Scheduling an aperiodic flow within a real-time
system using Fairness properties

Annie Choquet-Geniét— Sadouanouan Malb

* University of Poitiers. Laboratory of Applied Computer Science. 1 Av. Clément Ader BP 40109
- 86961 Futuroscope Chasseneuil-France.
annie.geniet@univ-poitiers.fr

** Polytechnic University of Bobo Dioulasso. Information Technology High School. 01 BP 1091
Bobo Dioulasso 01, Burkina Faso.
sadouanouan.malo@laposte.net

ABSTRACT. We consider hard real-time systems composed of periodic tasks and of an aperiodic
flow. Each task, either periodic or aperiodic, has a firm deadline. An aperiodic task is accepted within
the system only if it can be completed before its deadline, without causing temporal failures for the
periodic tasks or for the previously accepted aperiodic tasks. We propose an acceptance test, linear
in the number of pending accepted aperiodic tasks. This protocol can be used provided the idle slots
left by the periodic tasks are fairly distributed. We then propose a model-driven approach, based on
Petri nets, to produce schedules with a fair distribution of the idle slots for systems of non independent
periodic tasks.

RESUME. Nous considérons des systémes temps-réel composés de taches périodiques et d’un flux
apériodique. Toutes les taches, périodiques comme apériodiques, sont soumises a des échéances
strictes. Une tache apériodique n’est acceptée que si elle ne remet pas en cause le respect des
échéances par les taches périodiques et par les taches apériodiques déja acceptées. Nous proposons
un protocole d’acceptation des taches apériodiques de complexité linéaire en le nombre de taches
apériodiques acceptées présentes dans le systeme. Ce protocle est utilisable des lors que les temps
creux sont répartis de maniére équitable. Nous proposons donc une approche modéle, a base de
réseaux de Petri, pour produire des séquences ou les temps creux sont équitablement répartis, pour
des systémes de taches interdépendantes.

KEYWORDS : real-time systems, multiprocessor scheduling, aperiodic flow, Petri nets

MOTS-CLES : Systémes temps-réel, ordonnancement multiprocesseur, flux apériodique, réseaux de
Petri

Received, April 20, 2012 ARIMA Journal, vol. 18 (2014), pp. 93-116.

Revised, July 5, 2013
Accepted, November 22, 2013

94 ARIMA —Volume 18 — 2014

1. Introduction

1.1. Real-time systems

A real-time system is one whose logical correctness is bhg#don the correctness
of the outputs and on their timeliness [26]. It is often dasidjto control physical pro-
cesses, thus it must permanently react to its environmehinéeract among components
within the systems. It is composed of periodic tasks, dédatéo the control activities
(temperature acquisition in a nuclear station, robotftt®ry computation, processing
of informations provided by a synchronous link, etc.), ahdjmeriodic tasks which are
triggered by aperiodic events (human interaction, alartivatton, error detection etc.).
It must satisfy explicit (bounded) response-time constsaor malfunctions might occur,
which may have unacceptable consequences e.g. loss of hivemiThus, a key require-
ment for real-time systems is the end-to-end delay in tHedmscution, which is a critical
issue in the design and analysis of time critical systemse Hee focus on hard real-time
applications: the tasks (either periodic or aperiodic)enfinm deadlines by which they
must be completed for safety reasons. E.g. a late computee wan be obsolete, using
it may be misleading and even dangerous. Moreover, conatyreesource sharing, syn-
chronization, and deadlock resolution are also essessaks. Besides, as systems are
increasingly complex, the trend is toward the use of sey@@essors to process a large
number of tasks. We thus consider a platform composed afentical processors (for
instance a symetric multicore platform), and we assumettigasystem is preemptive.
Moreover, we assume that the preemption costs and thegnteessor migration costs
are negligible. We have chosen such architectures firstigise they are rather common,
and secondly, because the scheduling results that we usebleawn set for this kind of
architecture. We focus on the temporal validation of theliapfion i.e. on the timeliness
which is based on the choice of an appropriate schedulirigyp@thich can be proved to
respect all the temporal constraints.

1.2. Real-time periodic scheduling

Real-time multiprocessor scheduling techniques fallintmgeneral categories: parti-
tioned and global scheduling. Under partitioning, eacltgssor independently schedules
tasks from a local ready queue. Each task is definitivel\gassli to a given processor and
is only scheduled on that processor. The main challengeifehe distribution of the
tasks among the processors, which is mostly based on bkifggld 8]. In contrast, all
ready tasks are stored in a single queue under global séhgdAltask is selected to exe-
cute whenever the scheduler is invoked, regardless of wimtessor is being scheduled.
It means that the tasks can run at any time on any processgratie never definitively
assigned to a given one. They may start on one processor sunthieeon another. Never-
theless, parallelism is prohibited in both schemes: at g, ta task can run on at most
one processor. None of these approaches can be considdretieaghan the other since
there exists applications which are feasible under one effiproaches, but not under
the other one, and conversely [9]. An application is saidgddasible if there exists a
valid schedule which is a schedule which meets all the teadponstraints. We will only
consider global scheduling in this paper.

Here again, two approaches are usually considered in codsslve the schedulability

ARIMA

Aperiodic scheduling 95

problem, the on-line and the off-line methods. For on-liretmods, the scheduling policy
is classically priority driven and is implemented withiretecheduler. The processors are
assigned to the pending tasks with the highest prioritiesndependent periodic tasks
with implicit deadlines (the due date of any instance is étm#he release date of the
next instance) are considered, optimal strategies have fmeposed [5, 1] for platforms
composed of identical processors, which are based on theefa property, where an
algorithm is said to be optimal if for any application, eithiecomputes a valid sched-
ule or there exists no such schedule at all. But if deadlinag atcur before the next
release, [17, 29] have proved that no on-line algorithm cawotimal. Furthermore, if
critical resources are used, the scheduling problem is &B-&ven for single processor
systems [22]. Therefore, only sufficient conditions existthe schedulability analysis of
real-time tasks in multiprocessor environment. On the roflaed, off-line methods per-
form a static pre-runtime schedulability analysis. A vaahedule is computed and then
used by the dispatcher at run-time. Most off-line schedusitrategies rely on exhaus-
tive branch-and-bound enumeration techniques. Thes®agipes are generally model-
driven and are based on task system modelling using e.d.ne&tr automata, geometric
models...[6, 35, 21, 23, 25, 13].

1.3. Motivation and contribution

We adress the problem of scheduling aperiodic tasks. Werssthat they have firm
deadlines. Thus, either they can be processed on time, pmihst be rejected by the
system, e.g. to avoid them to handle obsolete values. Owecoris here to propose an
efficient acceptance protocol, where the efficiency is meakly the amount of accepted
aperiodic load. The main rule is that an aperiodic task caadoepted only if it can
complete execution before its deadline and if it doesn’seaany deadline failure, neither
for the periodic tasks, nor for the already accepted aperiadks. We propose an ac-
ceptance protocol, which relies on a fair distribution df ttlle time units. The accepted
aperiodic tasks are scheduled in background, which meansithaperiodic task can be
scheduled each time an idle slot occurs in the periodic adaedhis problem has been
largely adressed for uniprocessor systems [27, 11, 10].0Akd multiprocessor case,
most papers deal with hard periodic tasks but soft aperiodés [3, 33, 30], and they
consider joint scheduling: a scheduling algorithm scheslithe periodic and the accepted
aperiodic tasks together. Some authors consider spoia@akis {there exists a minimum
delay between two consecutive releases) [24, 34, 30]. Ih Bethod based on the
computation of the response time of the aperiodic tasksopgsed. Each time new ape-
riodic tasks arrive in the system, the response time of tiegiaghic traffic is computed,
and if required, some of the new tasks are dismissed. Hezezadimplexity depends on
the complexity of the response time computation, which i©{number of tasks the
cumulated aperiodic demand). Our objective is to proposstantith a lower complexity.
In a first time, we consider independent periodic tasks witplicit deadlines. For such
task sets, PFair scheduling strategies are optimal. Wectinsse to schedule the periodic
tasks with a PFair algorithm, such &§ [5] or PD? [1] (PFair scheduling is presented
in section 2). In addition, there exists a very simple feitigidest, which is linear in the
number of tasks: the task set is feasible if and only if thézation factor, which is equal
to the ratio of the processors activity dedicated to the etkea of the tasks, is at most
equal to the number of processors. Now, if the applicatideasible and has a utilization
factor less than the numbet of processors, some idle times take place, during which
some processors remain idle. We show that it is possiblestoildlite the idle times in a

