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ABSTRACT. The growing complexity of new chips and the time-to-market constraints require funda-
mental changes in the way systems are designed. Systems on Chip (SoC) based on reused com-
ponents have become an absolute necessity to embedded systems companies that want to remain
competitive. However, the design of a SoC is extremely complex because it encompasses a range of
difficult problems in hardware and software design. This paper focuses on the design of parallel and
multi-frequency applications using flexible components. Flexible parallel components are assembled
using a scheduling method which combines the synchronous data-flow principle of balance equations
and the polyhedral scheduling technique. Our approach allows a flexible component to be modelled
and a full system to be assembled and synthesized with automatically generated wrappers. The work
presented here is an extension of previous work. We illustrate our method on a simplified wCbMA
system. We discuss the relationship of this approach with multi-clock architecture, latency-insensitive
design, multidimensional data-flow systems and stream programming.

RESUME. La complexité croissante des nouvelles puces et les contraintes de mise sur le marché
exigent des changements fondamentaux dans la démarche de conception des systémes. Les sys-
témes sur puce (SoC) basés sur les composants réutilisables sont devenus une nécessité absolue
pour les entreprises de systémes intégrés pour rester compétitives. Cependant, la conception d’'un
SoC est extrémement complexe car elle englobe une série de problémes difficiles du domaine de la
conception matérielle/logicielle. Cet article présente une approche de réutilisation de composant pour
la conception d’applications paralléles et multi-fréquences. Les composants flexibles sont assemblés
a l'aide d'une méthode d'ordonnancement qui combine les principes des équations d'équilibre du
modele flot de données et la technique d’ordonnancement du modéle polyédrique. Notre approche
permet de modéliser les composants flexibles, d’'assembler et de synthétiser un systéme complet
avec des interfaces (ou Wrapper) générés automatiquement. Le travail présenté ici est une exten-
sion des travaux antérieurs, nous illustrons notre méthode sur un modeéle simplifié du wcbMA. Nous
discutons aussi dans cet article de la relation entre cette approche et celles des architectures multi-
horloge, des systémes insensibles a la latence, du modele flot de données multidimensionnels et de
la programmation par flux.
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1. Introduction

Over the past 20 years, embedded systems have become theflthsimost advanced
hardware and software technologies. During this periogl jitiplementation of embed-
ded systems has evolved from microcontroller to fully imégégd systems-on-chip (SoC).
SoCs and related technologies are driving embedded sysbeiang and seem likely to do
so in the foreseeable future. New demanding applicatiotsrins of processing power
appeared over the past 20 years, driven by PC boom, espddialticore PC, Internet
and wireless environments. These applications are foutidibscientific computing and
signal processing (telecommunications, multimedia psicgy, etc.) and more generally
in cyber-physical systems [24, 25]. Processing such agpdics requires computing high
capacity data that can be achieved only through paralleflestidbuted computing. There-
fore, difficulties to develop those applications are priflgatue to the exploitation of data
and arithmetic parallelism, time and resource constraints

Usually such systems are designed by re-using existingiamdtor hardware modules
often calledflexible blocksThese flexible components are available as software or hard
ware module and represent specific application blocks épradiprocessing (DCT, FFT,
etc.), telecommunications (Viterbi codes, Turbo-codés.,),eor Multimedia (MPEG2,
MPEG4, JPEG, etc.)[1]. In practice, it is not easy to assemabld operate components
from different designers. Even if they are tested befordh#rere is no guarantee that,
when put together the system will work correctly[32]. Intstipn of the components must
take into account several aspects first of all, the compamanst be synchronized to al-
low a correct overall operation of the system, and to enstwpgy data exchange and
valid communication protocols. On the other hand, input@miputs must sometimes be
buffered in order to meet synchronization constraints.

There are several Electronic System-Level (ESL) designaguhes [18] based on
IP reuse that aim to reduce the impact of data exchange beteaeponents or power
consumption.We present in our paper a systematic methodttonatically generate a
hardware architecture for multi-clock, parallel data-fleystems with flexible generic
components. Our design flow follows the top-down approadiSif synthesis tools [18].
The method is based on Latency Insensitive Systems (LI®)ytend the synthesis pro-
cess is preceded by the synchronous Data-flow (SDF) systsenigigon. Our scheduling
technique combines the method used indfechronous data-flow mode!3, 30] and the
polyhedral modeinethod, as described in [11]. This allows to deduce the rdiffelogic
sub-clocks that meet the 1/0O constraints of each compoaadtthe number of additional
registers that may be needed between some of the compowerdtso present in this pa-
per the implementation of our approach as an extension dfititelevel synthesis envi-
ronment MMALPHA. MMALPHA is an academic high level synthesis tools as Spark[21],
Compaan/Laura[41], GAUT[37] and UGHJ2]. Note that Compaad MMALPHA have
focused on the efficient compilation of loops, and they usepthlyhedral model to per-
form loop analysis and/or transformations.

The paper is organized as follows: in section 2 we presenegetated work; in sec-
tion 3, we introduce the design flow of our integration apptoand the system specifi-
cation using APHA language [29]; in section 4, we present the wrapper ardhitecthe
components assembling methodology and our model of timgedtion 5 we present an
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implementation ofvCDMA using our approach and in section 6 we compare our approach
with some related work. Finally section 7 is devoted to theobasion.

