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ABSTRACT. We consider hard real-time systems composed of periodic tasks and of an aperiodic
flow. Each task, either periodic or aperiodic, has a firm deadline. An aperiodic task is accepted within
the system only if it can be completed before its deadline, without causing temporal failures for the
periodic tasks or for the previously accepted aperiodic tasks. We propose an acceptance test, linear
in the number of pending accepted aperiodic tasks. This protocol can be used provided the idle slots
left by the periodic tasks are fairly distributed. We then propose a model-driven approach, based on
Petri nets, to produce schedules with a fair distribution of the idle slots for systems of non independent
periodic tasks.

RÉSUMÉ. Nous considérons des systèmes temps-réel composés de tâches périodiques et d’un flux
apériodique. Toutes les tâches, périodiques comme apériodiques, sont soumises à des échéances
strictes. Une tâche apériodique n’est acceptée que si elle ne remet pas en cause le respect des
échéances par les tâches périodiques et par les tâches apériodiques déjà acceptées. Nous proposons
un protocole d’acceptation des tâches apériodiques de complexité linéaire en le nombre de tâches
apériodiques acceptées présentes dans le système. Ce protocle est utilisable dès lors que les temps
creux sont répartis de manière équitable. Nous proposons donc une approche modèle, à base de
réseaux de Petri, pour produire des séquences où les temps creux sont équitablement répartis, pour
des systèmes de tâches interdépendantes.
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1. Introduction

1.1. Real-time systems

A real-time system is one whose logical correctness is basedboth on the correctness
of the outputs and on their timeliness [26]. It is often designed to control physical pro-
cesses, thus it must permanently react to its environment and interact among components
within the systems. It is composed of periodic tasks, dedicated to the control activities
(temperature acquisition in a nuclear station, robot’s trajectory computation, processing
of informations provided by a synchronous link, etc.), and of aperiodic tasks which are
triggered by aperiodic events (human interaction, alarm activation, error detection etc.).
It must satisfy explicit (bounded) response-time constraints or malfunctions might occur,
which may have unacceptable consequences e.g. loss of humanlives. Thus, a key require-
ment for real-time systems is the end-to-end delay in the task execution, which is a critical
issue in the design and analysis of time critical systems. Here, we focus on hard real-time
applications: the tasks (either periodic or aperiodic) have firm deadlines by which they
must be completed for safety reasons. E.g. a late computed value can be obsolete, using
it may be misleading and even dangerous. Moreover, concurrency, resource sharing, syn-
chronization, and deadlock resolution are also essential issues. Besides, as systems are
increasingly complex, the trend is toward the use of severalprocessors to process a large
number of tasks. We thus consider a platform composed ofm identical processors (for
instance a symetric multicore platform), and we assume thatthe system is preemptive.
Moreover, we assume that the preemption costs and the inter-processor migration costs
are negligible. We have chosen such architectures firstly because they are rather common,
and secondly, because the scheduling results that we use have been set for this kind of
architecture. We focus on the temporal validation of the application i.e. on the timeliness
which is based on the choice of an appropriate scheduling policy, which can be proved to
respect all the temporal constraints.

1.2. Real-time periodic scheduling

Real-time multiprocessor scheduling techniques fall intotwo general categories: parti-
tioned and global scheduling. Under partitioning, each processor independently schedules
tasks from a local ready queue. Each task is definitively assigned to a given processor and
is only scheduled on that processor. The main challenge hereis the distribution of the
tasks among the processors, which is mostly based on bin-packing [18]. In contrast, all
ready tasks are stored in a single queue under global scheduling. A task is selected to exe-
cute whenever the scheduler is invoked, regardless of whichprocessor is being scheduled.
It means that the tasks can run at any time on any processor, they are never definitively
assigned to a given one. They may start on one processor and resume on another. Never-
theless, parallelism is prohibited in both schemes: at any time, a task can run on at most
one processor. None of these approaches can be considered asbetter than the other since
there exists applications which are feasible under one of the approaches, but not under
the other one, and conversely [9]. An application is said to be feasible if there exists a
valid schedule which is a schedule which meets all the temporal constraints. We will only
consider global scheduling in this paper.
Here again, two approaches are usually considered in order to solve the schedulability
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problem, the on-line and the off-line methods. For on-line methods, the scheduling policy
is classically priority driven and is implemented within the scheduler. The processors are
assigned to the pending tasks with the highest priorities. If independent periodic tasks
with implicit deadlines (the due date of any instance is equal to the release date of the
next instance) are considered, optimal strategies have been proposed [5, 1] for platforms
composed of identical processors, which are based on the fairness property, where an
algorithm is said to be optimal if for any application, either it computes a valid sched-
ule or there exists no such schedule at all. But if deadlines may occur before the next
release, [17, 29] have proved that no on-line algorithm can be optimal. Furthermore, if
critical resources are used, the scheduling problem is NP-hard even for single processor
systems [22]. Therefore, only sufficient conditions exist for the schedulability analysis of
real-time tasks in multiprocessor environment. On the other hand, off-line methods per-
form a static pre-runtime schedulability analysis. A validschedule is computed and then
used by the dispatcher at run-time. Most off-line scheduling strategies rely on exhaus-
tive branch-and-bound enumeration techniques. These approaches are generally model-
driven and are based on task system modelling using e.g. Petri nets, automata, geometric
models...[6, 35, 21, 23, 25, 13].

