[2] I. A UGÉ AND F. PÉTROT AND F. DONNET AND P. GOMEZ “ Platform-Based Design From
Parallel C Specifications ”,IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 24(12) pages 1811-1826, 2005.

[3] L. B ESNARD, T. GAUTIER AND P. LE GUERNIC, AND J. TALPIN “Compilation of poly-
chronous dataflow equations ”,Synthesis of Embedded Software Springer, 2010

[4] S. S. BHATTACHARYYA “Compiling Dataflow Program for digital signal processing ”, PhD
Thesis, University of Califormia at Berkeley, jully,1997.

[5] P. BOMEL AND E. MARTIN AND E. BOUTILLON, “Synchronous Processor synthesis for La-
tency Insensitive Systems ”,Proceedings of the Design, Automation and Test in Europe Con-
ference and Exhibition (DATE’02), 2005.

[6] P. BOMEL “GAUT, High Level Synthesis for Digital Signal Processors:User’s Manual, version
4.1 ” Laboratoire d’Electronique des Systèmes Temps RéelLESTER, University of southern
Britany.

[7] D. BORMAN AND P. Y. K. CHEUNG “Asynchronous wrapper for heterogeneous systems”In
proceedings of ICCD, 1997.

[8] L. P. CARLONI AND K. L. M CM ILLAN AND A. L. SANGIOVANNI -VINCENTELLI , “Theory
of Latency-Insensitive Design ”,IEEE Transactions on Computer-Aided Design of Integrated
Circuits ans Systems, num. vol. 20, NO. 9, sptember, 2001.

Arima

Component reused methodology 91

[9] M. R. CASU AND L. M ACCHIARULO “Adaptive Latency-Insensitive, Globally Asynchronous,
Locally Synchronous Design and Test ”,IEEE Design & Test of Computers, 2007.

[10] A. CHANA AND P. QUINTON “Intellectual Property (IP) Integration Approach for Data-Flow
parallel embedded Systems ”,Proceedings of Fourth International IEEE EAI Conference on
e-Infrastructure and e-Services for Developing Countriesnum. November, 2012.

[11] F. CHAROT AND M. NYAMSI AND P. QUINTON AND C. WAGNERA “Modeling and schedul-
ing Parallel DataFlow systems using structured systems of Recurrence Equations ”,Procedings
of the 15th IEEE International Conference on Aplication-Specific system, Architectures and
Processors(ASAP’04), 2004.

[12] C. CHAVET “Synthèse automatique d’interfaces de communication matérielles pour la con-
ception d’applications du domaine du traitement du signal”, Thèse, Université de Bretagne
Sud,2007.

[13] C. CHAVET AND P. COUSSY AND P. URAD AND E. MARTIN “A Design Methodology for
Space-Time Adapter ”,IEEE/ACM Great Lakes Symposium on VLSI, March,2007.

[14] H. -H. CHEN “The Next Generation of CDMA Technologies ”,John Wiley and sons, 2007.

[15] M. J. CHEN AND E. A. LEE “Design and Implementation of a Multidimensional Syn-
chronous Dataflow environment ”,IEEE Asilomar Conference on Signal, System and computer,
97.

[16] P. COUSSY AND E. CASSEAU AND P. BOMEL AND A. BAGANNE AND E. MARTIN “A
Formal Method for Hardware IP Design and Integration under I/O and timing constraints ”,
ACM Transactions on Embedded Computing systems, vol. 5, N°1, page 29-53,2006.

[17] A. GAMATIÉ AND T. GAUTIER “The Signal Synchronous Multi-clock Approach to the De-
sign of Distributed Embedded Systems ”,IEEE Transactions on Parallel and Distributed Sys-
tems, 2010

[18] A. GERSTLAUER ET AL “Electronic System-Level Synthesis Methodologies ”,IEEE Trans-
actions on Computer-aides Design of Integrated Circuits and Systems,2009.

[19] J. GUMMARAJU AND M. ROSENBLUM “ Stream Programming on General-Purpose Pro-
cessors ”, in Proceedings of the 38th annual international symposium on microarchitecture
(MICRO-38), November 2005, Barcelona Spain

[20] J. GUMMARAJUZ AND J. COBURNZ AND Y. TURNERX AND M. ROSENBLUM “
Streamware: Programming General-Purpose Multicore Processors Using Streams ”ASP-
LOS’08, March 1, 2008, Seattle, Washington, USA.

[21] S. GUPTA AND R. GUPTA AND N. DUTT AND A. N ICOLAU “ SPARK: A Parallelizing
Approach to the High-Level Synthesis of Digital Circuits ”,Kluwer Academic2004.