2. Related Work

In this section, we present some works related to (1) syighesler constraints, (2)
multidimensional synchronous dataflow graph, (3) latensgnsitive systems, (4) multi-
clock architectures and (5) stream programming.

2.1. Synthesis under constraints

As we said in the introduction, there are several other ESsigdeapproaches based
on IP reuse. Chavet et al [13] for example provide a desigrhaugtiogy to automati-
cally generate an adapter named Space-Time AdaBtBiR. This approach relies on
the formal modeling of communication constraints based &tesource Compatibility
Graph RCQ describing timing relations between data. The architecsynthesis is per-
formed by using library of designed and characterized gimelements as FIFO, LIFO
and Registers (see Figure 1). The synthesis needs a spwmifich interleave scheme
and a file containing user requirement (latency, throughgmmmunication interface, 1/O
parallelism ...) to generate a register transfer level (RIHDL architecture.
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Figure 1. STAR architecture [13]

This is the design and integration method under 1/O and tintonstraints as de-
scribed in[16]. This solution allows the adaptation of tlkencunications between com-
puting elements; however it does not handle the schedultivlggm, as the data sequenc-
ing is considered here as a constraint[12]. The approadiritied in [27] allows to slow
down the clock frequency in some of the parts of the desigdetwease the complexity
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of the clock-network, to reduce the number of long wires angdrform clock-gating.
This is to reduce the power consumption of FPGA architesture

2.2. Multidimensional Synchronous Dataflow Model

The Synchronous DataFlow (SDF) model introduced by Lee apdsérschmitt[23,
30] and its extensions [26, 33] are very popular for the desfgligital signal processing
systems, especially because of their formal propertieg;iwéllow deadlock detection,
static schedulability and the possibility to model muitduency systems. Initially, the
SDF model was proposed for single-dimensional signal msing but work has been
done to extend it to multidimensional signals, which arenfibdior example in image
processing system[23]. Besides having a greater expegsswer than SDF, multidimen-
sional synchronous dataflow (MDSFD)[30, 15] can detect gatallelism in a system.
This model gives the ability to implement nested resetaiiips and facilites data paral-
lelism exploitation.

As described in [30], scheduling tasks in MDSDF consistsejpeated calculation and
schedule generation; it uses the same algorithms as in then8idlel. These algorithms
are presented in [4].

2.3. Latency Insensitive Design

The theory of Latency Insensitive System (LIS) was intraiby Carloni [8] for
the design of complex systems by assembling flexible commenk is based on the as-
sumption that communications between the components is bgrmeans of channels
havingzero delay This theory has enabled the development of a new designoahetth
ogy for large systems on a chip. The main idea for commurminas pipelining : critical
interconnections are partitioned into interconnectiohsse durations meet the time con-
straints imposed by the clock period by inserting logic kicalled relay stations. The
relay stations are responsible for traffic regulation arebitteck management.

Carloni et al [8] propose an approach where a wrapper preatiesignal activations
that are necessary for a component. The wrapper here is cadmd a combinational
logic. The component is activated only if all its input ardidand if one has enough
memory to store the results of its next execution.

As shown in Figure 2, receiving the signalalid" for each input port means that the
data is available and the signaleady" for each output port means that the output device
is ready to receive the results. If all these signals do riet tiae value "1" simultaneously,
then a signatstall" is sentto all input/output and the input/output processterrupted
thus freezing the component through a clock enable signal.

Bomel et al [5] propose to use a specific processor that reatisxecutes cyclically
the operations stored in a memory. This Synchronizatiocé&sor (SP) communicates
with the LIS ports through FIFO like signals. These signas farmally equivalent to
valid, ready andstall of [8] and [39]. The SP model is specified by a Finite States
Machine (FSM) with three states : a reset state at power upparation-read state, and
a free-run state. This FSM run concurrently with the compbaead contains a data path.
Operation’s format is the concatenation of an input-maslquput-mask and a free-run
cycles number. The masks specify respectively the inputangut ports the FSM is
sensible to. The number of running cycles represents thdauaf clock cycles the com-
ponent can execute until the next synchronization poinavidd unnecessary signals and
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Figure 2. Wrapper internal logic with combinational logic [38]

save area, the memory is an asynchronous ROM (or SRAM withAslP@nd its inter-
face with the SP is reduced to two buses : the operation asldresoperation word (as
shown in Figure 3). The execution of the program is drivenrbggeratiorfreadcounter"
incremented modulo the memory size.

Casu and Macchiarulo [9] show that, in order to reduce thevaare cost due to the
use of component activation signals, it is possible to @pthe synchronization protocol
used in the previous approaches by a periodic scheduligitdgm applied to the compo-
nent’s clock. The component activation control is impletednwith Shift registers. This
approach relies on the hypothesis that there is no irreiyulardata streams:: it is never
necessary to randomly freeze the component.
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Figure 3. Wrapper with Synchronization Processor [5]
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2.4. Multi-clock Architecture

Singh et al[39, 38] proposed an extension of Carloni’'s apgiovhere it is assumed
that components are frozen if no data is available for the eg&cution. So, instead
of generating one stall signal for all input and output, ihngeates one signal for each
port. In this approach the combinatorial logic that drivesyponent clocks is replaced by
Mealy type FSM as shown in Figure 4. This FSM tests the statalyfthe relevant input
and output at each cycle and drives the component clock ohnwhey are all ready.
The approach can be implemented only if one disposes of/myipiut scheduling which
proves that components communication behavior is cyclicreot data-dependant. Singh
et al[38] extended point-to-point communication to moreeyal communication topolo-
gies (fork, joint) and proposed an adaptation of the basiz &pproach to multi-clock
Latency-Insensitive Architecture.