ARIMA

9% ARIMA —Volume 18 — 2014

regular way and to process aperiodic load each time theyrotWea propose an accep-
tance test which makes use of the regular distribution oidlegimes, and which is linear
in the number of already accepted pending aperiodic tasks.

Next we consider sets of non independent periodic tasky: ey exchange messages,
and use critical resources, i.e. resources which must be inseutual exclusion. To
overcome the lack of optimal on-line strategy, we use adioé-model-driven approach,
based on the modelling of the application, including thegeral constraints, by a Petri
net. We here adapt the approach proposed in [21]. Then we kbawto use the model
to get schedules that contain regularly distributed idtess.

The rest of the paper is organized as follows: in section 2 ngegnt the basic definitions
and we state our assumptions. In section 3, we present tieptacce protocol and its
performance when periodic tasks are independent. Finalgction 4, we consider non
independent tasks, we present our Petri net based modedshamdhow to use the Petri-
net based analysis for the computation of the approprisitedsdes. The paper ends with
some concluding remarks and perperspectives.

2. Basic definitions and assumptions

2.1. Real-time applications

We consider a multiprocessor platform, with identical processors and a real-time
application composed of a periodic task set {ry,...,} and of aperiodic tasks.
Eachperiodic taskr; =< r;, C;, D;, T; > is characterized by four temporal parameters:
its first release time;, its periodT;, its worst-case execution time (WCEQT), and its rel-
ative deadlineD;, which is the maximum delay allowed from the release of asjaince
of the task to its completion (see figure 1). We here assume&tha D; < T;,Vr; € .

If the first release times are all equal, the application ig8 sahavesimultaneous first
releasesotherwise it is said to hawteffered first releases

A taskr; consists of an infinite set of instances (or jobs) (k € N). The instance; ;, is
released at time; ;, = r; + k x T, and must be completed by its (absolute) deadline
=7r; + k x T’l + Dz

T.
i
- Di >
offset 4 > T
[s B s O s | i >
0 . 5+ D; r+T, Time
i it
+ 13t deadline

18t 2nd

release C. release

1

Figure 1. Temporal modelling of a real time periodic task.
Thehyperperiod of a periodic task set is the least common multiple of thequeriof the

tasks:H = lem(T;)i=1..n-
The processautilization factor characterizes the processor workload due to the task set.

ARIMA

Aperiodic scheduling 97

1=n
It is defined byU = % If U > m the system is over-loaded and temporal faults
cannot be avoided [é]. '
An aperiodic taskr; is characterized by an arrival timg, a worst case execution tindg
and a relative deadlinB;. Its absolute deadline i& = r;+ D,. An important difference
between periodic tasks and aperiodic ones is that the eetizas of each instance of each
periodic task is known before runtime, whereas the arriva t-, of an aperiodic task is
not known.
An aperiodicflow is a series of aperiodic tasks 1, 75,2, ... (With rs 1 <759 < ...).

2.2. Schedules

For anyt € N, theslot t denotes the time interval[t,z + 1). A task is said to be
processed at timeif it is processed by one processor during the slotVe then define
the notion of schedule.

Definition 2.1. LetO,, () denotes the set of subsetsaif cardinality less than or equal
tom. Ascheduleonm processors is defined Isy: N — O,,,(7) suchthat;; € S(t) & ;
is scheduled at timeon one processor.

Let S; be such tha;(t) = é:;;;e S()

must respect the temporal constraints:

. In order to be temporallyalid, a schedule

Ti—l

(1) Vi€ 1.n, Y Si(t) = 0and,
t=0

rﬁ»(kfl)TH»Difl ri+kT; —1
(2) Vk € N* > Sity= > Si(t)=kxCi.
t=0 t=0

The equation (1) insures that the task doesn't start exatbtfore its first release date,
and the equation (2) insures that exactly one instance adttkds processed between any
release and the next deadline. If there exists a valid sdbgithe system is saii@asible

If | S(¢) |< mthere aré m— | S(t) | idle time units at timet.

For any periodic (resp. aperiodic) task(resp.rs,), RCT;(t)(resp. RCTs, (t)) denotes
the remaining computation time of the pending instance of (resp. ofr,,) at time t.
Finally, for any times t and t', and for any task we definelV;(¢,t') as theprocessed
execution timeof taskr; between time t and time t'.

Since the processors are identical, we do not consider liwasibn problem. We assume
that heuristics are used in order to carry out the allocgifmeess, which generally aims
to mimize the number of context switches and of interpromessgrations.

2.3. PFair scheduling

In a first time, we consider independent periodic tasks waplicit deadlines (D; =
T;). Such tasks can be optimally scheduled on a platform coetpbosidentical proces-
sors by a PFair strategy [5, 1]. The basic idea is that ea¢éhidgzocessed at “regular

1. [a,b)={uja<u<b}
2. |A] denotes the cardinality of the set A.

ARIMA

98 ARIMA —Volume 18 — 2014

rate”. At each time, the number of processed slots is proportiondl, tawith a propor-
tionality coefficientu; = % We statel deal;(t) = u; x t. Since the numbdi/’; (0, ¢) of
processed slots at tintemust be integer]deal;(t) is approximated by either; x t| or
[u; x t] 2. Thus the difference between the ideal and the actual nuaflpeocessed time
units must be bounded Kyin absolute value. This is formally expressed by the folloyvi
definition:

Definition 2.2. A schedule i®Fair iff we have:
t—1
Vie{l,..,nhVte N, -1 <u; xt— > Si(j) < 1.

Jj=0

The figure 2 illustrates the PFairness. For any tgskhe actual execution curvé’;
must strictly remain between both limit [iné8,” = u; xt — 1 andW;r =u; X t+ 1.

Processed Processed
execution time execution time
+
Wit () Wi
N - _.--1deali(t) = u:*t
e _deal(t) = upt The lask |s i e
e task is - i i 2C;: in advance

contending). i /,/'/
The task is — Pt -
T_Negru 2 Wi(t) Pt Pt _
//‘/ /,_—’ B [(-- .
o i T
" (The task is . 1 /,// The task
Urgent Time e is late Time

T T

T 2T;

(b) A non P-fair execution

®
s
Ke)
1

(a) a P-fair execution

Figure 2. (a) a PFair execution and (b) a non PFair execution - Different status of a task.

All the PFair strategies follow the global scheme descriteldw.
1) The task set is partitioned into three sets (see figure 2).

- theUrgent set contains the tasks which would be too late (under therlbaend) if
they were not processed at timeThese tasks must be processed at time

- the Tnegru set contains the tasks which would be too in advance (oveupiper
bound) if they were processed at timeThese tasks must not be processed at time

- theContending set contains the other tasks: the PFairness is neithetetibitthey
are processed nor if they are not.