[22] B. KHAILANY ET AL “ Imagine : Media processing with streams ”IEEE micro, 21(2) :35-46
2001.

[23] E. A. LEE, D. G. MESSERSCHMITT“Static Scheduling of Synchronous DataFlow Programs
for Digital Signal Processing ”,IEEE Transactions of Computers, num. vol. C-36, page 135-
140, 1987.

[24] E. A. LEE “Cyber physical systems : Design challenges ”,In International Symposium on
Object/Component/service-oriented real time Distrubuted Computing(ISORC), May 2008.

[25] E. A. LEE AND S. A. SESHIA “Introduction to Embedded Systems - A Cyber-Physical Sys-
tems Approach ”,LeeSeshia.org, 2011.

[26] EDWARD A. L EE AND THOMAS M. PARKS “ Dataflow Process Networks ”,published in
proceeding of the IEEE, May, 1995.

[27] G. LHAIRECH-LEBRETON AND P. COUSSY AND E. MARTIN “Hierarchical and Multiple-
clock Domain High-Level Synthesis for Low-Power Design on FPGA ”, Proceedings of FPL,
2010.

Arima

92 Arima – Volume 18 – 2014

[28] MENTOR GRAPHICS CORPORATE“http://www.model.com, Technical report ”,Modelsim,
simulation environment, 2012

[29] C. MAURAS “IRISA, Université de Rennes I ”,Définition de ALPHA: un langage pour la
programmation systolique,1989

[30] P. K. MURTHY AND E. A. LEE “Multidimensional synchronous dataflow ”,IEEE Transac-
tions on signal processing, num. vol.50, page2064-2079, august, 2002.

[31] H. NIKOLOV ET AL “Automated Integration of Dedicated Hardwired IP Cores in Heteroge-
neous MPSoCs Designed with ESPAM ”,EURASIP Journal on Embedded Systems, num. Ar-
ticle ID 726096, Vol. 2008, 15 Pages, 2008.

[32] OCP INTERNATIONAL PARTNERSHIP, “http://www.ocpip.org ”, 2012

[33] THOMAS M. PARKS AND JOSÉ LUIS PINO AND EDWARD A. L EE “A comparison of Syn-
chronous and Cyclo-Static Dataflow ”Proceeding of the IEEE Asilomar conference on Signal,
Systems, and Computers,oct,1995

[34] P. QUINTON AND T. RISSET “Structured scheduling of recurrence equations : theory and
practice ”,Springer verlag, SAMOS, Sep 2001.

[35] P. QUINTON AND A. M. CHANA AND S. DERRIEN “Efficient Hardware Implementation of
Data-Flow Parallel Embedded Systems ”IEEE Proceedings of International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XII), pages
364-371, 2012

[36] R. SALEH , S. WILTON , S. MIRABBASI , A. HU, M. GREENSTREET, G. LEMIEUX , P. P.
PANDE, C. GRECU, A. IVANOV “System-on-chip : Reuse and Integration ”Proceedings of
IEEE num. Vol . 94, 2006.

[37] O. SENTIEYS, J. P. DIGUET, AND J. L. PHILIPPE “ GAUT: A High Level Synthesis Tool
Dedicated to Real Time Signal Processing Application ”,In European Design Automation
Conference, University booth stand, Sep 2000.

[38] M. SINGH AND M. THEOBALD “ Generalized Latency-Insensitive Systems for single-clock
and Multi-clock Architecture ”,IEEE Proceedings of the Design, Automation and Test in Eu-
rope Conference and Exhibition (DATE’04), 2004.

[39] M. SINGH AND A. AGIWAL “Multi-Clock Latency-Insensitive Architecture and Wrapper
synthesis ”,Electronic Notes in Theoretical Computer Science, 2006.

[40] I. SMARANDACHE , P. LE GUERNIC, “Affine transformations in SIGNAL and their applica-
tion in the spécification and validation of real-time guif,Springer-Verlagnum. LNCS 1231,
May, 1997.

[41] T. STEFANOV AND C. ZISSULESCU AND A. TURJAN AND B. K IENHUIS, AND E. DE-
PRETTERE“ System Design Using Kahn Process Networks: The Compaan/Laura Approach ”,
In DATE’04: Proceedings of the Conference on Design, Automation and Test in Europe, page
10340, Washington, DC, USA,, 2004.

[42] W. THIES, M. KARCZMAREK, S. AMARASINGHE “StreamIt : A language for streaming Ap-
plications ”, In 11th conf. Compiled Construction, num. LNCS 2304, pages 179-196. Springer-
Verlag, 2002.

[43] X ILINX ISE “http://www.xilinx.com, Technical report ”,Xilinx Integrated Software Envi-
ronement(ISE),2012

Arima