synch

sjauueyd ndino

input channels

Figure 4. Wrapper internal logic with State machine [38]

Bormann et al [7] proposed a method for creating Globally iesyonous Locally
Synchronous (GALS) circuits. Each local synchronous medusurrounded by an Asyn-
chronous Wrapper which provides an asynchronous intetfa@n otherwise module.
Each data exchange is accompanied by a request-acknovdenlgd handshake signals
so that it is unnecessary to consider the communicatioty thetaveen blocks. The authors
use a four-phase bundled data handshake protocol. Thefewarevents per handshake
cycle :Req+, Ack+, Req- andack- (see Figure 5) and data is guaranteed to be valid when
a Req- occurs and may change at any time afiek-. The wrapper synchronizes the
asynchronous date to the local clock by stretching or paubie clock.

2.5. Stream Programming

Stream programming expresses the parallelism inherenpiegram by decoupling
computation and memory accesses. The explicit paralledieth locality of data in a
stream program makes it easier to compile efficiently usiagdard compiler optimiza-
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Figure 5. Bormann/Cheung wrapper scheme and boolean equations [7]

tions. Initially targeted only for media/regular applicat, stream programming have
evolved into a more general applications such as Fluid dymasparse matrix compu-
tation or image processing. Programming streaming stytebeasummarized in three
steps :gather, operate, and scatter. Using Direct Memopg#s (DMA) units, the data
is first gathered in bulk from arbitrary memory locations inimmemory (MM) into lo-
cal memories (LM) also called Stream Register Files (SRRgnlthe data stream from
the local memory is directly operated upon by one or moreddsrnvhere each kernel is
comprised of several operations. Finally, the output isteoed back in the main memory.
In essence, a stream program decouples computation andmnantesses by boosting
the memory reads before the computation, and postponirigswof the live data to mem-
ory after the computation. Stream programming, therefmayerts the memory latency
problem into a memory bandwidth problem [19, 42]. The gatlaed scatters of data may
be from or to sequential, strided, or random locations inraayadepending on the type
of application.

Stream program is first compiled into an abstract machineateadled Stream Virtual
Machine (SVM) containing processors(control processomgutational/kernel proces-
sor, DMA units) and memory (global memory, SRF, local regist. The computational
model can be described as follows[19]:

— The control processor schedules computational kerndlbalik memory operations
on kernel processors and DMA units.

— The DMA units load the stream of data needed by computdti@raels from the
main memory to the SRF.

— The computational kernels work with the data in the SRmaitical registers to
store temporary and intermediate results and writing la&dn the SRF.

— After all the computational kernels having producer-coner locality have finished
computation, the DMA units write the live data back to the maiemory.

Once generated, the SVM is compiled using a machine speoifipiter, to the under-
lying stream architecture. While compilers do not have amtl on processor caches,
SRF can be sized to fit into processor caches, thus guargrtyat the processor will
bring into cache the SRF and does not write it back or replagetil the computational
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kernel has finished its execution. Since computationaléderanly access data store in
the SRF, they don't suffer cache misses.

for j=1:m,
for i=1:n,
sum=0;
for k=1:n,
sum=sum+A (Arindex (i) ,Acindex (k) )*B(Brindex (k) ,Bcindex(j));
end;
D(Drindex (i) ,Dcindex(j))=sum+C(Crindex(i),Ccindex(j));
end;
end;

Figure 6. MATLAB code for computing matrix-matrix product update D=A*B+C

As an example, Consider the MATLAB code segment in Figurerécéomputing a
matrix-matrix product update A*B+C; such a code will not gigelized by a standard
Fortran and C compilers because of the index vectors usecttsa the elements of the
arrays A, B, C and D. Stream programming will first transfoitme tode into a form
suitable for parallelism.

Kernel_dot(as, bs, sum, n)

sum=0;
for i=1:n,
sum=sum+as (i) *bs (i) ;
end;
Kernel_matvect(bs, ys, A(Arindex(l .. n),Acindex(1l .. n)), Acindex, n)
for i=1:n,

/* gathers the Rrindex(i)-th row of A into a regular vector as*/
Streamgather(as, A(Arindex(i),Acindex(1l .. n)), Acindex);
Kernelcall("Kernel_dot",as, bs, sum, n);
ys(i)=sum;

end;

Kernel_vectadd(ys, cs, ds, n)
for i=1 :mn,
ds(i)=ys(i)+cs(i) ;
end ;

Figure 7. Kernels codes:
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The k-th loop is an inner produai{d) of the Arindex(i)-th row (A(Arindex(i), Acin-
dex(1..n)) of A and the Bcindex(j)-th column (B(Brindex(l),Bcindex(j)) of B; let as-
sign this computation to kernel Kernel_dot. The i-th looa imatrix-vector product update
D(Drindex(1..n),Dcindex(j))=A*B(Brindex(1..n),Bcirek(j))+C(Crindex(1..n),Ccindex(j)).
Letbreak it up into two kernels: the matrix-vector produstA*B(Brindex(1..n),Bcindex())),
assigned to kernel Kernel_matvect and the vector addisenys+C(Crindex(1..n),Ccindex(j)),
assigned to kernel Kernel_vectadd. The codes for theselsamre given in (Figure 7).