2) The urgent tasks are processed.

3) Thenm — | Urgent(t) | contending tasks are processed, their choice depends
on the chosen PFair strategy.

Several PFair versions have been proposed in the literé®f,ePD andPD? [5, 4, 1)).
These algorihms differ in the way they select the tasks tegs® among the contending
tasks. These scheduling strategies are very efficient,endféciency means that they can

3. |z] (resp. [z]) denotes the largest (resp. the lowest) integer lower (resp. higher) than or equal
to x

ARIMA

Aperiodic scheduling 99

correctly schedule a large set of applications, as statdteitheorem 2.3.

Theorem 2.3.[5, 4, 1] The scheduling algorithms PF, PD aiiD? are optimal for sys-
tems of periodic independent tasks with implicit deadlenas simultaneous first releases
in a multiprocessor context. Moreover, the system is féagiland only ifU < m where
m is the number of processors.

For tasks with simultaneous first releases and implicit theasl the implementation
of the classical PFair strategies (PF, PD and®)Pi2lies on the decomposition of the
execution of each task =< 0,C;, D;,T; > into the execution of unitary subtask$
(j > 0). Each subtaskj has apseudo-releaselate and gseudo-deadlinedefined by:

rl = { J andd) = [. The time intervalr?, d’) is the j*" feasibility window of

1) Z

the substask PFa|rness can be characterized by the fotjqwoperty:

Property 2.4. The taskr; is PFairly processed iff each of its subtask is scheduledimvit
its feasability window.

The feasibility windows are computed before run-time ushmyWCET of the tasks.
Should the actual execution time be shorter than the WCEETtabk will nevertheless
be scheduled within its feasibility windows. The task wiillis still meet its deadlines.
But some processor time units allocated to the last subtaskise lost: the concerned
processors will simply idle.

3. Independent periodic task sets and Aperiodic flow

We first consider independent periodic tasks with implieiadlines and an aperiodic
flow. The aperiodic tasks are assumed to have firm deadlind@shwnust be respected,
else the task must be rejected. Our aim is to propose an acwepprotocol, which must
obey the following rules:

1) An accepted aperiodic task must complete at the latessloeadline.

2) The acceptance of a new aperiodic task must not cause aogigdask to miss
its deadline.

3) A new accepted task must not cause a previously acceptbdie task to
miss its deadline.

Related works

This issue has already been studied for uniprocessor syst@me of the most effective
solution consists in scheduling tasks according to EDF 126,27]: the processed task
has the nearest deadline. There is one single queue, soriectéasing order of dead-
lines, which contains the pending periodic tasks as welhasatcepted aperiodic ones.
The acceptance test is then very simple. It consists in derisig the aperiodic task as a
new periodic one.

In multiprocessor context, we use a PFair strategy to sdbdla periodic task set, for
optimality reasons and because of the simplicity of theibélity test (U < m). Here
again, a solution for the acceptance test could be to cons@d new aperiodic task as a
new periodic one, and to use the global feasability tests Tethod has nevertheless two

ARIMA

100 ARIMA —Volume 18 — 2014

drawbacks.

- Firstly, periodic tasks would no more be steadily schediuie the sense that the peri-
odic schedule can vary from one hyperiod to another. It is thypossible to predict when
periodic tasks will occur if the aperiodic flow is not knowrféwee run-time, and thus it is
impossible to compute the periodic schedule before ruestim

- Secondly, considering each aperiodic task as a periodionmuld suppose to require
possibly much more slots than actually necessary. Indeedgasibility test guarantees
that there is enough time to schedule each instance of thetkags processor time units
are reserved for the processing of all these instances, ieweery the first one should
actually occur. And this could lead to refusing a furtherragic task whereas it could
possibily have used the processor time units reserved $tairiges that will never occur.
Therefore, the test is sometimes pessimistic.

Finally, [30] uses the notion of spare capacities, whichiesent the number of available
slots for the execution of aperiodic tasks within some djmeaindows. We use a close
notion, but the use of a PFair distribution of the idle slotaldes to compute these capac-
ities more efficiently: we have neither to analyse the pécisdhedule, nor to adapt the
periodic temporal parameters.

Our methodology

Our aim is to propose a method which guarantees a plannedyséad fair periodic pro-
cessing, in association with an acceptance test whichderssonly the required slots as
reserved, so that is less pessimistic than the global PEeépsance test. Aperiodic tasks
are scheduled in background: they use the idle time unitblethe periodic tasks. If
the considered periodic scheduling is conservative (agasar never intentionally idles),
then the aperiodic tasks have lower priorities than theopl@iones. But if the periodic
scheduling is not conservative, it is not the case anymaiek same aperiodic tasks may
have priority over some periodic tasks.

Another benefit of the use of a PFair strategy is that it ersafole@stimate the number of
idle time units within any temporal interval with a complgxD(1) and with only a very
small error. Our acceptance test relies on this predidtapiloperty.

3.1. The aperiodic queue

Rejected tasks
Aperiodic queue
Aperiodic __ /~ Acceptance m
tasks test

Scheduler

PFair periodic schedule

(8]4]s]of4]s5]s]4]

[s]6[s[2]3]6]2]5]
1[2Jof1[2]o]1]0

\ / / Processors

Idle slots

Figure 3. The aperiodic queue.

ARIMA

Aperiodic scheduling 101

We assume that the operating system maintains an aperiodigecas shown in the
figure 3, which contains the pending aperiodic tasks. Thvgerschedule can either be
computed on line, or, for more efficiency, have been preWocsmputed. In this case,
the scheduler knows the periodic schedule. We furthermssarae that the aperiodic
gueue is sorted according to EDF (Earliest Deadline Fi§})[2.e. in increasing order
of deadines. The task with the nearest deadline is procdissedAn aperiodic task can
be processed at timeonly if a processor is idle at time Thus an important issue is to
control the distribution of the idle time units. We do it thugh the use of a specific task,
which can be considered as an idle time server.

3.2. Idle time units

We assume thatr — 1 < U < m. If m = U, then no aperiodic traffic can take
place since the processors are fully busy.mif< U, then the periodic task set is not
feasible. Finally ifU < m — 1, we havem — |U| > 1, thus there aren — |U| fully
idle processors. The aperiodic tasks can thus be distdarito these processors, using
a bin-packing strategy (e.g. Worst-Fit [15]). And then stiigng results for non periodic
tasks can be used [7]. We here focus on the management oféhiedip tasks that must
share the processor services with the periodic ones, thusssumption.

Our method is based on the predictability of the idle time distribution. We require
them to be PFairly distributed so that we can compute theinbar on-line within any
time interval. For that aim, we add a new task to the appbeoativhich models the
idleness of the processors. Our motivation for the adduithis task is the following. If

U < m, there are x (m —U) idle time units each hyperperiod. The simpler way would
be to schedule them each time there is less thatasks to process. But unfortunately,
this doesn’t guarantee a PFair distribution of the idle timés as illustrated by the figure
4. We have considered a systemsgbrocessors, and an applicatienexzple composed

of 16 tasks with implicit deadlines and first release times equél depicted in the table
1.

task T1 P T3 T4 5 T6 T7 T8
C; 14 26 14 59 48 87 | 120 9
D, =T; 60 | 300 | 50 50 | 100 | 300 | 120 | 20
task T9 Ti0 | T11 | T12 | T13 | T14 | Ti5 | Ti6
C; 63 82 50 76 4 16 9 65
D;=1T; || 300 | 200 | 200 | 300 | 10 | 100 | 20 | 300

Table 1. A real time application 7_exple with 16 tasks.

