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ABSTRACT. The aboveground biomass estimation is an important question in the scope of Reducing
Emission from Deforestation and Forest Degradation (REDD framework of the UNCCC). It is partic-
ularly challenging for tropical countries because of the scarcity of accurate ground forest inventory
data and of the complexity of the forests. Satellite-borne remote sensing can help solve this prob-
lem considering the increasing availability of optical very high spatial resolution images that provide
information on the forest structure via texture analysis of the canopy grain. For example, the FOTO
(FOurier Texture Ordination) proved relevant for forest biomass prediction in several tropical regions.
It uses PCA and linear regression and, in this paper, we suggest applying classification methods such
as k-NN (k-nearest neighbors), SVM (support vector machines) and Random Forests to texture de-
scriptors extracted from images via Fourier spectra. Experiments have been carried out on simulated
images produced by the software DART (Discrete Anisotropic Radiative Transfer) in reference to in-
formation (3D stand mockups) from forests of DRC (Democratic Republic of Congo), CAR (Central
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African Republic) and Congo. On this basis, we show that some classification techniques may yield a
gain in prediction accuracy of 18 to 20%.

RÉSUMÉ. L’estimation de la biomasse aérienne reste une question ouverte dans le cadre de la Ré-
duction des Emissions dues à la Déforestation et la Dégradation des forêts (cadre REDD de CNUCC).
Cette estimation est particulièrement difficile pour les pays tropicaux en raison de l’absence de don-
nées sur les inventaires forestiers et de la complexité des forêts. Dans ce contexte, la télédétection
peut contribuer à la résolution de ce problème compte tenu de la disponibilité croissante d’images
à très haute résolution spatiale. Les méthodes basées sur l’analyse de la texture du grain de la ca-
nopée de ces images permettent d’obtenir des informations sur la structure de la forêt et de prédire
les valeurs de la biomasse. Par exemple la méthode FOTO (Fourier Texture Ordination) s’est révélée
pertinente pour la prédiction de la biomasse forestière dans plusieurs régions tropicales. Elle utilise
l’analyse en composantes principales et la régression linéaire pour estimer les valeurs de biomasse.
Dans ce papier, nous proposons l’application de méthodes non linéaires de régression tels que k-NN
(k plus proches voisins), SVM (Séparateur à Vaste Marge) et les Forêts Aléatoires sur des descrip-
teurs de texture extraits à partir d’images au travers des spectres de Fourier. Nous appliquons et
comparons les résultats obtenus par ces méthodes non linéaires sur des images simulées de scènes
forestières produites par le logiciel DART (Discrète Anisotrope Radiative Transfert). Les simulations
ont été faites en référence à des maquettes 3D basées sur des informations de terrain provenant des
forêts de la RDC (République Démocratique du Congo), de la RCA (République CentrAfricaine) et
du Congo. Les résultats obtenus montrent que l’utilisation des techniques de régression non linéaires
permettent d’obtenir un gain de précision de 18 à 20% sur la prédiction de la biomasse.

KEYWORDS : aboveground biomass, estimation, supervised learning, regression, support vector
machines, random forests, k-nearest neighbor.

MOTS-CLÉS : Biomasse forestière, apprentissage supervisé, regression, machines à vecteurs sup-
port, forêts aléatoires, k plus proches voisins
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1. Introduction

Tropical forests play an important role in the carbon storage process and the under-
standing and modeling of this process has become a key ecological question [16, 25].
Tropical deforestation and forest degradation account for a large share of anthropogenic
carbon emissions [13] and incentives and policies are debated as to reduce this share as
part of the Reducing Emissions due to Deforestation and forest Degradation (REDD+)
framework. Achieving a successful implementation of carbon’s emission reduction poli-
cies requires the development and testing of accurate and robust methods for estimation
and monitoring of forest above-ground biomass (AGB) over extensive areas in the tropical
regions [16].