The SVM code for the computation is as follows(Figure 8):

for j=1..n

/* gathers the Bcindex(j)-th column of B into a regular vector bsx*/
Streamgather(bs, B(Brindex(1..n),Bcindex(j),Brindex);

/* gathers the Ccindex(j)-th column of C into a regular vector cs*/
Streamgather(cs, C(Crindex(1l..n),Ccindex(j),Crindex);
Kernelcall("Kernel_matvect",bs, ys, A(Arindex(1 .. n),

Acindex(1 .. n)), Acindex, n);
Kernelcall ("Kernel_vectadd",cs, ys, ds, n);

/* scaters a regular vector ds into the Dcindex(j)-th column of D */
Streamscater (D(Drindex(1:n) ,Dcindex(j)) ,ds, Drindex);

end

Figure 8. SVM computation code

Stream programs can be naturally represented as a graptegfandent actors that
communicate explicitly over data channels. In generaliipet and output rates of actors
are known at compiler time. It can be simply representedguSiynchronous DataFlow
(SDF) graphs [19]. The input and output to the computatioméds, and the dependen-
cies between the kernels are explicitly indicated. For #@reple above, the SDF graph is
given in Figure 9. Gummaraju et al describe in [19] the proacedor executing a stream
programme on a stream processor, the stream execution anodlelethodology to map-
ping the stream execution model on general purpose pracd$sointerest in streaming
applications has spawned a number of programming langubgetarget the streaming
domain, including Streamlt [42], Streamware [20], StreditetnelC [22].

ds

kernel_Vectadd

Figure 9. SDF graph of a stream program of the matrix-matrix computation. The Ker-
nel_matvect receives bs; stream loads as and produces ys. It uses Kernel_dot, which
receives bs and as and produces sum. The Kernel_vectadd receives cs and ys, and pro-
duces ds.
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3. New Integration Approach

Our approach to integrating components consists of 3 mapsshamely:

— The system specification: behavioural description of tfstesn as SDF graph and
checking the system hardware feasibility.

— The automatic synthesis: this stage takes as input an ALBéB&ription of the
system and automatically computes the scheduling, detesagical clocks period, and
generates the VHDL controller code and the VHDL code of thele/lsystem.

— Components Assembling: the last phase combines the cbtised from the pre-
vious step with the VHDL code of the various components. Thal ftode can thus be
submitted to a physical synthesis tool such as Xilinx ISE oaus of Atera.

3.1. System Specification

The system is modeled using the synchronous dataflow graph.riodel is more
suitable for periodic multi-frequency applications. Ifevk to the designer the possibility
to verify the feasibility of the specification before stagithe synthesis.

Consider for illustration the system described by the SDaplgrin Figure 10. This
exemple consists of elementary hardware componentsiiigdescall, cal2, cal3 and
synchonization components (circles). The nodes repréiseteatments and the arcs are
communication (FIFOs) which are bounded and unidirectiomamory; a value on the
arcs are the number of data produced or consumed at eadfoitera

(1 1 (©) 3
(At e |
1

6
olcas] e
1

(8} Soatz
@ (4)

Figure 10. SDF graph Sample

This system can be described by a system of linear equatemsserred to a balance
equations. A balance equation is based on the following itiond when iterating, the
amount of data produced by the source block is equal to theiathod data consumed by
the target block. for the above exemple the description felasws :

T — 6173 =0
T — 3174 =0
3$3 — X5 =0
161‘4 — 1'5:0
Irs — Tg =0

where ther;’s are the frequencies at which the nodes must be invoked.
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Finding a solution to this systems means ensuring that tHe@Bph can be executed
with a limited amount of memory.

We can write the system in the matrix fodra: = 0 or

10 -6 0 0 0 1 0
01 0 -3 0 0 2 0
00 3 0 -1 0 w0
00 0 16 -1 0 T4 0
00 0 0 1 -1 5 0

T 0

T" is called topological matrix : the columns represent nodekthe lines represent
arcs.I'(4, j) represents the amount of data produced or consumed by theej modarci
each time it is invoked. This quantity is positive or negailvinformation is produced or
consumed. It is zero if nodgis not connected to aric

' € R~ andrank(T) = s — 1; sincerank(I') + null(T') = s is follow that
null(I') = 1 and the null space is reduced to a single element which isabi@rsolution
of the system’x = 0. This is the necessary condition for the existence of acstiatind
periodical system scheduling. The components of this vext® frequencies indicating
how often a giving node of the graph should be invoked duripgréodT for the system
to remain consistent [23, 10]. For the above example theugngglution is,

96
9
16
3
48
48

The period being defined as the inverse of the frequency, ameeduce the period of
each node by taking the inverse of its frequency. To reduesetperiods to integer values,
they are multiplied by the lowest common multiple (LCM) frmancies. The resulting
vector contains the logic clocks period denotedQfy. It is worth pointing out that if
specification leads to a solution with very high clock freqeye it may not possible to
generate an architecture for the system.

After the system specification, one can verify the assemioglitions by checking the
existence of a periodic schedule using this topologicalimdtee et al propose in [23]
some verification algorithms. If the assembly is possible move to the next step; if not
we must review the specification.