We havelU = 4.647, H = 600 and there ar@12 idle time units. A PFair distribution
of the idle slots guarantees that at any timeither 212 x ¢ | or [212 x ¢] idle time units
have taken place. Figure 4 shows the background distribatighe idle time units for
the 80 first slots, which doesn't respect the PFairnessrierit&.g., at time 10, either 3
or 4 idle time units should have occured, but no one has odget Furthermore, we
can see that several idle time units may occur simultangoBst we do not want several
idle time units to occur simultaneously, in order to be abldacide wether an aperiodic
task can be accepted or not from the only knowledge of the enwiidle time units. If

nbi idle time units are available between two timesndt’, which never occur simulta-

ARIMA

102 ARIMA —Volume 18 — 2014

neously, any aperiodic task with deadline at or afteand such tha€; < nbi can be
accepted. But if several idle time units occur simultangowge cannot conclude. For
instance, ifC; = nb: andd, = t/, the task cannot be processed on time. Thus the de-
cision process requires to detailled the precise locatighenidle time units, and is thus
much more complex. Of course, avoiding simultaneous idhe tiinits forbids to process
two aperiodic tasks simultaneously, but it offers a bettartml. And an idle time unit
can be used each time an aperiodic task is pending, whichdwamilalways be the case

if several idle time units were simultaneously available.

Idle time units location

2

0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81
Slots

Number of idle time
units

Figure 4. Background distribution of the idle time units for the application 7_exple.

We thus introduce a further task, calletle task defined byry =< 0, H x (m —
U),H,H >. We haveC, < Tj since we have assumed that— 1 < U < m. The
system is now fully loadedl{ = m) but is still PFair feasible according to Baruah’s
theorem (th. 2.3). By construction, an idle time unit takleee each time the idle task is
processed. Then, singgis scheduled by a PFair algorithm, the idle time units areémfFa
distributed, and because a task cannot be parallelizedradatlle time units never occur
simultaneously. Thus the idle time units distribution nsemir requirements.

Now, for any time intervalt, ¢'], we have, sincey is PFairly scheduled:

Luo X tJ < Wo(O,t) < |_’U,0 X t-|
{LUO X tIJ < Wo(o,t/) < (UO X tl—l

We deduce thattuo X tIJ — (UO X t-| < Wo(t,t/) < (UO X tl—l — Luo X tJ.

We thus dispose of a minimal value for the number of idle timésuwithin any time
interval. Furthermore, the difference between the uppdrtae lower bounds is at most
equal to2. Thus, the rate of non considered idle time units will be eagtmall, provided
the considered intervals are wide enough. In the sequelewetd byil_Min(t,t') this
minimal value W_Min(t,t') = |ug X t'| — [ug X t]).

3.3. The acceptance protocol

The periodic tasks, including the idle tagk are scheduled by means of a PFair strat-
egy. Each time the idle task is scheduled, if there is no penaperiodic task, the slot is
lost, i.e. an effective idle time unit occurs, else an aphdtask is scheduled.

Let Ap = (7s,,7ss,- - -, Ts,) D€ the set of the pending accepted aperiodic tasks. We as-
sume thatdp is ordered in increasing deadline orddt (< ds2 < ... < dg). Let

ARIMA

Aperiodic scheduling 103

7s = (t,Cs, Ds) be a new aperiodic task with arrival timend deadlinel; = ¢ + D;.
We decomposelp into two subsets:B(ds) is the (possibly empty) set of the pending
aperiodic tasks with deadline at or befaie andA(d,) is the (possibly empty) set of the
pending aperiodic tasks with deadline after Thus there existg € {0, ..., k} such that
1<i<ig=1y € B(ds)andip+1 < j < k= 7,; € A(ds). The acceptance test uses
the approximation of the number of idle slots within a tim&iwal by its minimal value.

It runs as follows:

The aperiodic tasks i (ds) won't be affected by the execution of, but shouldr, be
processed, then it will delay the completion of the tasksl{d,). We must then check
this delay will not cause the temporal failure of some of th&ve therefore verify:

1) 7, can meetits deadline, i.e. there are enough idle time ueftséd, to process
the aperiodic tasks dB(d;) and the task,: W_Min(t,ds) > ZO: RCT,, () + Cs
=1

2) each delayed task will still be processed on time: befisrdéadline, there are
enough idle time units to processs all the pending aperiadics with earlier deadline,

p
andthe task,: Vp € io +1...k, W_Min(t,ds,) > > RCT,(t) + Cs
=1

We can note that we never have to consider the periodic tagksh simplifies the deci-
sion process. The periodic schedule can thus be computedehe-time. If the tasks
have simultaneous first releases, it is computed on thevaltfr, /] and then iterated.
For tasks with deffered first release times, the schedulgdliccwith a period equal to
the hyperperiodd [12, 16, 14]. Now we have no theoretical value for the staté ad
the steady state, but simulations have always producedatiste that occurs before
Mazy. ,(r;) + H. Then, only the acceptance test and the aperiodic scheah@gro-
cessed at run-time. Each time the idle task is planned to deepsed, the scheduler is
invoked, and if the aperiodic queue is not empty, the firstiadé task (as to thé&’ D F'
order) is processed. To run the acceptance test, we mustaimathe remaining pro-
cessing times of every pending aperiodic tasks. Thus, wataiaithe list of the already
accepted aperiodic tasks sorted in increasing deadlirex.dfdr each task;, we store in
atableT AP (see table 2):

- its deadlinels;,

- its remaining computing tim&C'T, ,

- the cumulated remaining aperiodic processing timekCT,, that must be
completed at the latest l, .

The full acceptance algorithm is given in appendix A.

id S1 S ... Sk

dl ds, ds, . ds,

RCT RCTs, RCTs, ... RCTs,

C RCT| RCT,, | RCT,, + RCTy, | ... | RCTy, + ...+ RCT,,

Table 2. The aperiodic table T AP used by the acceptance algorithm.

ARIMA

104 ARIMA —Volume 18 — 2014

3.4. Performance analysis

We first evaluate the complexity of our method. Since thequitischedule is never
revised, the periodic schedule has to be computed only drefere run-time for effi-
ciency reasons. Then, the computatioof Min within any time interval is performed
in O(1). Thus, the acceptance test requires O(k) additind$(k) comparisons, where k
is the number of pending aperiodic tasks. Updating the fistcoepted tasks also runs in
O(k), so does the function Schedule (see Appendix). Thusmaihod is globally linear
in the number of accepted pending aperiodic tasks.

The second point of interest is to compare our method to pusly existing methods and
to optimal strategies. The main competitor for our methatsésis in scheduling together
periodic and aperiodic tasks at run-time according to ar¥&a@tegy. The acceptance test
n k
is very simple [2]: if) S+ > gﬂj +%= < mthenthe taski{ C;, D) is accepted else
i=1 j=1
it is rejected. We call this r%ethod theined PFair method Note that it considers each
aperiodic task as a periodic task. Therefore, more slotsesmerved for each aperiodic
task than required (corresponding to the different instarstipposed to occur within the
next hyperperiod). Moreover, periodic tasks must be scleeldan line, and the periodic
schedule is not steady, i.e. the periodic schedule can fexetit on two different hyper-
periods. Because of a more precise idle time unit reservatior method will produce
better results, in the sense that more aperiodic trafficheilaccepted. In order to illus-
trate it, some simulations have been carried out.
We first created samples of periodic task sets in order towligaldifferent values of the
utilization factor. A sampleSa(m, i) consists o600 task sets, where: is the number of
processors antle 1,...,9. Sa(m, 1) is characterized by:

- the utilization factor of any task set of the sample, whictistrbelong to the
interval fn — 1 4 15, m — 1 4+ 5),

- the periods which are chosen according to Goossens’ m¢@&pdwvhich aims
to avoid too large hyperperiods,

- the WCETC; which are chosen uniformly within the sgt, ..., Z:}.