1.3. Motivation and contribution

We adress the problem of scheduling aperiodic tasks. We assume that they have firm
deadlines. Thus, either they can be processed on time, or they must be rejected by the
system, e.g. to avoid them to handle obsolete values. Our concern is here to propose an
efficient acceptance protocol, where the efficiency is measured by the amount of accepted
aperiodic load. The main rule is that an aperiodic task can beaccepted only if it can
complete execution before its deadline and if it doesn’t cause any deadline failure, neither
for the periodic tasks, nor for the already accepted aperiodic tasks. We propose an ac-
ceptance protocol, which relies on a fair distribution of the idle time units. The accepted
aperiodic tasks are scheduled in background, which means that an aperiodic task can be
scheduled each time an idle slot occurs in the periodic schedule. This problem has been
largely adressed for uniprocessor systems [27, 11, 10]. As to the multiprocessor case,
most papers deal with hard periodic tasks but soft aperiodicones [3, 33, 30], and they
consider joint scheduling: a scheduling algorithm schedules the periodic and the accepted
aperiodic tasks together. Some authors consider sporadic tasks (there exists a minimum
delay between two consecutive releases) [24, 34, 30]. In [31], a method based on the
computation of the response time of the aperiodic tasks is proposed. Each time new ape-
riodic tasks arrive in the system, the response time of the aperiodic traffic is computed,
and if required, some of the new tasks are dismissed. Here, the complexity depends on
the complexity of the response time computation, which is inO(number of tasks× the
cumulated aperiodic demand). Our objective is to propose a test with a lower complexity.
In a first time, we consider independent periodic tasks with implicit deadlines. For such
task sets, PFair scheduling strategies are optimal. We thuschoose to schedule the periodic
tasks with a PFair algorithm, such asPF [5] or PD2 [1] (PFair scheduling is presented
in section 2). In addition, there exists a very simple feasibility test, which is linear in the
number of tasks: the task set is feasible if and only if the utilization factor, which is equal
to the ratio of the processors activity dedicated to the execution of the tasks, is at most
equal to the number of processors. Now, if the application isfeasible and has a utilization
factor less than the numberm of processors, some idle times take place, during which
some processors remain idle. We show that it is possible to distribute the idle times in a
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regular way and to process aperiodic load each time they occur. We propose an accep-
tance test which makes use of the regular distribution of theidle times, and which is linear
in the number of already accepted pending aperiodic tasks.
Next we consider sets of non independent periodic tasks: they may exchange messages,
and use critical resources, i.e. resources which must be used in mutual exclusion. To
overcome the lack of optimal on-line strategy, we use an off-line model-driven approach,
based on the modelling of the application, including the temporal constraints, by a Petri
net. We here adapt the approach proposed in [21]. Then we showhow to use the model
to get schedules that contain regularly distributed idle times.
The rest of the paper is organized as follows: in section 2 we present the basic definitions
and we state our assumptions. In section 3, we present the acceptance protocol and its
performance when periodic tasks are independent. Finally,in section 4, we consider non
independent tasks, we present our Petri net based model, andshow how to use the Petri-
net based analysis for the computation of the appropriate schedules. The paper ends with
some concluding remarks and perperspectives.

2. Basic definitions and assumptions

2.1. Real-time applications

We consider a multiprocessor platform, withm identical processors and a real-time
application composed of a periodic task setτ = {τ1,. . . ,τn} and of aperiodic tasks.
Eachperiodic taskτi =< ri, Ci, Di, Ti > is characterized by four temporal parameters:
its first release timeri, its periodTi, its worst-case execution time (WCET)Ci, and its rel-
ative deadlineDi, which is the maximum delay allowed from the release of any instance
of the task to its completion (see figure 1). We here assume that Ci ≤ Di ≤ Ti, ∀τi ∈ τ .
If the first release times are all equal, the application is said to havesimultaneous first
releases, otherwise it is said to havedeffered first releases.
A taskτi consists of an infinite set of instances (or jobs)τi,k (k ∈ N). The instanceτi,k is
released at timeri,k = ri + k × Ti, and must be completed by its (absolute) deadlinedi,k
= ri + k × Ti + Di.
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Figure 1. Temporal modelling of a real time periodic task.

Thehyperperiod of a periodic task set is the least common multiple of the periods of the
tasks:H = lcm(Ti)i=1..n.
The processorutilization factor characterizes the processor workload due to the task set.
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It is defined byU =
i=n
∑

i=1

Ci

Ti
. If U > m the system is over-loaded and temporal faults

cannot be avoided [8].
An aperiodic taskτs is characterized by an arrival timers, a worst case execution timeCs

and a relative deadlineDs. Its absolute deadline isds = rs+Ds. An important difference
between periodic tasks and aperiodic ones is that the release time of each instance of each
periodic task is known before runtime, whereas the arrival time rs of an aperiodic task is
not known.
An aperiodicflow is a series of aperiodic tasksτs,1, τs,2, ... (with rs,1 ≤ rs,2 ≤ .....).

2.2. Schedules

For anyt ∈ N, theslot t denotes the time interval1 [t, t + 1). A task is said to be
processed at timet if it is processed by one processor during the slott. We then define
the notion of schedule.

Definition 2.1. LetOm(τ) denotes the set of subsets ofτ of cardinality less than or equal
tom. Ascheduleonm processors is defined byS : N → Om(τ) such thatτi ∈ S(t) ⇔ τi
is scheduled at timet on one processor.

Let Si be such thatSi(t) =

{

1 if τi ∈ S(t)
0 else

. In order to be temporallyvalid, a schedule

must respect the temporal constraints:

(1) ∀i ∈ 1..n,

ri−1
∑

t=0

Si(t) = 0 and,

(2) ∀k ∈ N
∗

ri+(k−1)Ti+Di−1
∑

t=0

Si(t) =

ri+kTi−1
∑

t=0

Si(t) = k × Ci.

The equation (1) insures that the task doesn’t start execution before its first release date,
and the equation (2) insures that exactly one instance of thetask is processed between any
release and the next deadline. If there exists a valid schedule, the system is saidfeasible.
If | S(t) |< m there are2 m− | S(t) | idle time units at timet.
For any periodic (resp. aperiodic) taskτi (resp.τsi ), RCTi(t)(resp.RCTsi(t)) denotes
the remaining computation time of the pending instance ofτi (resp. ofτsi ) at time t.
Finally, for any times t and t’, and for any taskτi, we defineWi(t, t

′) as theprocessed
execution timeof taskτi between time t and time t’.
Since the processors are identical, we do not consider the allocation problem. We assume
that heuristics are used in order to carry out the allocationprocess, which generally aims
to mimize the number of context switches and of interprocessor migrations.

2.3. PFair scheduling

In a first time, we consider independent periodic tasks withimplicit deadlines (Di =
Ti). Such tasks can be optimally scheduled on a platform composed of identical proces-
sors by a PFair strategy [5, 1]. The basic idea is that each task is processed at “regular

1. [a, b) = {u |a ≤ u < b}
2. |A| denotes the cardinality of the set A.
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rate”. At each timet, the number of processed slots is proportional tot, with a propor-
tionality coefficientui =

Ci

Ti
. We stateIdeali(t) = ui × t. Since the numberWi(0, t) of

processed slots at timet must be integer,Ideali(t) is approximated by either⌊ui × t⌋ or
⌈ui× t⌉ 3 . Thus the difference between the ideal and the actual numberof processed time
units must be bounded by1 in absolute value. This is formally expressed by the following
definition:

Definition 2.2. A schedule isPFair iff we have:

∀i ∈ {1, ..., n}, ∀t ∈ N,−1 < ui × t−
t−1
∑

j=0

Si(j) < 1.

The figure 2 illustrates the PFairness. For any taskτi, the actual execution curveWi

must strictly remain between both limit linesW−
i = ui × t− 1 andW+

i = ui × t+ 1.
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Figure 2. (a) a PFair execution and (b) a non PFair execution - Different status of a task.