3.2. Automatic Synthesis using MMALPHA Environment

In this section we present anLAHA description of parallel data stream application
whose modules run at different frequencies. Those appitaitalled Multirate Parallel
Alpha DataFlow Systems (MP&DFS) were introduced by [11, 10]

Notice that, an APHA structured system is anl&HA system that uses subsystems
or components.
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3.2.1. Hardware Component Modeling

The components arg/nchronous elementand their synchronization is based on a
fundamental clock signal denoted byk. Each component is physically synchronized
with a clock validation signatlock-enabledenoted byCE [35]. For the system in Fig-
ure 10 we have

9
96
54
288
18
18

In other words, all registers of the component are loade@utigk control of thi<CE
signal.

=
Il

So, each elementary hardware component is consideredrabinational element
componentcomputing stream in term of input streams and storing thelte a register.
As illustrated in Figure 11, this component is synchronibga clock-enable signal, to
operate at a period of 9 clock cycles, and with an initialtsbif2 clock cycles or with
period 18 without shift.

We can see that, by changing the pattern of@kesignal, we may use the same com-
ponent with different periods and different shifts: indealli registers of the component
operate at a virtual clock whose period and shift are spedifyeCE. The combination of
clk andCE s denoted by a paif\, ) where) represents the period of the signal and
its initial shift.
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clk
a L
—> Combinational - c_ @ 60
— Logic
b
CE
(a) A comblnatlonal component (b) Reg|ster representatlon
m MMJMJM | Ll

0 1 2 3 45 6 7 8 9 10 11 12 ...
(c) A clocking with initial shift 2 and period 9

J_LI—U_\J_LWMMJ_\ | J ] L ok

 Périod :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(d) A clocking with period 18 without shift

Figure 11. A combinational component (a) and its synchronization can be (c) using a
clock-enable signal with period 9 and initial shift is 2; or (d) with period 18 without shift. (b)
shows the representation of a register with period A and shift .

3.2.2. System Specification using ALPHA

ALPHA programs are functional (declarative) description thagrafe on variables
which are functions from a polyhedral domain to some typeaddidThis is best explained
by the example of Figure 12 which presents a sketch of thesydescribe in Figure 10.

Line 1 is the declaration of aystemof ALPHA equations. Lines 2 and 3 define the
input of this system, namely, theandB variables. Both variables correspond to a semi-
infinite sequences of 2-bit signed integers, that we saflamsfor the purpose of this
paper. Similarly, line 6 defines the outputLines 8 and 9 contain the declaration of local
variables. Lines 11 and 13 are simple assignmerit afdB to the local streammirr
andBmirr which are stored in the registers (lines 12 and 14) befonegoesed by the
modulesCall andCal2 respectively. Line 12 makes use of an#dA subsystem, here
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representing a register file of length 1. Lines 15, 16 and &firtiate componentali,
Cal2 andCal3 respectively.

Eachuse statement allows one to instantiate the definition of amothree-defined,
ALPHA subsystem.

1 system Compute
2 (A : {il0<=1i} of integer[S,2];
3 B : {jl0<=j} of integer[S,2])

4 returns

5 -- output data and control

6 (C: {i]10<=i} of integer[S,2]);
7 var

8 out_call, out_cal2, in_cal3: {i|0<=i} of integer[S,2];
9 Amir, AmirReg, Bmir, BmirReg, mul, Cmir: {i|0<=i} of integer([S,2];
10 let

11 Amir = A;

12 use registerFile[1] (Amir) returns (AmirReg);

13 Bmir = B;

14  use registerFile[1] (Bmir) returns (BmirReg);

156  use Call(AmirReg) returns (out_call);

16  use Cal2(BmirReg) returns (out_cal2);

17 use Cal3 (out_call,out_cal2) returns (in_cal3);

18 use registerFile[1] (in_cal3) returns (Cmir);

19 C = Cmir;

20 tel;

Figure 12. The ALPHA Program of the example of figure 10

3.3. Scheduling

In [11] it is explained how to schedule stream componentswausummarize here
in order to illustrate its power. The method that we use hasdteps: first, find out the
period of each subsystem, then compute an ovexfiilheschedule for the entire system.
Consider a subsystegwith input I and outputd (to simplify the matters, we assume
only one input and one output). Assume that this subsystenita@n integral schedule
of the formT1(3,...) = i + a1, andTy(s,...) = i + ag, wherei denotes the index of
the input and output streams. (Notice that streams of vauesnulti-dimensional, and
the other dimensions of the streams are represented by 8oish schedules are called
data-flowschedules, since they are monotonically increasing fanstof the first index
i of the stream.

In other words, we assume that whenever an ouggtt...) depends on an input
I(j,...) through the equations which defisethenTy (i, ...) > T1(J, ...), and moreover,
we assume that is non-negative.
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Note that for all positive integers, AT1 and X1 are also a valid schedule for this
system. Indeed, if(¢,...) > T1(j,...), thenX(Tg(4,...)) > MT1(y,...)), sinceT is
nonnegative for all. We call this a\-slowversion ofS.

To implement such a system, it suffices to clock the corredimgrhardware subsys-
tem with a\ times faster clock, that enables to have valid signal eveatpék tick. Note
that, with this implementatiorthe number of registers is unchangedide the hardware
subsystem.

In general, adataflowALPHA schedulas a linear functioril” which assigns to each
variableA of an ALPHA data-flow system a schedule of the foffQ(é, ...) = Api + B,
with the constraints that:

1) if A depends oB through a regular data-flow system, the= Ag;
2) if A depends oB through ak -up-sampler, theng = K\p;

3) if A depends ol through ak-down-sampler, theng = %A;
4) By = Apay, forall A.