For each task set, we then generated an aperiodic task4lB¢, D_Max) which is
characterized by:

- the interarrivals, which in a classical way obey an expadiaédistribution, with
a mean equal to,

- the relative deadline®, which are uniformaly chosen within the sgio, . . .,
D_Max},

- the deadlines, which must occur befadie thus the generation process ends
when a task with deadline higher thahis generated,

-the WCET of a taskrs,, which is uniformaly chosen within the set

{E I NNEN]S

For each sample, we carried out 3 simulations, over the tieeval[0, H]:
1) we usedur method periodic tasks are scheduled ByD?
2) we used thgpined PFair method

ARIMA

Aperiodic scheduling 105

3) we used thexact PFair based metho@ach time we need to accept or reject
a task, we count in the PF schedule the exact number of idle tinits. Then we
proceed exactly as in our method, using the exact numbetesfirde units instead of our
approximation.

We then used the competitive analysis, with éxact PFair based methaabk reference
method. For any pair (task set, aperiodic flow), we computedatio of the cumulated
accepted aperiodic demand byr method(resp. by thgoined PFair methoylover the
cumulated accepted aperiodic demand forekact PFair based methotlVe repeated the
experiment for different tuples (m, x, D_max). Figure 5 ms the results for 4 pro-
cessors, with a mean interarrival x = 40 and a maximal reateadline D_Max = 200.
Results obtained for other values (2 or 4 processors, x = 200D Max = 40 or 200)
lead to similar conclusions.

x=40-D_Max=200-m=4

120 7

100 1

d / Exact

accepted processor demand

80 1

60 1

40 1

20 1

pr

3 31 32 33 34 35 36 37 38 39
Utilization factor U

% A

= Qurmethod Joined PFair method

Figure 5. Comparison of our method with the joined PFair method

We can see that for most valueslof our methodbehaves almost like thexact PFair
based methadvhereas th@pined PFair methodhas lower performance, in the sense that
it accepts less aperiodic load (betwe&@rand70 percent of the load accepted by #eact
PFair based methgd The performance of our test really decreases only for hajhes
of U (m — 0.1 < U < m). With such utilization factors, there are few remainingeid
slots, and thus the error due to the approximation of the rurobidle slots becomes
significant. In such cases, tf@ned PFair methocecomes competitive. But in almost
all cases, our method has higher performance. Besid&sisftoo close tan, it will be
quite impossible to include aperiodic traffic, or it wouldjtere that the designer adds a
processor to the platform. So, to summarizeudf> 0.2, then our method is the most
efficient, but ifug < 0.2 then a global method gives better results.

Note that equivalent obervations can be made for uniprocesstems, for which the
challenger method to our’s is EDF [27]. Experiments show, tixecept for high values of
U, our methodhas significantly better results than EDF. Here again, thE B€&eptance

n k
test is very simple: an aperiodic task is accepted onEi% +>
i=1 " j=1

J

Cs
5L+ 5 <1.And

ARIMA

106 ARIMA —Volume 18 — 2014

again, once the task is accepted, it is considered as a [etas# thus processor activity
is considered as reserved for each instance of the taskphofor one single instance.

4. Non independent periodic tasks and Aperiodic flow

We now consider non independent tasks, which may use ¢niéisaurces (other than
the processors), which must be used in mutual exclusiongactthnge messages through
mailboxes. We assume that the reception of messages isifgpdiut not the emis-
sion. Thus, a task can be represented as a sequence of bidwse worst case dura-
tions are knownblock(d) still denotes a block of duratiof and of real-time primitives
(Lock/Unlock resources, Send/Receive messages), whasgiahs are assumed to be
equal to0, which in fact means that their actual durations are inauidehe durations of
the neighbouring blocks.

The periodic tasks may have constrained deadlibgs{ 7;), and finally, aperiodic tasks
are still assumed to be independent (they neither useadnidsourcse nor exchange mes-
sages). We still aim to propose joined scheduling: the déritasks are scheduled before
run-time, and the aperiodic flow is managed on-line, usimgrtethod presented in the
previous section. The fundamental requirements to usertathod is the PFair distribu-
tion of the idle time units. But no specific requirements @mncthe periodic schedule,
provided it is valid. We thus adopt an off-line model-drivamproach to compute valid
schedules with a PFair idle time unit distribution.

4.1. Model-driven scheduling: Petri net-based approach

When tasks are not independent, not only PFair strategées@alonger optimal but
also there exists no on-line optimal strategy [17, 22]. lemnore, in this case, the
scheduling problem is NP-hard. We thus analyse the pergetibefore run-time. We
consider a model driven approach using a Petri net basedlimgdevhich is presented
in the next sections. We recall that a task consists of a seguaf blocks whose durations
are known Block(d) is a block with a WCET equal td) and of real-time primitives.

4.1.1. Basic definitions

A marked Petri net is a pair(N, My) with N = (Q, T, W) whereQ is a finite set of
places;T" a finite set of transitiond}) : Q@ x T UT x @@ — N is the valuation function;
andM, : @ — N the initial marking, wheré{,(p) is the number of tokens initially held
by the placep.

N gives a static description of the system ai{ is its initial state. The dynamic be-
haviour is described by the firing rules: a transitida enabledor firable for a marking
M ifand only if Vp € Q, M (p) > W (p, t). Its firing leads to the marking/’ defined by:
Vp € Q, M'(p) = M(p) — W(p,t) + W(t,p).

A Petri net runs under th@aximal firing rule [32] if only maximal (as to the inclusion)
transition sets are fired.

Coloured places [23] contain marks of different colodrsA finite setC of colours is
associated to each coloured place. We redefine the valdatiation byW : @ x T x

4. We use a simplified version of the definition of the coloured Petri nets

ARIMA

Aperiodic scheduling 107

CUT x @ x C — N. Then a transition is enabled from the markihgif and only if
Vp € Q andVe € C, M(p,c) > W(p,t,c). Its firing produces the markingy/’ defined
by:Vp € Q,Ve e C, M'(p,c) = M(p,c) — W(p,t,c) + W(t,p,c).

Finally, the evolution of the net may be constrained higraninal set [36] whose aim is
to restrict the possible behaviours of the net to the onlysdhat guarantee that all the
reached states verify some properties. We thus add a mas&tfig that is defined using
properties on markings, to the net, and we only considerfiseqquences such that the
successive reached markings belong to

4.1.2. The model

The model (see [21] for a more detailled presentation) cbmsif a coloured Petri net
with a terminal set, running under the maximal firing ruleisltomposed of two parts,
both modelled by a place/transition net (see figure 6): thle $gstem, which is obtained
through a classical modelling of the functional descriptaf the tasks, and the clock
system, which, together with the maximal firing rule, modekstime.

4.1.3. The clock system

This part of the net consists of:

The clock system

Time,4] Times

Clky :| :I
la a l a
/@ Activy (a@ Activ,, Activg @
{a, b} a, b} (a, b}

T3
l Processor P.

3,3

gle =0 @m0

End, l End, Endg

—] —] —
The task system
T = <0,4,8, 8> Ty = <0,4,8, 8> 3= <0, 4, 16, 16>

Figure 6. Modelling of an application. Each transition T; ; and End; (respectivelly the j*"
and the last transition of the task 7;) have the place Processor as input and output. This is
not represented on the net for readibility reasons. P;, j is the (j + 1)'" place of the task 7,
and Activ; is its first place.