All the PFair strategies follow the global scheme describedbelow.

1) The task set is partitioned into three sets (see figure 2).

- theUrgent set contains the tasks which would be too late (under the lower bound) if
they were not processed at timet. These tasks must be processed at timet.

- the Tnegru set contains the tasks which would be too in advance (over theupper
bound) if they were processed at timet. These tasks must not be processed at timet.

- theContendingset contains the other tasks: the PFairness is neither violated if they
are processed nor if they are not.

2) The urgent tasks are processed.

3) Thenm − | Urgent(t) | contending tasks are processed, their choice depends
on the chosen PFair strategy.

Several PFair versions have been proposed in the literature(PF, PD andPD2 [5, 4, 1]).
These algorihms differ in the way they select the tasks to process among the contending
tasks. These scheduling strategies are very efficient, where efficiency means that they can

3. ⌊x⌋ (resp. ⌈x⌉) denotes the largest (resp. the lowest) integer lower (resp. higher) than or equal
to x
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correctly schedule a large set of applications, as stated inthe theorem 2.3.

Theorem 2.3. [5, 4, 1] The scheduling algorithms PF, PD andPD2 are optimal for sys-
tems of periodic independent tasks with implicit deadlinesand simultaneous first releases
in a multiprocessor context. Moreover, the system is feasible if and only ifU ≤ m where
m is the number of processors.

For tasks with simultaneous first releases and implicit deadlines, the implementation
of the classical PFair strategies (PF, PD and PD2) relies on the decomposition of the
execution of each taskτi =< 0, Ci, Di, Ti > into the execution of unitary subtasksτ ji
(j > 0). Each subtaskτ ji has apseudo-releasedate and apseudo-deadlinedefined by:

rji =
⌊

j−1
ui

⌋

anddji =
⌈

j
ui

⌉

. The time interval[rji , d
j
i ) is thejth feasibility window of

the substask. PFairness can be characterized by the following property:

Property 2.4. The taskτi is PFairly processed iff each of its subtask is scheduled within
its feasability window.

The feasibility windows are computed before run-time usingthe WCET of the tasks.
Should the actual execution time be shorter than the WCET, the task will nevertheless
be scheduled within its feasibility windows. The task will thus still meet its deadlines.
But some processor time units allocated to the last subtaskswill be lost: the concerned
processors will simply idle.

3. Independent periodic task sets and Aperiodic flow

We first consider independent periodic tasks with implicit deadlines and an aperiodic
flow. The aperiodic tasks are assumed to have firm deadlines, which must be respected,
else the task must be rejected. Our aim is to propose an acceptance protocol, which must
obey the following rules:

1) An accepted aperiodic task must complete at the latest by its deadline.

2) The acceptance of a new aperiodic task must not cause any periodic task to miss
its deadline.

3) A new accepted task must not cause a previously accepted aperiodic task to
miss its deadline.

Related works
This issue has already been studied for uniprocessor systems. One of the most effective
solution consists in scheduling tasks according to EDF [26,10, 27]: the processed task
has the nearest deadline. There is one single queue, sorted in increasing order of dead-
lines, which contains the pending periodic tasks as well as the accepted aperiodic ones.
The acceptance test is then very simple. It consists in considering the aperiodic task as a
new periodic one.
In multiprocessor context, we use a PFair strategy to schedule the periodic task set, for
optimality reasons and because of the simplicity of the feasibility test (U ≤ m). Here
again, a solution for the acceptance test could be to consider each new aperiodic task as a
new periodic one, and to use the global feasability test. This method has nevertheless two
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drawbacks.
- Firstly, periodic tasks would no more be steadily scheduled, in the sense that the peri-
odic schedule can vary from one hyperiod to another. It is thus impossible to predict when
periodic tasks will occur if the aperiodic flow is not known before run-time, and thus it is
impossible to compute the periodic schedule before run-time.
- Secondly, considering each aperiodic task as a periodic one would suppose to require
possibly much more slots than actually necessary. Indeed, the feasibility test guarantees
that there is enough time to schedule each instance of the task, thus processor time units
are reserved for the processing of all these instances, evenif only the first one should
actually occur. And this could lead to refusing a further aperiodic task whereas it could
possibily have used the processor time units reserved for instances that will never occur.
Therefore, the test is sometimes pessimistic.
Finally, [30] uses the notion of spare capacities, which represent the number of available
slots for the execution of aperiodic tasks within some specific windows. We use a close
notion, but the use of a PFair distribution of the idle slots enables to compute these capac-
ities more efficiently: we have neither to analyse the periodic schedule, nor to adapt the
periodic temporal parameters.

Our methodology
Our aim is to propose a method which guarantees a planned, steady and fair periodic pro-
cessing, in association with an acceptance test which considers only the required slots as
reserved, so that is less pessimistic than the global PFair acceptance test. Aperiodic tasks
are scheduled in background: they use the idle time units left by the periodic tasks. If
the considered periodic scheduling is conservative (a processor never intentionally idles),
then the aperiodic tasks have lower priorities than the periodic ones. But if the periodic
scheduling is not conservative, it is not the case anymore, and some aperiodic tasks may
have priority over some periodic tasks.
Another benefit of the use of a PFair strategy is that it enables to estimate the number of
idle time units within any temporal interval with a complexity O(1) and with only a very
small error. Our acceptance test relies on this predictability property.

3.1. The aperiodic queue

Aperiodic

tasks

Processors

1 2 0 1 0 012

Idle slots

PFair periodic schedule

Scheduler

Aperiodic queue

Acceptance 

test

Rejected tasks

5 6 3 2 6 523

3 4 5 0 5 434

Figure 3. The aperiodic queue.
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We assume that the operating system maintains an aperiodic queue as shown in the
figure 3, which contains the pending aperiodic tasks. The periodic schedule can either be
computed on line, or, for more efficiency, have been previously computed. In this case,
the scheduler knows the periodic schedule. We furthermore assume that the aperiodic
queue is sorted according to EDF (Earliest Deadline First [26]), i.e. in increasing order
of deadines. The task with the nearest deadline is processedfirst. An aperiodic task can
be processed at timet only if a processor is idle at timet. Thus an important issue is to
control the distribution of the idle time units. We do it through the use of a specific task,
which can be considered as an idle time server.