The\’s are positive integers, and thés are non-negative integers. This definition ensures
that all elements of the system are scheduled with buffesse/fength don’t depend an
The conditions on tha coefficients give a system of homogeneous integral equatbn

a special type, since all equations have the faim= K A2, whereK is a strictly positive
rational number.

In [23], it is explained how such a system can be solved in tinear in the number of
equations. Once the periods are found, they can be combiitiethe schedule constraints
that correspond to each component (i.ePAA subsystem), and any solution provides a
scheduling for the whole system. A structured polyhedrhkdaling approach can be
taken to solve this problem, as explained in [11].

4. Wrapper Architecture and Components Assembling

4.1. Wrapper Architecture

The method we propose is to add to the hardware descripti@aci component a
wrapperthat allows this component to be executed according to iosad schedule.
Figure 13 illustrates the model of the wrapper we have dpesloBesides its data inputs
and outputs, a component has a clock sigrak], a general clock-enable signalk)
and areset signhatft).
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clk rst CE_gen periode Al periode A2

CE1l
CE generator

rst2

input

Figure 13. Wrapper architecture. In this representation we have two components which
use clock-enable signals CE1 and CE2 generated with periods A1 and \- respectively.

The wrapper includes also clock-enable generators, oneafth period used in the
system. These clock-enable signals are used to generageihes delayed clock-enables,
by means of delay lines. Clock-enable generators are simptiulo counters, the register
of which is triggered by the general clock-enable signahefwrapper (see Figure 14).

CE_gen

Modulo Counter

-
[

¥

data_in data_out
data D = P =——=D Q data

Figure 14. Wrapper process model

In order to enhance the synchronization of the whole systé&mits environment, a
further activation signal has been added, this is a genkaek enable signal. We use for
this purpose a model based on FIFO queue. This type of iceifawidely used in the
systems that operate on data streams input and producestr@ata as output. According
to the status of FIFO, the general clock enable signal cazé&er not the system. This
signal denoted bgE_gen is generated according to equation:
enable = (NOT(full_fifo_out) AND NOT(empty_fifo_in) )
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Clk
Resetm

CE_gen

L] I
€ [ e ] ] ]

Modulo counter 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 15. Enable signal CEy; whith A = 4.

1 ENTITY FSM IS

2 PORT(

3 clk : IN STD_LOGIC;

4 CE_gen : IN STD_LOGIC;

5 rst : IN STD_LOGIC;

6 resetO : OUT STD_LOGIC;

7 resetl : OUT STD_LOGIC);

8 END FSM;

9 BEGIN

10 ---- Synchronous reset process
11 PROCESS(rst,clk)

12 BEGIN

13 IF clk = ’1’ AND clk’event THEN
14 IF CE_gen = 1’ THEN

15 IF rst=’0’ THEN
16 curstate <= stateO;
17 count <= 0;

18 END archiOfFSM;

Figure 16. Entity FMS generated by MMALPHA

It is part of activation signals of each component. Thus thebée input signal of the
various components is a combination@#,; andCE_gen according to Figure 15 with
A =4.

4.2. Components Assembling

After the system scheduling, thevALPHA environment produces two VHDL codes,
the controller code and the all system code. For illustrationsider the application de-
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scribed in Figure 12 we obtain : {ihe controller codewhich has two entities; the entity
FMS (Figure 16) that takes as input3k, rst andCE_gen generated as described in sec-
tion 4. It produces two outputs because we have only two &giocks in this case: the
outputresetO0 is used by the componeRFT as shown at lineg1 and22 of Figure 18,
and the outputeset0 used by the componeRtriodEnable128 (see Figure 17). The
role ofPeriodEnable128is to produce the periodic validation sigrta with period128.

(i) The VHDL code of the all systemis presented in Figure 18, this code has several
parts: Linest to 12 correspond to the system declaration(the entity hef@dSFT); lines
14 to 15 are the declaration of the flexible component (IP)haxe here one component,
theFFT component. The componemisgistersenablel_1is register (lined6 and17).
Line 21 to 24 are the instantiations of all the components with the apjatgs signal.

1 ENTITY PeriodEnablel28 IS

2 PORT(

3 clk : IN STD_LOGIC; -- global clock

4 ceGen : IN STD_LOGIC; -- general clock enable signal
5 rst : IN STD_LOGIC; -- reset signal

6 periodicGe : OUT STD_LOGIC -- periodic clock enable );
7 END PeriodEnablel28;

8 PROCESS( clk )

9 BEGIN

10 IF rising_edge(clk) THEN

11 IF ceGen=’1’ THEN

12 IF rst=’0’ THEN -- enable is O when rst
13 counter <= "0000000";

14 periodicGe <= ’1’ WHEN (counter = "0000000" AND ceGen = ’1’) ELSE ’0°’;

15 END archiOfPeriodEnablel28;

Figure 17. Entity Periodic enable generated by MMALPHA
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1 -- VHDL Model Created for "system TwoFFTs"
2 -- 28/12/2010 16:19:56.283228
3 -- Alpha2Vhdl Version 0.9

4 ENTITY TwoFFTs IS

5 PORT(

6 clk: IN STD_LOGIC;