ARIMA

108 ARIMA —Volume 18 — 2014

1) Aglobal clockRT' C' (Real Time clock), which fires each time a set of transitions
fires, since this transition is always enabled. We thus geg&dl representation of the
time: we assimilate the firing dR7'C to an execution time unit.

2) The local clocks of the tasks which are used to periodicalease the related
tasks. The clock of a task is composed of an accumulative pla€émne;, which mem-
orizes the elapsed time since the last release of the tasi adsitionClk; which fires
each period. The firing af'lk; models the reactivation of the task which occurs each time
the placelime; containsT; tokens. It produces a token of colau(for activation) in the
placeActiv; which is the first place of the task in the task system.

4.1.4. The task system

This part of the net models the task set (Figure 7). Each#astarts with a coloured
placeActiv;, to which two colours andb are associated. When the place holds a token
a, it means that a new instance has been released, but hastmstarged execution, and
when it holds a tokem, it means that the previous instance has completed executio
Finally, each last transtioR'nd; of the taskr; verifiesW (End;, Activ;)=Db i.e. a token
of colourb is produced when an instance completes execution. Themmshkecan start
execution only if this place holds a tokerand a tokerb i.e. if it has been released and if
the previous instance has completed execution. The firiogetransition corresponds to
the processing of the associated task during one slot. Alnibdurationd is modelled by
one single transition il = 1, two transitions ifd = 2 and three transitions if > 2 (see
the three blocks in Figure 7). Communications between tasksnodelled by mailbox
places, and each shared resource by one place. Processarsd®lled by one place with
m tokens if we consider a platform et processors, and each transition of the tasks admit
this place as input and output. Accordingly, at mastransitions of the task system can
fire simultaneously. The edges from and to the place Procassmot represented on the
figure 6 for clarity reasons. Figure 7 presents the modetiihg task with 3 blocks of
durations 5, 2 and 1 respectively and whose first releaseisime: 2. It sends a message
after its activation, locks the shared resource R at thenpégg of the second block and
unlocks it at the end of this block. The platform consists pf@cessors.

4.1.5. Integration of the temporal parameters

The initial marking of the placedctiv; andTime; takes the first release dates into
account. This initial marking is defined as follows (we assuhat0 < r; < T;, see [21]
for the casd; < r;): Vi = 0..n,

Ti—Ti+1ifTi>O ’

{a, b} ifr;=0

Mo(Time;) = { bifr >0

]\/[0 (Activi) = {

If r; = 0, then the task can start execution, thidg holds a tokera and a tokerb, else,

no instance is running, there is a tokenbut the task must wait until the next release,
thus there is no tokea

LetR = {Rl, e RI%\} denotes the places associated to the shared resources-and
{Bh ey B‘m} the mailbox placed.R;| is the number of instances of the shared resource
R;. The initial markings of the other places are defined By;(Processor) = m,
Vi=1..|R|, Mo(R;) = |Ri|, Vi = 1..|p|, Mo(B:) = 0, My(P) = 0 for all other places

of the task system (i.e. the placEs; ;).

ARIMA

Aperiodic scheduling 109

Since we are only interested in valid behaviours, furthest@ints on allowed markings
are added. A terminal set is introduced to consider deaglline

Vi—0 1. M (Time;) = 1 = M(Activ;) = {a, b} or b
T 2. M(Time;) > Dy + 1= M(Activ;) = b '

The point 1. means that at each release, the task must haygateththe previous in-
stance. The second cas¥ (Activ;) = b) corresponds to the initialization of the net in
the case; = P, — 1. And the point 2. means that after deadline, the pendinguitst
must have completed execution. It is used only for the tas&s thatD; < T;.

4.1.6. Valid schedules

Then we label the net, using the alphabét = {7y, 71,...,7,} and the labelling
functiono, : T — Y :VT;; € T,0.(T3;) = 7,V End; € T, 0-(End;) = 7; and
o.(t) = e for any other transition € T'. For the net of figure 6, we have for instance
UT(Tl,l) = O'T(TLQ) = O'T(T173) = O'T(E’ndl) = T1, OrUT(Clkl) = €.

Each time a transition set fires, we only keep the informatiooming from the task
system, more precisely, the labeling function gives theftite currently processed tasks.
Because of the placBrocessor, we are sure that there are at mestsuch tasks. For
instance, in the net of figure 6, only 2 transitions of the ®gitem can fire at once.

We then construct the labelled terminal marking graph. Eaige is labelled by a set of
tasks, which belongs t0,,(7) and each vertex by a marking. If the qet, .., ¢, } fires,
the edge is labelled by the set{(t;)/o-(t;) # €}. For instance, again for the net of
figure 6, if{ RT'C, T1 2, T3 2} fires, the associated edge is labelled{by, 73 }.

Each path starting at the vertex labelled by is labelled by a wordv defined asv =

RTC

Activi b
Task T; <2,8,909> T $a by Mt

3

Begin Pi1

send(message, Mbx1); Tio CP

Block, (d=5); Block; <

Lock(R); h2 (P Processor

Block,(d=2); i @ b

Unlock(R);

Blocks(d=1);

end;

Figure 7. Model of the task 7; =< 2,8,9,9 >, for a platform of 2 processors.

ARIMA

110 ARIMA —Volume 18 — 2014

wowiwa... Where fort € N, w; € O, (7). The associated schedufeis then defined by
S(t) = w, wherewy is the set of the tasks which are scheduled at tingnce a marking
that meets the terminal constraints corresponds to a stdtedask system where all
temporal constraints are met, this schedule is valid. We Ittia® following proposition a
proof can be found in [19, 20]:

Proposition 4.1. [19, 20] By construction, the valid schedules exactly csp@end to the
infinite paths in the labelled terminal marking graph if thetmuns under the maximal
firing rule.

4.2. Idleness control using Petri nets

We still assume that, — 1 < U < m. Our concern here is the off-line scheduling of
the periodic tasks in such a way that we still can use our @anep protocol to manage
the aperiodic flow. For that aim, we again add an idle task ¢onlodel, and then we
compute valid schedules which ensure a PFair executionidie task.

4.2.1. Model of the idle task

The idle task is defined as in section 32= < 0,Cy = H(m — U),Dy = H,Tp =
H >. For instancce, for the net of the figure 6, we haye= < 0,12,16,16 >. We
use a global approach to model the idle task, and we cons$idé?Fairness requirement
only during the schedule computation, by means of the labdé#rminal marking graph.
We thus model the idle task like any other task, and leave Eariess requirement to
the schedule extraction step. We add a local dl@tkucg, Clky), a placeActivg, two
placesP ; and P, » and two transitiondy 1 andTy o (see figure 8 for the case, > 2).
The terminal condition concerning this tasklif(Timeg) = 1 = M (Activg) = {a, b}.
Even if the PFairness requirement satisfaction is lefttiernext step, we can note that it
nevertheless has an impact on the modelling of the taskethdeere, the idle task cannot
be parallelized, but in the general case, without specifjairement, it should be possible
to have several simultaneous idle time units (to model thetFat several processors are
simultaneously idle). Thus it would require another madglbf the idle task (we don't
detail it here since we don’t need it).

4.3. Schedule production

The first step consists of the construction of the labellethiteal marking graph.
Then, we must find the paths in the graph starting at the vétestled byM,, in which
the idle time units are PFairly distributed. For that aim,watuate the graph. Le¥/ be a
marking. We can deduce the number of already elapsed idéeuinits for the current hy-
perperiod, when the system is in the state modelled by th&ingai/, which is denoted

—if | M(Activg) |o= 1, thenWy (M) = 0: the presence of the tokermeans that,
has been released for the current hyperperiod, but doemretyet started executién

—else if| M(Activg) |p= 1 thenWy(M) = Cy: the absence of the tokenmeans
that the current instance has already started executi@hthentokenh means that this
instance is completed,

5. | M(Activg) | denotes the number of z in the place Activg

ARIMA

Aperiodic scheduling 111

Activg

S}

. o
N o
n

Endg

Figure 8. Modelling of the idle task.