3.2. Idle time units

We assume thatm − 1 < U < m. If m = U , then no aperiodic traffic can take
place since the processors are fully busy. Ifm < U , then the periodic task set is not
feasible. Finally ifU ≤ m − 1, we havem − ⌊U⌋ ≥ 1, thus there arem − ⌊U⌋ fully
idle processors. The aperiodic tasks can thus be distributed onto these processors, using
a bin-packing strategy (e.g. Worst-Fit [15]). And then scheduling results for non periodic
tasks can be used [7]. We here focus on the management of the aperiodic tasks that must
share the processor services with the periodic ones, thus our assumption.
Our method is based on the predictability of the idle time unit distribution. We require
them to be PFairly distributed so that we can compute their number on-line within any
time interval. For that aim, we add a new task to the application, which models the
idleness of the processors. Our motivation for the additionof this task is the following. If
U < m, there areH× (m−U) idle time units each hyperperiod. The simpler way would
be to schedule them each time there is less thanm tasks to process. But unfortunately,
this doesn’t guarantee a PFair distribution of the idle timeunits as illustrated by the figure
4. We have considered a system of5 processors, and an applicationτ_exple composed
of 16 tasks with implicit deadlines and first release times equal to 0, depicted in the table
1.

task τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8
Ci 14 26 14 59 48 87 120 9
Di = Ti 60 300 50 50 100 300 120 20

task τ9 τ10 τ11 τ12 τ13 τ14 τ15 τ16
Ci 63 82 50 76 4 16 9 65
Di = Ti 300 200 200 300 10 100 20 300

Table 1. A real time application τ_exple with 16 tasks.

We haveU = 4.647, H = 600 and there are212 idle time units. A PFair distribution
of the idle slots guarantees that at any timet, either⌊ 212

600 × t⌋ or ⌈ 212
600 × t⌉ idle time units

have taken place. Figure 4 shows the background distribution of the idle time units for
the 80 first slots, which doesn’t respect the PFairness criteria. E.g., at time 10, either 3
or 4 idle time units should have occured, but no one has occured yet. Furthermore, we
can see that several idle time units may occur simultaneously. But we do not want several
idle time units to occur simultaneously, in order to be able to decide wether an aperiodic
task can be accepted or not from the only knowledge of the number of idle time units. If
nbi idle time units are available between two timest andt′, which never occur simulta-

A R I M A



102 A R I M A – Volume 18 – 2014

neously, any aperiodic task with deadline at or aftert′, and such thatCs ≤ nbi can be
accepted. But if several idle time units occur simultaneously, we cannot conclude. For
instance, ifCs = nbi andds = t′, the task cannot be processed on time. Thus the de-
cision process requires to detailled the precise location of the idle time units, and is thus
much more complex. Of course, avoiding simultaneous idle time units forbids to process
two aperiodic tasks simultaneously, but it offers a better control. And an idle time unit
can be used each time an aperiodic task is pending, which would not always be the case
if several idle time units were simultaneously available.

Figure 4. Background distribution of the idle time units for the application τ_exple.

We thus introduce a further task, calledidle task defined byτ0 =< 0, H × (m −
U), H,H >. We haveC0 ≤ T0 since we have assumed thatm − 1 < U < m. The
system is now fully loaded (U = m) but is still PFair feasible according to Baruah’s
theorem (th. 2.3). By construction, an idle time unit takes place each time the idle task is
processed. Then, sinceτ0 is scheduled by a PFair algorithm, the idle time units are PFairly
distributed, and because a task cannot be parallelized, several idle time units never occur
simultaneously. Thus the idle time units distribution meets our requirements.
Now, for any time interval[t, t′], we have, sinceτ0 is PFairly scheduled:

{

⌊u0 × t⌋ ≤ W0(0, t) ≤ ⌈u0 × t⌉
⌊u0 × t′⌋ ≤ W0(0, t

′) ≤ ⌈u0 × t′⌉

We deduce that:⌊u0 × t′⌋ − ⌈u0 × t⌉ ≤ W0(t, t
′) ≤ ⌈u0 × t′⌉ − ⌊u0 × t⌋.

We thus dispose of a minimal value for the number of idle time units within any time
interval. Furthermore, the difference between the upper and the lower bounds is at most
equal to2. Thus, the rate of non considered idle time units will be rather small, provided
the considered intervals are wide enough. In the sequel, we denote byW_Min(t, t′) this
minimal value (W_Min(t, t′) = ⌊u0 × t′⌋ − ⌈u0 × t⌉).

3.3. The acceptance protocol

The periodic tasks, including the idle taskτ0, are scheduled by means of a PFair strat-
egy. Each time the idle task is scheduled, if there is no pending aperiodic task, the slot is
lost, i.e. an effective idle time unit occurs, else an aperiodic task is scheduled.
Let Ap = (τs1 , τs2 , . . . , τsk) be the set of the pending accepted aperiodic tasks. We as-
sume thatAp is ordered in increasing deadline order (ds1 ≤ ds2 ≤ ... ≤ dsk). Let
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τs = (t, Cs, Ds) be a new aperiodic task with arrival timet and deadlineds = t + Ds.
We decomposeAp into two subsets:B(ds) is the (possibly empty) set of the pending
aperiodic tasks with deadline at or beforeds, andA(ds) is the (possibly empty) set of the
pending aperiodic tasks with deadline afterds. Thus there existsi0 ∈ {0, ..., k} such that
1 ≤ i ≤ i0 ⇒ τsi ∈ B(ds) andi0 + 1 ≤ j ≤ k ⇒ τsj ∈ A(ds). The acceptance test uses
the approximation of the number of idle slots within a time interval by its minimal value.
It runs as follows:
The aperiodic tasks inB(ds) won’t be affected by the execution ofτs, but shouldτs be
processed, then it will delay the completion of the tasks inA(ds). We must then check
this delay will not cause the temporal failure of some of them. We therefore verify:

1) τs can meet its deadline, i.e. there are enough idle time units beforeds to process

the aperiodic tasks ofB(ds) and the taskτs: W_Min(t, ds) ≥
i0
∑

i=1

RCTsi(t) + Cs

2) each delayed task will still be processed on time: before its deadline, there are
enough idle time units to processs all the pending aperiodictasks with earlier deadline,

and the taskτs: ∀p ∈ i0 + 1 . . . k, W_Min(t, dsp) ≥
p
∑

i=1

RCTsi(t) + Cs

We can note that we never have to consider the periodic tasks,which simplifies the deci-
sion process. The periodic schedule can thus be computed before run-time. If the tasks
have simultaneous first releases, it is computed on the interval [0, H ] and then iterated.
For tasks with deffered first release times, the schedule is cyclic with a period equal to
the hyperperiodH [12, 16, 14]. Now we have no theoretical value for the start date of
the steady state, but simulations have always produced a start time that occurs before
Max1..n(ri) + H . Then, only the acceptance test and the aperiodic schedulerare pro-
cessed at run-time. Each time the idle task is planned to be processed, the scheduler is
invoked, and if the aperiodic queue is not empty, the first aperiodic task (as to theEDF
order) is processed. To run the acceptance test, we must maintain the remaining pro-
cessing times of every pending aperiodic tasks. Thus, we maintain the list of the already
accepted aperiodic tasks sorted in increasing deadline order. For each taskτi, we store in
a tableTAP (see table 2):

- its deadlinedsi ,

- its remaining computing timeRCTsi ,

- the cumulated remaining aperiodic processing timeC_RCTdsi
that must be

completed at the latest bydsi .