7 CE : IN STD_LOGIC;

8 Rst : IN STD_LOGIC;

9 A : IN SIGNED (1 DOWNTO 0);
10 B : IN SIGNED (1 DOWNTO 0);
11 C : 0UT SIGNED (1 DOWNTO 0));
12 END TwoFFTs;

13 -- Insert missing components here!
14 COMPONENT FFT IS
15 PORT(

16 COMPONENT Registersenablel_1 IS
17 PORT(

18 -- Controller
19 COMPONENT PeriodEnablel28 IS
20 PORT(

21 Gl : FFT PORT MAP (clk, enablel_1, resetl, AmirReg, fftl);
22 G2 : FFT PORT MAP (clk, enablel_1, resetl, BmirReg, fft2);

23 G11 : Fsm PORT MAP (clk, CE, rst, resetO, resetl);

24 G14 : PeriodEnablel128 PORT MAP (clk, CE, resetO, enablel28);

25 END behavioural;

Figure 18. VHDL Code of the all system generated by MMALPHA

4.3. Time Model

The interface between our system model and the physicativeoristitutes a simple
model of time, whose characteristics can be summarizedlas/fo

— Our systems arsynchronizedin the sense that computations are triggered by a
common background clock.
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— The time behavior of our componentsafine-periodic Each component in the
system is supposed to execute at periodic instants of tiftee g initial shift. This model
does not support exceptional events, as true reactiversgste, unless these events were
watched at regular, periodic instants of time.

— Our model of time supports some forms of parallelism. lnideach component can
be an affine-parameterized assembly of parallel componeitiier pipeline (or systolic)
components, or true parallel systems operating on vecfafata.

— The systems that we consider &iree-delayableThis means that a component can
be scheduled several clock ticks later or earlier, withdfgcéing the semantics of the
whole system. In other words, provided the final implemeéotadf the system meets the
dependence constraints expressed by the initial desmmiptie consider that its behavior
is correct. This contrasts with the underlying hypothes$isymchronous languagesich
as Signal [40], where the description of the flows of datags@nts a strict specification
of the behavior of the physical constraints put on the systamd therefore, cannot be
relaxed.

— Components arslowable This means that they can operate at any sub-clock of
their fundamental clock, under the control of the clockidaaignal. This property has
some relationship witdelay-insensitivitywvhere components can be executed even in the
presence of some delays in their inputs.

— Time isstretchable As summarized in figure 19, the clocks used here are logical
clocks. They are based on a global clock and activation Egwhich depend on the
period (stretch) of each component.

Clock
Period/stretc@
Global Clock D

Figure 19. A stretchable clock made using external clocks.

5. wcDMA Implementation
These methods were implemented as part oftli@LPHA environment. Components

are defined by means of . &HA systems and can be synthesized usingMRaLPHA
software.
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OVSF code
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Channelization| | 1 4 1
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Scrambling
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Control T Q EIR
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— | Channelization — Kasami code

T

OVSF code

Figure 20. Graph of a simplified wcDMA emitter;

To evaluate the methodology that we have presented, we kalieged thewcbma
emitter. Figure 20 represents a simplified version ef@MA emitter[14]. It consists
of elementary hardware components (rectangles), synation components (circles),
connected together with arcs. Following the SDF actor rmift], an arc carries at its
origin the number of values produced by a component durirggadrits execution, and
at its extremity, the number of values consumed by a compahgimg one execution of
the receiving component.

The inputs to thisvCDMA graph are a data signal and a control signal. Frequencies of
data and control are different: there is one control valué#fbdata values. The#CDMA
emitter contains, from the left to the right:

— Two up-sampling components, one for the data signal, aadarihe control signal
(round up-samplers). Their role is to reduce the signalfeegies to thevcDMA standard
frequency which is 3.84MHz, by spreading by a factor of 4 fatadand 256 for control.

— Channelization components, whose role is to multiply tigaals previously up-
sampled by orthogonal codes of variable length OVSF (OxhagVariable Spreading
Factor). Spreading transforms every bit into a given nundbethips, hence increasing
the bandwidth. For the sake of simplicity, we do not represene the memory system
for storing and supplying these data and control OVSF codes.

— A scrambler, which is a complex multiplication of signajskasami codes; this op-
eration allows the system to distinguish the informatiomgw from different terminals,
mobile and base stations.

— Up-sampling by a factor of 4 before filtering.

— Two Finite Impulse Response filters (FIR) which aim to cairer-symbol inter-
ference between different information.

The outputs of this system consist of the two signals emltiethe filters, at the same
frequency.

These components are executed at different frequencidsgras reference the filters
which are executed at the highest frequency, the clock geridghe filters is 1, for the
scrambling and channelization the period is 4, the periati@input data is 16 and that
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of the input control is 1024. The periods are calculated asnilged in section 3 and
represented in the Figure 21. In this Figure the componestsepresented in terms of
combinational element (circle) and register as describegction 3.2.

(16,0) @,

ihod 1

]

7|

7

i
i
i
i
. i
Pl ! i
Data FIFO 1 Data spreading m Q—m Vi
‘ i
3 Data Scrambling Data FIR i Data output
‘ i
1 42) @ss)
i
! (1024,0) @1 1 ‘ i
) i
Control FIFO % A&\ Qﬁ |
7 ‘
‘ O] |
i
i
i

! Control Scrambling
U

A
Control FIR Control output

" Control spreading Scrambling FIR !
Input FIFO Output FIFO

Figure 21. wCDMA emitter representation after scheduling process

We also know the detailed schedule of the components, ifrcphat the frequency of
their inputs and outputs and when needed a reference gtairtie for their controller.
In this particular example, only the filters need a controlehich explain the(1, 35)
for Data FIR andControl FIR in Figure 21. So, the filters behavior must therefore
be taken into account in the overall controller that we gateerThe wrapper, and the
controller were generated automatically.