—elseWy (M) = 1+ M (FPy,2): the currentinstance has started execution (no teken
but is not completed (no toker). The transitiorily ; has been fired, which corresponds
to the occurrence of a first idle time unit. Then the transiff » has been fired a certain
number of time, saybf (0 < nbf < Cy — 2) corresponding to the occurrencesidff
further idle time unitsnbf is equal to the marking of the plaég ». Finally the transition
Endy hasn't been fired. Thus the global number of already elapiedime units is equal
t01+nbf=1+M(P0,2).

Then letV; andN; be two nodes of the graph, labelled by the markiffisand;, such
that the edgéN;, IV;) exists, and lety; be the label of the edgeV;, IV;). The weight
associated to the edge is defined:as

_AbS(WO(MJ) — Mj(Timeo)uo)J lf T0 € W;j

Wezght(Nl,NJ) = { 0 else

Let us consider the state of the system modelled by the nmddn W, (M;) corre-
sponds to the number of elapsed idle time units since thenbegj of the hyperperiod,
M;(Timey) is the current time (modul@l), andM; (Timeo)uy is the ideal number of
elapsed idle time units since the begining of the currenehygriod. Thus, if the ac-
tual number of idle time units verifies the PFair equatiorfi(dion 2.2), the valuation
of the edge is equal t0. If the PFair property is not met; i.e. the tagkis either late
or in advance (see figure 2 (b)), the valuation is strictlyifpas A path corresponding
to a schedule where the idle slots are PFairly distributextinas a valuation equal th
Furthermore, since the terminal marking graph collectshedipossible valid schedules
(Proposition 4.1), if no nul valuated path can be found, therschedule exists which
ensure a PFair distribution of the idle time units. We thusehtae following result.

Proposition 4.2. If the valuated terminal marking graph contains a path withud val-
uation (thus whose edges are all labelled®ythen the idle time units are PFairly dis-
tributed within the associated schedule. If the valuatechieal marking graph doesn't
contain such a path, then it is not possible to schedule thiegie task set without tem-
poral failures and together to PFairly distribute the idiene units.

6. Abs(z) denotes the absolute value of =

ARIMA

112 ARIMA —Volume 18 — 2014

The problem of finding such a schedule is thus reduced to thtegn of searching a
minimal-valuated path starting at the vertex labelled\yin the graph.
Note that, since we are only interested in the edges thatamated byo, we can di-
rectly include this restriction into the construction pees of the terminal labelled mark-
ing graph. This will reduce the graph construction duratgamce the final graph is smaller
than the full graph, and useless edges and vertices are mstrgoted.
Then, if one solution has been found, we can again use thetre protocol presented
in section 3.3 to manage the aperiodic flow on-line. As to tidqgumance of the method
(the acceptance rate), provided the idle task is PFairlgdiled, the acceptation rate,
only relies on the idle task location, and not on the perigdteedule. Thus the results got
for the systems of independent tasks still hold.

5. Conclusion

We have proposed a protocol to schedule aperiodic hardinsaltasks, which is lin-
ear in the number of already accepted pending aperiodis.tdste periodic tasks can be
pre-scheduled (i.e. scheduled off-line before run-tinfdle protocol is based on a PFair
distribution of the idle times within the periodic schedulde idle time units are used for
the aperiodic taks progression, and their number can bea&std in O(1) within any time
interval. They are managed by a dedicated task, the idlewdskh is PFairly scheduled.
For that aim, if the periodic tasks are independent, a simplg to PFairly schedule,
is to schedule the whole periodic set (includind with a PFair strategy. If the periodic
tasks are non independent, we use a model-driven off-lnatesfy, based on Petri nets.
We then take the PFairness requirement into account durengrtalysis of the net.

Now, an open problem is to bound the depth of the marking gr#ghe periodic tasks
have simultaneous first releases, the depth is equal to {herperiodH, else, as men-
tionned earlier, we have no efficient bound. So either we elaosarbitrarily depth (e.g.
Mazx;e1. () + H) or go on with the construction until each path loops.

Then, we can also use our method to include a new periodiatlin an already sched-
uled task set, without recomputation of the schedule. Wasiden a flow composed of all
the instances of the task for the next hyperperiod. If eastairte can be accepted, then
the task can be added to the task set, and the schedule beedadifiording to the accep-
tance protocol, else, either the system must be completedgheduled, or the addition in
not possible.

6. References

[1] J. Anderson, P. Holman, and A. Srinivasan. Fair schedulif real time tasks on multiproces-
sors. Handbook of scheduling : Algorithms, Models and Perforneaanalysis pages 31.1—
31.21, 2004.

[2] J. H. Anderson and A. Srinivasan. Pfair scheduling: Imglyperiodic task systems. RTCSA
pages 297-306, 2000.

[3] J. Banus, A. Arenas, and J. Labarta. An efficient schemallézate soft-aperiodic tasks in
multiprocessor hard real-time systems Pimceedings of the International Conference on Par-
allel and Distributed Processing Techniques and Applarati- Volume 2PDPTA '02, pages
809-815. CSREA Press, 2002.

ARIMA

Aperiodic scheduling 113

[4] S.Baruah, J. Gehrke, and C.G. Plaxton. Fast schedulipgrindic tasks on multiple resources.
In Proceedings of the*" International Parallel Processing Symposiupages 280288, April
1995.

[5] S.K.Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvalofportionate progress : a notion of
fairness in resource allocatioAlgorithmica 15:600-625, 1996.

[6] B. Berthomieu and M. Diaz. Modelling and verification @fie dependent systems using time
petri nets.IEEE Transactions on software engineeriig(3), 1991.

[7] J. Blazewicz. Scheduling dependent tasks with diffegmival times to meet deadlines. In
E. Gelenbe and H. Bellner, editofdodelling and performance evaluation o colputer systems
pages 57-65. North-Holland, 1976.

[8] G.C. ButtazzoHard Real-Time Computing Systenk@uwer Academic Publishers, 1997.

[9] J. Carpenter and all. A categorization of real-time nputicessor scheduling problems and
algorithms.Handbook of scheduling: Algorithms, Models and Perforneafinalysis 2003.

[10] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic schiwly of real time tasks under prece-
dence constraintshe Journal of the Real time Systerfd15-127, 1990.

[11] Seonho Choi and Ashok K. Agrawala. Scheduling apeci@did sporadic tasks in hard real-
time systems. Technical report, Institute for Advanced @oter Sciences, University of Mary-
land, 1997.

[12] A. Choquet-Geniet. Un premier pas vers I'étude de ldicigé en environnement multipro-
cesseursActes de la conférences RTS @ages 289-302, 2005.

[13] A. Choquet-Geniet, G. Largeteau-Skapin, and A. Ouatténtegration of pfairness within a
modelled based scheduling tool. Fourth International Workshop on Verification and Evalua-
tion of Computer and Communicatioewics series of the British Computer Society, 2010.

[14] A. Choquet-Geniet and S. Malo. Finding cyclicity belmvin multiprocessor scheduling.
Technical report, LISI - ENSMA and University of Poitier€(.

[15] E. Coffman, G. Galambos, S. Martello, and D. Viddandbook of Combinatorial Optimiza-
tion, chapter Bin Packing Approximation Algorithms: CombinmébAnalysis. Kluwer, 1998.