Forest AGB assessment stems from field work, which combines estimations of biomass
at individual tree level (generally from allometric equations using input variables easy to
measure such as trunk diameter at breast height (dbh)), as well as sampling large territo-
ries to enumerate trees and measure such variables [18]. Such forest inventories which are
costly and labor intensive can neither cover large sampling areas nor achieve high tem-
poral frequency of observations as requested for monitoring purposes. Remote sensing
techniques have to be used to overcome this limitation and help interpolate scarce field
information in space and time [7]. Among them, satellite-borne optical remote-sensing is
cheap compared to airborne techniques and its relevance with respect to forest biomass
assessment has increased thanks to the increasing availability of high to very high spatial
resolution (VHRS) images featuring pixels of sizes of 1 m or less. VHRS imagery allows
linking inter-pixel variations (i.e. texture) to forest canopy patterns, notably crown sizes
[19]. Texture information on two-dimensional textural images has been shown to corre-
late with some variables depicting the 3D structure of forest stands as to indirectly predict
stand biomass. Among the methods to quantify texture on images based on optical data,
those grounded on image texture analysis, like the FOTO Method [6, 22], showed promis-
ing results for applications to biomass predictions in wet tropical forests, notably because
the texture indices showed no evidence of saturation at high biomass levels [20, 24].

The FOTO Method is a 3-step process: (1) 2-D Fast Fourier Transform and r-spectra
computation applied on very high resolutions images, 2) ordination of r-spectra using
Principal Component Analysis (PCA), and (3) Linear Regression (LR) model for estimat-
ing biomass values or stand parameters from reference datasets (field data or data-derived
simulations). PCA and LR are the two mathematical models used for inferring the output
of the method. Most of the models used in the published applications found in the FOTO
literature are linear [5, 6, 22, 2, 20, 21, 3] and cannot capture all aspects of problems that
are inherently nonlinear. In recent decades, several machine learning methods based on
nonlinear models emerged to address regression, classification or estimation problems. In
this study, we investigate nonlinear methods that can be useful in enhancing steps (2) and
(3) to better address biomass estimation in tropical forests.
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2. Foto Method

The basic idea of the FOTO method is to estimate the aboveground biomass using
canopy grain. This canopy grain depends on the spatial distribution of trees and on the
shapes and dimensions of the crowns. Crown dimensions display stable correlations with
trunk dimensions (notably dbh) which are the basic predictors of biomass at tree level [1].
Since repetitiveness is the most important characteristic of the texture, the measurement
of the degree of repetitiveness in the canopy grain is an important component of the FOTO
method. This is done by a 2-dimensional Fourier Transform that shifts canopy grain from
spatial to frequency domain [21]. The main steps of the FOTO method are presented in
figure 1.

Satellite Image

Windowing
Process

Field Data

2D Fast Fourier
Transform and spec-

tra transformation

PCA
Linear Re-

gression Biomass Map

Figure 1. The FOTO Method

2.1. 2-D Fast Fourier Transform and r-spectra computation

Before applying the Fast Fourier Transform, it is necessary to define the square win-
dow size in which the 2D Fourier Transform is computed. The image is then partitioned
into square windows in which Fourier radial spectra are computed. The Fourier coef-
ficients are obtained by a convolution between image values and waveforms of varying
directions, and spatial frequency are used to compute r-spectra [21]. The r-spectra neglect
orientation information and have proved useful in order to summarize textural properties
related to coarseness/fineness, which are of great importance in dealing with canopies of
natural forests [6]. Windows with a coarse texture tend to yield r-spectra that are skewed
towards small spatial frequencies, while fine-texture lead to spectra that are more bal-
anced.
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2.2. Textural ordination

For each particular window, r-spectra are computed and saved in a general table. Each
row of the table is the r-spectra of a given window, whereas each column contains the
portions of the variance of image radiance explained by a given spatial frequency or
wavenumber. This table of r-spectra is submitted to standardized Principal Component
Analysis (PCA) which is an eigenvector analysis of the correlation matrix between spa-
tial frequencies. The most prominent components (generally three) are used as texture
indices. This enables the ordination of windows along texture gradients [21]. The next
step in the process is the application of linear regression to the result produced by the
PCA.

2.3. Linear Regression

Linear regression is an attempt to model the relationship between a dependent vari-
able and one or more explanatory variables by fitting a linear equation to observed data.
The case of one explanatory variable is called simple linear regression and for more than
one explanatory variable, the process is called multiple linear regression [9, 26]. In linear
regression, data are modeled using linear predictor functions, and unknown model pa-
rameters are estimated from the data. Such models are called linear models. The biomass
estimation model in FOTO is a multiple linear regression model that uses the first three
factorial axis of the PCA.