The full acceptance algorithm is given in appendix A.

id s1 s2 . . . sk
dl ds1 ds2 . . . dsk
RCT RCTs1 RCTs2 . . . RCTsk

C_RCT RCTs1 RCTs1 +RCTs2 . . . RCTs1 + . . .+RCTsk

Table 2. The aperiodic table TAP used by the acceptance algorithm.
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3.4. Performance analysis

We first evaluate the complexity of our method. Since the periodic schedule is never
revised, the periodic schedule has to be computed only once,before run-time for effi-
ciency reasons. Then, the computation ofW_Min within any time interval is performed
in O(1). Thus, the acceptance test requires O(k) additions and O(k) comparisons, where k
is the number of pending aperiodic tasks. Updating the list of accepted tasks also runs in
O(k), so does the function Schedule (see Appendix). Thus ourmethod is globally linear
in the number of accepted pending aperiodic tasks.
The second point of interest is to compare our method to previously existing methods and
to optimal strategies. The main competitor for our method consists in scheduling together
periodic and aperiodic tasks at run-time according to a PFair strategy. The acceptance test

is very simple [2]: if
n
∑

i=1

Ci

Pi
+

k
∑

j=1

Csj

Dsj
+ Cs

Ds
≤ m then the task (t,Cs,Ds) is accepted else

it is rejected. We call this method thejoined PFair method. Note that it considers each
aperiodic task as a periodic task. Therefore, more slots arereserved for each aperiodic
task than required (corresponding to the different instances supposed to occur within the
next hyperperiod). Moreover, periodic tasks must be scheduled on line, and the periodic
schedule is not steady, i.e. the periodic schedule can be different on two different hyper-
periods. Because of a more precise idle time unit reservation, our method will produce
better results, in the sense that more aperiodic traffic willbe accepted. In order to illus-
trate it, some simulations have been carried out.
We first created samples of periodic task sets in order to dealwith different values of the
utilization factor. A sampleSa(m, i) consists of500 task sets, wherem is the number of
processors andi ∈ 1, . . . , 9. Sa(m, i) is characterized by:

- the utilization factor of any task set of the sample, which must belong to the
interval [m− 1 + i

10 , m− 1 + i+1
10 ),

- the periods which are chosen according to Goossens’ method[28], which aims
to avoid too large hyperperiods,

- the WCETCi which are chosen uniformly within the set{1, . . . , Ti

2 }.

For each task set, we then generated an aperiodic task flowAP (x,D_Max) which is
characterized by:

- the interarrivals, which in a classical way obey an exponential distribution, with
a mean equal tox,

- the relative deadlinesDsi which are uniformaly chosen within the set{10, . . .,
D_Max},

- the deadlines, which must occur beforeH , thus the generation process ends
when a task with deadline higher thanH is generated,

- the WCET of a taskτsi , which is uniformaly chosen within the set

{⌈
Dsi

10 ⌉, . . . , ⌊
Dsi

2 ⌋}.

For each sample, we carried out 3 simulations, over the time interval[0, H ]:

1) we usedour method: periodic tasks are scheduled byPD2

2) we used thejoined PFair method,
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3) we used theexact PFair based method: each time we need to accept or reject
a task, we count in the PF schedule the exact number of idle time units. Then we
proceed exactly as in our method, using the exact number of idle time units instead of our
approximation.

We then used the competitive analysis, with theexact PFair based methodas reference
method. For any pair (task set, aperiodic flow), we computed the ratio of the cumulated
accepted aperiodic demand byour method(resp. by thejoined PFair method) over the
cumulated accepted aperiodic demand for theexact PFair based method. We repeated the
experiment for different tuples (m, x, D_max). Figure 5 presents the results for 4 pro-
cessors, with a mean interarrival x = 40 and a maximal relative deadline D_Max = 200.
Results obtained for other values (2 or 4 processors, x = 20 or40, D_Max = 40 or 200)
lead to similar conclusions.
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Figure 5. Comparison of our method with the joined PFair method

We can see that for most values ofU , our methodbehaves almost like theexact PFair
based method, whereas thejoined PFair methodhas lower performance, in the sense that
it accepts less aperiodic load (between60 and70 percent of the load accepted by theexact
PFair based method). The performance of our test really decreases only for highvalues
of U (m − 0.1 < U < m). With such utilization factors, there are few remaining idle
slots, and thus the error due to the approximation of the number of idle slots becomes
significant. In such cases, thejoined PFair methodbecomes competitive. But in almost
all cases, our method has higher performance. Besides, ifU is too close tom, it will be
quite impossible to include aperiodic traffic, or it would require that the designer adds a
processor to the platform. So, to summarize: ifu0 ≥ 0.2, then our method is the most
efficient, but ifu0 < 0.2 then a global method gives better results.
Note that equivalent obervations can be made for uniprocessor systems, for which the
challenger method to our’s is EDF [27]. Experiments show that, except for high values of
U , our methodhas significantly better results than EDF. Here again, the EDF acceptance

test is very simple: an aperiodic task is accepted only if
n
∑

i=1

Ci

Pi
+

k
∑

j=1

Csj

Dsj
+ Cs

Ds
≤ 1. And
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again, once the task is accepted, it is considered as a periodic task thus processor activity
is considered as reserved for each instance of the task, not only for one single instance.

4. Non independent periodic tasks and Aperiodic flow

We now consider non independent tasks, which may use critical resources (other than
the processors), which must be used in mutual exclusion, andexchange messages through
mailboxes. We assume that the reception of messages is blocking, but not the emis-
sion. Thus, a task can be represented as a sequence of blocks,whose worst case dura-
tions are known:block(d) still denotes a block of durationd; and of real-time primitives
(Lock/Unlock resources, Send/Receive messages), whose durations are assumed to be
equal to0, which in fact means that their actual durations are included in the durations of
the neighbouring blocks.
The periodic tasks may have constrained deadlines (Di ≤ Ti), and finally, aperiodic tasks
are still assumed to be independent (they neither use critical resourcse nor exchange mes-
sages). We still aim to propose joined scheduling: the periodic tasks are scheduled before
run-time, and the aperiodic flow is managed on-line, using the method presented in the
previous section. The fundamental requirements to use thismethod is the PFair distribu-
tion of the idle time units. But no specific requirements concern the periodic schedule,
provided it is valid. We thus adopt an off-line model-drivenapproach to compute valid
schedules with a PFair idle time unit distribution.