[16] L. Cucu and J. Goossens. Feasibility intervals for fipeidrity real-time scheduling on uni-
form multiprocessors. |The 11" IEEE International Conference on Emerging Technologies
and Factory Automatiorpages 397—405. IEEE Computer Society Press, 2006.

[17] M.L. Dertouzos and A.K.L. Mok. Multiprocessor scheihgj in hard real-time environment.
IEEE transactions on sofware Engineerjridp(12):1497-1506, 1989.

[18] N. Fisher, S. Baruah, and T. Baker. The partionned adieglof sporadic tasks according to
static-priorities. InL8** euromicro Conference on real-time systepeges 118-127, 2006.

[19] E. Grolleau.Ordonnancement Temps-Réel Hors-Ligne Optimal a I'Aide @seRux de Petri
en Environnement Monoprocesseur et MultiprocessBabD thesis, Univ. Poitiers, 1999.

[20] E. Grolleau and A. Choquet-Geniet. Real-time schexdypih multiprocessor environment by
means of Petri netRroceedings of RTS 200gages 189-206, 2001.

[21] E. Grolleau and A. Choquet-Geniet. Off line computatad real time schedules by means of
petri nets.Journal of Discrete Event Dynamic Systerh2:311-333, 2002.

[22] K.S.Hong and J.Y Leung. On-line scheduling of realditasks.|EEE transactionson Com-
puters 41(10):1326-1331, 1992.

[23] K. Jensen.Coloured Petri nets, basic concepts, analysis methods aatitpl use Mono-
graphs in theoretical Computer Science. Springer Verlag71

[24] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitidseheduling of sporadic task systems
on multiprocessors. IRroceedings of the 21st Euromicro Conference on Real-tiyséeBis
(ECRTS)pages 249-258. IEEE Computer Society, 2009.

ARIMA

114 ARIMA —Volume 18 — 2014

[25] G. Largeteau, D. Geniet, and E. Andres. Discrete gegnagiplied in hard real-time systems
validation. INDGCI 2005 12th International Conference, Poitievelume 3429 of NCS pages
23-33. Springer Verlag, 2005.

[23] G. Largeteau, D. Geniet, and J.P. Dubernard. Validatbdistributed periodic real-time
systems using can protocol with finite automataPtoc. of 5" S.C.1.1.1.1.S., 2001.

[26] C.L. Liuand J.W. Layland. Scheduling algorithms forltiprogramming in a hard real-time
environmentJournal of the ACM20(1):46-61, 1973.

[27] J.W.S Liu.Real-Time System®rentice Hall, 2000.

[28] C. Macqg and J. Goossens. Limitation of the hyper-peiagal-time periodic task set gener-
ation. In Teknea, editoRroceedings of the 9th international conference on realetisystems
pages 133-148, Paris France, March 2001. ISBN 2-87710078-

[29] A.K. Mok and M.L. Dertouzos. Multi processor schedgiim a hard real-time environment.
In Proc. of 7*" Texas Conference on Computer Systetags.

[30] N. Pernet. Implantation distribuée temps-réel de mpgnes conditionnés a l'aide
d’ordonnancement mixte hors-ligne en)-ligne de tacheig@igues avec contraintes de latence
et acceptation de taches apériodiquekD thesis Université Paris 6, 2006.

[31] A. Srinivasan, P. Holman, and J.H. Anderson. Integmtiperiodic and recurrent tasks on
fair- scheduled multiprocessors. 1dth Euromicro Conference on Real- Time Systerages
189-198, Vienna, Austria, June 2002. IEEE Computer Saciety

[32] P. Starke. Some properties of timed petri nets undeautiéest firing rule. InAdvances in Petri
nets '9Q LNCS 424. Springer Verlag, 1990.

[33] H. Tang, P. Ramanathan, and K. Compton. Combining harbgic and soft aperiodic real-
time task scheduling on heterogeneous compute resouPegallel Processing, International
Conference 0y0:753—-762, 2011.

[34] J. Theis and G. Fohler. Transformation of sporadic gask off-line scheduling with uti-
lization and response time trade-offs. Rrmoceedings of the 19th International Conference on
Real-Time and Network Systems (RTNS'Ptdceedings of 19th International Conference on
Real-Time and Network Systems (RTNS11), pages 119-12&e@bpr 2011.

[35] J. Tsai, S. Yang, and Y. Chang. Schedulability analg$iseal time systems using timing
constraint petri nets. IRroc. of Comp Euro 93pages 375-382, 1983.

[36] R. Valk and G. Vidal-Naquet. Petri nets and regular leages. Journal of Computer and
System Science®3(3), 1981.

ARIMA

Aperiodic scheduling 115

A. The acceptance test

We first give the function which decides whether an aperitalik can be accepted.

Function Accept

input

ug: float -- utilization factor of the idle task,

TAP -- accepted aperiodic table

k : integer -- number of already accepted aperiodic tasks
7 = (t, C, D) -- new aperiodic task

output

accepted: boolean -- true if the task is accepted, false else
d :=t +D

W_Min :=| wo X d | — [wyx t]

If TAP is empty then -- thereis no aperiodic pending task
accepted :=(W_Min > C)
else
-- Computation oi, for the partition of the pending aperiodic task set
i02= 0
While (ip < k) and TAP(ip+1).dl < d loop
19 := 10+l
end loop
if 49 > O then -- the setB(d)is non empty
if | (wox TAP(ig)dl | — [ux t] > C + TAP(ip).C_RCT

then accepted := true
else accepted := false --there are notenough idle time units to add the task
end if
else accepted := true
end if

if accepted then
for j in 4p+1..k loop
if | wox TAP(j)dl | — Jupx t] < C +TAP(j).C_RCT
then accepted := false -- atask will miss its deadline if the new ape-

riodic task is processed

end if

end loop

end if
return accepted

The list of the pending accepted aperiodic tasks must betegadter acceptation of a
new task. We use an insertion function Insert ((dl, RCT, CTR(; TAP) which inserts
the tuple (dl, RCT,C_RCT) in position j in the table TAP.

Function insert_task

input

TAP -- pending accepted aperiodic tasks
7 = (t, C, D) -- new aperiodic task

ARIMA

116 ARIMA —Volume 18 — 2014

Precondition
Task 7 is accepted
output
the updated table of accepted tasks
d :=t+0D
If TAP is empty then -- insertion in first position
insert((d, C, C), 1, TAP)
else ig:= 0
While (ip < k) and TAP(ip+1).dl < d loop
9 := 10+l
end loop
-- the insertion position igy+1
for j in 4p+1..k loop
-- the next C_RCT are increased
TAP(j).C_RCT := TAP(j).C_RCT + C
end loop
-- insertion in positioriy+1
insert ((d,C,TAP(i) .C_RCT + C),i9+1,TAP)
end if
return(TAP)

Finally, the global scheduling algorithm is the followingle use a deletion function
del(TAP, k) which deletes the'” item from the table TAP.

Function schedule
input
TAP -- pending accepted aperiodic tasks
L -- list of the new arrived aperiodic tasks
t -- currenttime
output
updated table of pending aperiodic tasks
identity of the processed task
while L is not empty loop
T := head(L)
unqueue (L)
If accept(ug,TAP,7) then
insert_task(TAP,T)
end if
end loop
if TAP is not empty then
id :=TAP(1).id
TAP(1) .RCT := TAP(1).RCT - 1
for i in 1..k loop
TAP(i) .C_RCT := TAP(i).C_RCT - 1
end loop
If TAP(1) .RCT = O then del(TAP,1)
end if
end if;
return(TAP, id)

ARIMA