The generation of the completeiDL description byMMALPHA takes1.10s on a
current MacBook laptop, including the scheduling that is&l@ 0.03s using MATHE-
MATICA.

The whole system was simulated with the Mentor GraphicsNtmlelsim SE-2d [43]
for the functional verification. The hardware synthesisaflecomponent as well as the
entire system were made within the Xilinx ISE environmerg8][ZTable 1 presents the
results of the synthesis for tvecDMA emitter produced by this method. For each com-
ponent, the number of slices, multiplier-accululators @)Alatches and the estimated
clock frequency are given. This example shows that the dréreeavrapper is negligible,
compared to the components of the emitter. Moreover, it basfluence on the estimated
frequency of the whole architecture.

Component #Slices| #MAC | #Latch | Frequency (MHz)
FSM 24 0 34 -
Logical clock 4 2 0 2 -
Logical clock 16 10 0 13 -
Logical clock 1024 10 0 13 -
Wrapper (total) 41 0 53 415,6 MHz
Emitter (total) 1962 68 7528 129,5 MHz

Table 1. Results of the synthesis for the upstream wcbmA emitter on a Xilinx Virtex4 FPGA

Arima



Component reused methodology 89

6. Comparison with Related Work

In this section we compare our work with some related work.

— Synthesis under constraintsin our approach we implicitly take into account the
size of storage elements because, in the behavioural pgésorof the system we know
how many data is produced or consumed by each block. So isisilie to guarantee as
describe in section3.1 that system can be executed withitetimmount of memory. This
solves the problem of memory size required to store datak&tie methods of synthesis
under constraints ([12, 16]) we consider that data are predland consumed in the same
order.

— Multidimensional Synchronous Dataflow Model: MDSDF shares a lot of prop-
erties with the model presented in this paper. The calanaif the periods of our com-
ponents appears as a transposition, in the domain of rem#&rexjuations, of the balance
equations of SDF. But in our approach the expressioniaff programs is much more
suited to the description of parallel systems, and closerltmp-like description of cal-
culations.

— Latency Insensitive Design:These models generate a significant additional hard-
ware resource in order to take into account the differentrobsignals. Our approach,
just like the extension proposed by Casu and Macchiarules ¢t use activation sig-
nals ("Stall" or read) but periodic scheduling process. In addition, our modskii-
able for modelling multi-frequencies systems where coneptsmare executed at different
frequencies.

— Multi-clock Architecture: similar to the approaches described in section 2.4, we
propose a multi-clock system design approach with the adgarthat scheduling allows
us to know exactly at what time each component must be enaltedo not need activa-
tion signals as in [7] and [38], thus reducing hardware caostt the use of component
activation signals. But we use the point-to-point commatién and system throughput
is limited by the throughput of the slowest synchronous ni@dwe generate a systolic
architecture which is a network of processors that rhythaihiccompute and pass data
through the system. So the system globally synchronous.

— Stream programming: The stream programming is a programming paradigm that
generate a Stream Virtual Machine (SVM) and ALPHA is a hamdveynthesis language
that generate systolic architecture. But despite thig; share a lot in common. They are
based on the same model, the synchronous dataflow grapanSpegramming have
been developed to handle systems computing on streamsaofTdet extension we added
to ALPHA makes it able to generate architecture for streapliegtions. ALPHA can
generate parallel SIMD architectures. In our approach #xitile components communi-
cate through bounded FIFO and exploit the producer-consprireiple. The data pro-
duced are consumed directly without going through the mamaory.

The originality of this work is the introduction of relatiship between synchronous
dataflow model the polyhedral model, thus enabling the useigf powerful techniques
to detect, handle parallelism in stream applications anddnage the transformation of
parallel programs to architectures. The systems that wairobtetime-delayablesome-
thing that is not possible for those described ussgigchronous languagesich as Sig-
nal [17, 3], which useaffine-periodidime behavior also.
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In our approach, we replace the clock based on the combivatiogic in the initial
approaches to LIS by finite state machine of Moore type thatish easier to implement
than those used by [38, 39] which are Mealy machines. The ity of the wrapper
that we offer does not depend on the number of component catiprucycles as in other
approaches, but only on the number of ports; thus reducmbaindware cost.

7. Conclusion

We have presented a model for the automatic hardware sysifestream systems.
A simple model of time was introduced, and its propertiesarggrown to allow a detailed
scheduling to be found automatically. A hardware impleragoh was presented, based
on the addition of a simple wrapper.

Our work combines the synchronous data-flow approach angdhdedral model
to achieve a fully automated synthesis for some kinds ofstgesystems which are of-
ten found in Cyber physical systems. Our main contribut®a imodel that combines
both stream processing and parallel management. Indeedotithedral model is a very
powerful framework for exploiting loop parallelism, eith@r programming parallel ar-
chitectures or for the high-level synthesis of hardwareaas:

Further research will aim at investigating the limits of gimplified model of time,
both in terms of potential for tractable automatic methadtsl, in terms of interfacing with
complex Cyber physical systems, where the interaction thgtphysical world cannot be
represented only asgular streams of data.
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