3. Alternative Regression Methods

3.1. Support Vector for Regression

3.1.1. Principle

As for all the other regression techniques, the basic idea of SVR is to find a function
that approximates the training points well by minimizing the prediction error. [27] The
main difference between SVR and LR is that all deviations up to a user-specified parame-
ter ε are simply discarded. Moreover, when minimizing the error, the risk of over-fitting is
reduced by maximizing simultaneously the flatness of the function. Another difference is
that what is minimized is normally the predictions’ absolute error instead of the squared
error used in linear regression. (There are, however, versions of the algorithm that use the
squared error instead.)

The value of ε defines a tube around the regression function and controls how closely
the function will fit the training data. Too large a value will produce a meaningless pre-
dictor: in the extreme case, when 2ε exceeds the range of class values in the training data,
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the regression line is horizontal and the algorithm just predicts the mean class value. On
the other hand, for small values of ε there may be no tube that encloses all the data. In
that case some training points will have non-zero error, and there will be a trade-off be-
tween the prediction error and the tube’s flatness. For the linear case, the support vector
regression function can be written:

ŷ(X) = ŵ0 +
∑
i

α(i)XT
i X [1]

wherew0 and α(i) ≥ 0 are numeric parameters that have to be determined by the learning
algorithm. The Xi corresponding to α(i) > 0 are support vectors.

To map non linear functions, the productXT
i X can be replaced by a kernelK(Xi, X).

A kernel is a function that maps the data into a higher dimension where the linear mapping
is possible. Generally linear mapping in the enlarged space achieve better performances
[15]. Examples of kernels are:

– the linear kernel: K = XT
i X , this corresponds to the non kernel SVR;

– the polynomial kernel: K(x, x′) = (1+ < x, x′ >)d , with d the degree of the
polynomial;

– the radius basis function (RBF): K(X,X ′) = exp(− ||X−X
′||2

2σ2 )

3.1.2. Advantages

Due to the possibility to use kernels, one of the main advantages of SVR is that they
can represent very complex functions.

3.1.3. Limitations

When compared to LR, the main drawback of SVR is the training and prediction times
that are more greater.

3.2. K-Nearest Neighbors

3.2.1. Principle

K-Nearest Neighbors (KNN) methods are memory-based, and require no model to be
fit [15]. Given a query point x0 , we find the k training points x(r), r = 1, ..., k closest
in distance to x0 , and then predict the mean value among the k neighbors. The distance
function used depends on the problem and on the data at hand. Examples of usual distance
functions are Euclidean and Manhattan distances.
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3.2.2. Advantages

The main advantage of KNN is that it does not require learning. Indeed the training set
need only to be stored. Another advantage is that it can represent complex functions and
captures local variations because its decision depends only on the local neighborhood.

3.2.3. Limitations

The main drawback is the storage need. Indeed all the training instances need to be
stored. Some techniques such as help to reduce the number of training examples that must
be stored[14, 10].

One other drawback is the prediction time which is more expensive than that of LR.
Indeed, to compute the prediction for an instance x, one need to compute the similarity
between x and all the other instances of the training set. The complexity can be reduced
by clustering the data points [17].

3.3. Artificial Neural Networks

3.3.1. Definition and Principles

An Artificial Neural Network is a two-stage regression or classification model repre-
sented by a diagram network. Neural networks encompass a large class of models and
learning methods and are nonlinear statistical models[15]. Such networks are organized
in layers made of a number of interconnected nodes which contain an activation function.
Data are provided to the network via the input layer and with one or more hidden layers
where the processing is done using a system of weighted connections. The last hidden
layer is linked to the output layer where the result is given as a vector( resp. scalar) if it is
used for classification (resp. regression). When the network has only one hidden layer, it
is also called single hidden layer network or single layer perceptron. Figure 2 shows an
example of an artificial neural network with one hidden layer.

3.3.2. Advantages

An Artificial Neural Network can capture many kinds of relationships and therefore
allows the user to quickly and relatively easily model phenomena which otherwise may
have been very difficult or impossible to represent correctly. Fourier spectra falls well
in their category work well when the relationships between variables are not well under-
stood, and when the volume of data is very large.