4.1. Model-driven scheduling: Petri net-based approach

When tasks are not independent, not only PFair strategies are no longer optimal but
also there exists no on-line optimal strategy [17, 22]. Furthermore, in this case, the
scheduling problem is NP-hard. We thus analyse the periodicset before run-time. We
consider a model driven approach using a Petri net based modelling, which is presented
in the next sections. We recall that a task consists of a sequence of blocks whose durations
are known (Block(d) is a block with a WCET equal tod) and of real-time primitives.

4.1.1. Basic definitions

A marked Petri net is a pair(N,M0) with N = (Q, T,W ) whereQ is a finite set of
places;T a finite set of transitions;W : Q × T ∪ T ×Q → N is the valuation function;
andM0 : Q → N the initial marking, whereM0(p) is the number of tokens initially held
by the placep.

N gives a static description of the system andM0 is its initial state. The dynamic be-
haviour is described by the firing rules: a transitiont is enabledor firable for a marking
M if and only if ∀p ∈ Q, M(p) ≥W (p, t). Its firing leads to the markingM ′ defined by:
∀p ∈ Q, M ′(p) = M(p)−W (p, t) +W (t, p).
A Petri net runs under themaximal firing rule [32] if only maximal (as to the inclusion)
transition sets are fired.
Coloured places [23] contain marks of different colours4. A finite setC of colours is
associated to each coloured place. We redefine the valuationfunction byW : Q × T ×

4. We use a simplified version of the definition of the coloured Petri nets
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C ∪ T × Q × C → N. Then a transition is enabled from the markingM if and only if
∀p ∈ Q and∀c ∈ C, M(p, c) ≥ W (p, t, c). Its firing produces the markingM ′ defined
by: ∀p ∈ Q, ∀c ∈ C, M ′(p, c) = M(p, c)−W (p, t, c) +W (t, p, c).
Finally, the evolution of the net may be constrained by aterminal set [36] whose aim is
to restrict the possible behaviours of the net to the only ones that guarantee that all the
reached states verify some properties. We thus add a markingsetI, that is defined using
properties on markings, to the net, and we only consider firing sequences such that the
successive reached markings belong toI.

4.1.2. The model

The model (see [21] for a more detailled presentation) consists of a coloured Petri net
with a terminal set, running under the maximal firing rule. Itis composed of two parts,
both modelled by a place/transition net (see figure 6): the task system, which is obtained
through a classical modelling of the functional description of the tasks, and the clock
system, which, together with the maximal firing rule, modelsthe time.

4.1.3. The clock system

This part of the net consists of:

RTC

Time3
Time2

Time1

Clk3
Clk1

Clk2

Activ1 Activ2
Activ3

T1,1

T1,2

T1,3

End1 

T3,1
T2,1

T3,2T2,2

T3,3T2,3

End3End2

P1,1

P1,2

P1,3

P3,1P2,1

P3,2
P2,2

P3,3
P2,3

Box1,2

R

Processor

{a,b} {a,b}
{a,b}

88 16

a a a

{a, b} {a, b} {a, b}

b

b

b

The task system

The clock system

τ1 = <0, 4, 8, 8> τ3 = <0, 4, 16, 16>τ2 = <0, 4, 8, 8>

Figure 6. Modelling of an application. Each transition Ti,j and Endi (respectivelly the jth

and the last transition of the task τi) have the place Processor as input and output. This is
not represented on the net for readibility reasons. Pi, j is the (j+1)th place of the task τi,
and Activi is its first place.
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1) A global clockRTC (Real Time clock), which fires each time a set of transitions
fires, since this transition is always enabled. We thus get a logical representation of the
time: we assimilate the firing ofRTC to an execution time unit.

2) The local clocks of the tasks which are used to periodically release the related
tasks. The clock of a taskτi is composed of an accumulative placeT imei, which mem-
orizes the elapsed time since the last release of the task anda transitionClki which fires
each period. The firing ofClki models the reactivation of the task which occurs each time
the placeT imei containsTi tokens. It produces a token of coloura (for activation) in the
placeActivi which is the first place of the taskτi in the task system.

4.1.4. The task system

This part of the net models the task set (Figure 7). Each taskτi starts with a coloured
placeActivi, to which two coloursa andb are associated. When the place holds a token
a, it means that a new instance has been released, but has not yet started execution, and
when it holds a tokenb, it means that the previous instance has completed execution.
Finally, each last transtionEndi of the taskτi verifiesW (Endi, Activi)= b i.e. a token
of colourb is produced when an instance completes execution. Then the task can start
execution only if this place holds a tokena and a tokenb i.e. if it has been released and if
the previous instance has completed execution. The firing ofone transition corresponds to
the processing of the associated task during one slot. A block of durationd is modelled by
one single transition ifd = 1, two transitions ifd = 2 and three transitions ifd > 2 (see
the three blocks in Figure 7). Communications between tasksare modelled by mailbox
places, and each shared resource by one place. Processors are modelled by one place with
m tokens if we consider a platform ofm processors, and each transition of the tasks admit
this place as input and output. Accordingly, at mostm transitions of the task system can
fire simultaneously. The edges from and to the place Processor are not represented on the
figure 6 for clarity reasons. Figure 7 presents the modellingof a task with 3 blocks of
durations 5, 2 and 1 respectively and whose first release timeis r = 2. It sends a message
after its activation, locks the shared resource R at the beginning of the second block and
unlocks it at the end of this block. The platform consists of 2processors.

4.1.5. Integration of the temporal parameters

The initial marking of the placesActivi andT imei takes the first release dates into
account. This initial marking is defined as follows (we assume that0 ≤ ri < Ti, see [21]
for the caseTi ≤ ri): ∀i = 0..n,

M0(T imei) =

{

1 if ri = 0
Ti − ri + 1 if ri > 0

, M0(Activi) =

{

{a, b} if ri = 0
b if ri > 0

If ri = 0, then the task can start execution, thusM0 holds a tokena and a tokenb, else,
no instance is running, there is a tokenb, but the task must wait until the next release,
thus there is no tokena.
Let ℜ =

{

R1, ..., R|ℜ|

}

denotes the places associated to the shared resources and℘ =
{

B1, ..., B|℘|

}

the mailbox places.|Ri| is the number of instances of the shared resource
Ri. The initial markings of the other places are defined by:M0(Processor) = m,
∀i = 1.. |ℜ| ,M0(Ri) = |Ri|, ∀i = 1.. |℘| ,M0(Bi) = 0, M0(P ) = 0 for all other places
of the task system (i.e. the placesPi,j,k).
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Since we are only interested in valid behaviours, further constraints on allowed markings
are added. A terminal set is introduced to consider deadlines:

∀i = 0..n,

{

1. M(T imei) = 1 ⇒ M(Activi) = {a, b} or b
2. M(T imei) ≥ Di + 1 ⇒ M(Activi) = b

.

The point 1. means that at each release, the task must have completed the previous in-
stance. The second case (M(Activi) = b) corresponds to the initialization of the net in
the caseri = Pi − 1. And the point 2. means that after deadline, the pending instance
must have completed execution. It is used only for the tasks such thatDi < Ti.

4.1.6. Valid schedules

Then we label the net, using the alphabet
∑

τ = {τ0, τ1, ..., τn} and the labelling
functionστ : T →

∑

τ : ∀ Ti,j ∈ T, στ (Ti,j) = τi, ∀ Endi ∈ T , στ (Endi) = τi and
στ (t) = ǫ for any other transitiont ∈ T . For the net of figure 6, we have for instance
στ (T1,1) = στ (T1,2) = στ (T1,3) = στ (End1) = τ1, orστ (Clk1) = ǫ.
Each time a transition set fires, we only keep the informations coming from the task
system, more precisely, the labeling function gives the setof the currently processed tasks.
Because of the placeProcessor, we are sure that there are at mostm such tasks. For
instance, in the net of figure 6, only 2 transitions of the tasksystem can fire at once.
We then construct the labelled terminal marking graph. Eachedge is labelled by a set of
tasks, which belongs toOm(τ) and each vertex by a marking. If the set{t1, .., tp} fires,
the edge is labelled by the set {στ (ti)/στ (ti) 6= ǫ}. For instance, again for the net of
figure 6, if{RTC, T1,2, T3,2} fires, the associated edge is labelled by{τ1, τ3}.
Each path starting at the vertex labelled byM0 is labelled by a wordω defined asω =

Task

Begin

 send(message, Mbx1);

 Block1(d=5);

 Lock(R);

 Block2(d=2);

 Unlock(R);

 Block3(d=1);

end;

< 2, 8, 9, 9 >

8

9

a

{a, b} Mbx1

3

3

Block1

Block2

Block3

R

RTC

Timei

Clki

Activi

Processor

Ti,1

Ti,2

Ti,3

Ti,4

Ti,5

Endi

Pi,1

Pi,2

Pi,3

Pi,4

Pi,5

b

Figure 7. Model of the task τi =< 2, 8, 9, 9 >, for a platform of 2 processors.
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ω0ω1ω2... where fort ∈ N, ωt ∈ Om(τ). The associated scheduleS is then defined by
S(t) = ωt whereωt is the set of the tasks which are scheduled at timet. Since a marking
that meets the terminal constraints corresponds to a state of the task system where all
temporal constraints are met, this schedule is valid. We have the following proposition a
proof can be found in [19, 20]:

Proposition 4.1. [19, 20] By construction, the valid schedules exactly correspond to the
infinite paths in the labelled terminal marking graph if the net runs under the maximal
firing rule.

4.2. Idleness control using Petri nets

We still assume thatm− 1 < U < m. Our concern here is the off-line scheduling of
the periodic tasks in such a way that we still can use our acceptance protocol to manage
the aperiodic flow. For that aim, we again add an idle task to the model, and then we
compute valid schedules which ensure a PFair execution of this idle task.

4.2.1. Model of the idle task

The idle task is defined as in section 3.2:τ0 = < 0, C0 = H(m− U), D0 = H,T0 =
H >. For instancce, for the net of the figure 6, we haveτ0 = < 0, 12, 16, 16 >. We
use a global approach to model the idle task, and we consider the PFairness requirement
only during the schedule computation, by means of the labelled terminal marking graph.
We thus model the idle task like any other task, and leave the PFairness requirement to
the schedule extraction step. We add a local clock(T ime0, Clk0), a placeActiv0, two
placesP0,1 andP0,2 and two transitionsT0,1 andT0,2 (see figure 8 for the caseC0 ≥ 2).
The terminal condition concerning this task isM(T ime0) = 1 ⇒ M(Activ0) = {a, b}.
Even if the PFairness requirement satisfaction is left for the next step, we can note that it
nevertheless has an impact on the modelling of the task. Indeed, here, the idle task cannot
be parallelized, but in the general case, without specific requirement, it should be possible
to have several simultaneous idle time units (to model the fact that several processors are
simultaneously idle). Thus it would require another modelling of the idle task (we don’t
detail it here since we don’t need it).

4.3. Schedule production

The first step consists of the construction of the labelled terminal marking graph.
Then, we must find the paths in the graph starting at the vertexlabelled byM0, in which
the idle time units are PFairly distributed. For that aim, wevaluate the graph. LetM be a
marking. We can deduce the number of already elapsed idle time units for the current hy-
perperiod, when the system is in the state modelled by the markingM , which is denoted
byW0(M).

– if | M(Activ0) |a= 1, thenW0(M) = 0: the presence of the tokena means thatτ0
has been released for the current hyperperiod, but doesn’t have yet started execution5 ,

– else if| M(Activ0) |b= 1 thenW0(M) = C0: the absence of the tokena means
that the current instance has already started execution, and the tokenb means that this
instance is completed,

5. | M(Activ0) |x denotes the number of x in the place Activ0
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RTC

Time
'

Clk0

Activ0

T0,1

T0,2

End3

P0,1

P0,2

{a, b}

{a, b}

b

a

T0

C0 - 2

C0 - 2

Figure 8. Modelling of the idle task.

– elseW0(M) = 1+M(P0,2): the current instance has started execution (no tokena)
but is not completed (no tokenb). The transitionT0,1 has been fired, which corresponds
to the occurrence of a first idle time unit. Then the transition T0,2 has been fired a certain
number of time, saynbf (0 ≤ nbf ≤ C0 − 2) corresponding to the occurrences ofnbf
further idle time units.nbf is equal to the marking of the placeP0,2. Finally the transition
End0 hasn’t been fired. Thus the global number of already elapsed idle time units is equal
to 1 + nbf = 1 +M(P0,2).

Then letNi andNj be two nodes of the graph, labelled by the markingsMi andMj , such
that the edge(Ni, Nj) exists, and letωj be the label of the edge(Ni, Nj). The weight
associated to the edge is defined as6:

Weight(Ni, Nj) =

{

⌊Abs(W0(Mj)−Mj(T ime0)u0)⌋ if τ0 ∈ ωj

0 else

Let us consider the state of the system modelled by the marking Mj: W0(Mj) corre-
sponds to the number of elapsed idle time units since the beginning of the hyperperiod,
Mj(T ime0) is the current time (moduloH), andMj(T ime0)u0 is the ideal number of
elapsed idle time units since the begining of the current hyperperiod. Thus, if the ac-
tual number of idle time units verifies the PFair equation (definition 2.2), the valuation
of the edge is equal to0. If the PFair property is not met; i.e. the taskτ0 is either late
or in advance (see figure 2 (b)), the valuation is strictly positive. A path corresponding
to a schedule where the idle slots are PFairly distributed has thus a valuation equal to0.
Furthermore, since the terminal marking graph collects allthe possible valid schedules
(Proposition 4.1), if no nul valuated path can be found, thenno schedule exists which
ensure a PFair distribution of the idle time units. We thus have the following result.

Proposition 4.2. If the valuated terminal marking graph contains a path with anul val-
uation (thus whose edges are all labelled by0), then the idle time units are PFairly dis-
tributed within the associated schedule. If the valuated terminal marking graph doesn’t
contain such a path, then it is not possible to schedule the periodic task set without tem-
poral failures and together to PFairly distribute the idle time units.

6. Abs(x) denotes the absolute value of x
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The problem of finding such a schedule is thus reduced to the problem of searching a
minimal-valuated path starting at the vertex labelled byM0 in the graph.
Note that, since we are only interested in the edges that are valuated by0, we can di-
rectly include this restriction into the construction process of the terminal labelled mark-
ing graph. This will reduce the graph construction duration, since the final graph is smaller
than the full graph, and useless edges and vertices are not constructed.
Then, if one solution has been found, we can again use the acceptance protocol presented
in section 3.3 to manage the aperiodic flow on-line. As to the performance of the method
(the acceptance rate), provided the idle task is PFairly scheduled, the acceptation rate,
only relies on the idle task location, and not on the periodicschedule. Thus the results got
for the systems of independent tasks still hold.

5. Conclusion

We have proposed a protocol to schedule aperiodic hard real-time tasks, which is lin-
ear in the number of already accepted pending aperiodic tasks. The periodic tasks can be
pre-scheduled (i.e. scheduled off-line before run-time).The protocol is based on a PFair
distribution of the idle times within the periodic schedule. The idle time units are used for
the aperiodic taks progression, and their number can be estimated in O(1) within any time
interval. They are managed by a dedicated task, the idle task, which is PFairly scheduled.
For that aim, if the periodic tasks are independent, a simpleway to PFairly scheduleτ0
is to schedule the whole periodic set (includingτ0) with a PFair strategy. If the periodic
tasks are non independent, we use a model-driven off-line strategy, based on Petri nets.
We then take the PFairness requirement into account during the analysis of the net.
Now, an open problem is to bound the depth of the marking graph. If the periodic tasks
have simultaneous first releases, the depth is equal to the hyperperiodH , else, as men-
tionned earlier, we have no efficient bound. So either we chose an arbitrarily depth (e.g.
Maxi∈1..n(ri) +H) or go on with the construction until each path loops.
Then, we can also use our method to include a new periodic taskwithin an already sched-
uled task set, without recomputation of the schedule. We consider a flow composed of all
the instances of the task for the next hyperperiod. If each instance can be accepted, then
the task can be added to the task set, and the schedule be modified according to the accep-
tance protocol, else, either the system must be completely re-scheduled, or the addition in
not possible.
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A. The acceptance test

We first give the function which decides whether an aperiodictask can be accepted.

Function Accept

input
u0: float -- utilization factor of the idle taskτ0
TAP -- accepted aperiodic table
k : integer -- number of already accepted aperiodic tasks
τ = (t, C, D) -- new aperiodic task
output
accepted: boolean -- true if the task is accepted, false else

d := t + D

W_Min :=⌊ u0 × d ⌋ − ⌈ u0 × t ⌉
If TAP is empty then -- there is no aperiodic pending task

accepted :=(W_Min ≥ C)

else

-- Computation ofi0 for the partition of the pending aperiodic task set
i0:= 0

While (i0 < k) and TAP(i0+1).dl ≤ d loop

i0 := i0+1
end loop

if i0 > 0 then -- the set B(d) is non empty
if ⌊ (u0 × TAP (i0).dl ⌋ − ⌈ u0 × t ⌉ ≥ C + TAP (i0).C_RCT
then accepted := true

else accepted := false -- there are not enough idle time units to add the task
end if

else accepted := true

end if

if accepted then

for j in i0+1..k loop

if ⌊ u0 × TAP (j).dl ⌋ − ⌈ u0 × t ⌉ < C + TAP (j).C_RCT
then accepted := false -- a task will miss its deadline if the new ape-

riodic task is processed
end if

end loop

end if

return accepted

The list of the pending accepted aperiodic tasks must be updated after acceptation of a
new task. We use an insertion function Insert ((dl, RCT, C_RCT), j, TAP) which inserts
the tuple (dl, RCT,C_RCT) in position j in the table TAP.

Function insert_task

input
TAP -- pending accepted aperiodic tasks
τ = (t, C, D) -- new aperiodic task
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Precondition
Task τ is accepted

output
the updated table of accepted tasks

d := t + D

If TAP is empty then -- insertion in first position
insert((d, C, C), 1, TAP)

else i0:= 0

While (i0 < k) and TAP(i0+1).dl ≤ d loop

i0 := i0+1
end loop

-- the insertion position isi0+1
for j in i0+1..k loop

-- the next C_RCT are increased
TAP(j).C_RCT := TAP(j).C_RCT + C

end loop

-- insertion in positioni0+1
insert((d,C,TAP(i).C_RCT + C),i0+1,TAP)

end if

return(TAP)

Finally, the global scheduling algorithm is the following.We use a deletion function
del(TAP, k) which deletes thekth item from the table TAP.

Function schedule

input
TAP -- pending accepted aperiodic tasks
L -- list of the new arrived aperiodic tasks
t -- current time
output
updated table of pending aperiodic tasks

identity of the processed task

while L is not empty loop

τ := head(L)

unqueue(L)

If accept(u0,TAP,τ) then

insert_task(TAP,τ)
end if

end loop

if TAP is not empty then

id :=TAP(1).id

TAP(1).RCT := TAP(1).RCT - 1

for i in 1..k loop

TAP(i).C_RCT := TAP(i).C_RCT - 1

end loop

If TAP(1).RCT = 0 then del(TAP,1)

end if

end if;

return(TAP, id)
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