3.3.3. Limitations

Artificial Neural Network tend to be slower to train than other types of networks.
Regarding its structure, it is a parallel computer system and the slowness of the training
step is due to the fact that individual artificial neurons are usually processed sequentially.
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Figure 2. Single layer perceptron

3.4. Random Forests

There has been a lot of interest in ensemble classifiers, i.e. methods that generate sev-
eral classifiers and aggregate their predictions [8]. More precisely, an ensemble classifier
constructed from a given training data set, predicts the class of a previously unseen ob-
ject by combining the predictions obtained from these basic classifiers. This combination
aims at improving the accuracy of the basic classifiers.

Figure 3. Error probability for an ensemble of 2 independent classifiers with error rate e.

For instance, let’s consider an ensemble of three classifiers. If these classifiers are
identical then the ensemble classifier will produce the same result as the basic classifiers
and we will have no gain in the combination. On the other hand, assume that the three
basic classifiers have the same error rate e and are independent. Since the ensemble clas-
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sifier takes a majority vote on the results produced by the basic classifiers, it will produce
an incorrect decision when two of the basic classifiers are wrong, i.e. with probability
p = 3e2(1− e)+ e3. As it can be seen in figure 3 , p < e (i.e. the ensemble is worse than
the individual classifiers) if e < 1/2, and p > e (i.e. the ensemble classifier performs
better than the individual ones) if e > 1/2. On the other hand, p = e if e ∈ {0, 1/2, 1}.
More generally, it can be shown that for an ensemble classifier to be more accurate than
any of its individual components, there are two conditions : the basic classifiers must be
accurate (i.e. they must perform better than the random guessing whose error rate is 1/2),
and they must be diverse, i.e. they must make uncorrelated errors.

Two well-known ensemble methods that are constructed by manipulating the training
set are boosting [23] and bagging [4]. In bagging, several training sets are created by
resampling (with replacement) the original training set according to a uniform probability
distribution. These samples have the same size as the original data set. It can be shown
that on average a sample training set contains approximately 63% of the original training
data. This method is particularly efficient when the basic classifier is very sensitive to
fluctuations in the training data because its variance is reduced as compared to the variance
of the basic classifier. Boosting is an iterative technique that forces the classifier to focus
on examples that are hard to classify. More precisely, all examples have initially the
same weight. The classifier obtained after each step is used to classify all the elements
of the training set. The weights of examples whose classes are not predicted correctly
are increased, whereas the weights of examples that are classified correctly are decreased.
Various versions of boosting are obtained by varying the way the weights are updated and
by considering various techniques for the aggregation of the predictions made by basic
classifiers.

Breiman [4] has proposed a method called random forests, that is specifically suited
for decision tree classifiers. In this technique, the basic classifiers are decision trees ob-
tained by manipulating the input features. More precisely, a random vector is incorporated
into the tree construction process by selecting randomly at each node F input features for
splitting. This means that the decision to split a node is taken by examining not all the
attributes, but rather by considering the subset consisting of F . Randomness can also be
increased by considering bagging techniques to construct m training sets. Decisions for
such ensemble classifiers are taken using a majority rule for classification and weighted
sum for regression.

These methods can be improved quantitatively by using only a subset of the most
relevant attributes.
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Figure 4. Random Forests principle

4. Feature Selection

In machine learning and statistics, attributes (or features or variables) selection is the
process of selecting a subset of relevant features for use in model construction. The central
assumption when using a feature selection technique is that data contain many redundant
or irrelevant features. Note that different features are said to be redundant if they provide
the same information. Irrelevant features provide no useful information. Feature selection
techniques provide three main benefits when constructing predictive models:

– improved model interpretability,
– shorter training time,
– enhanced generalisation by reducing overfitting.

Feature selection is also useful as part of a data analysis process, as it shows which
features are important for prediction, and how these features are related.

In the experimentations presented in section 4, the Correlation Feature Selection (CFS)
measure is used. It evaluates subsets of features on the basis of the following hypothesis:
"Good feature subsets contain features highly correlated with the classes of objects and
not correlated to each other" [12].

Let f and f ′ be two features, let denote rf,f ′ the correlation coefficient between f and
f ′ with respect to the training set. For a subset of features S and a feature f , we denote
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the average of rf,f ′ for f ′ ∈ S. Hall has suggested to evaluate the merit of feature subset
S of size k with respect to the class c by the following formula:

Merit(S) =
krc,f√

k + k(k − 1)rf,f

In this formula, the numerator represents the correlation between class c and the features
f of S. The denominator is a normalizing factor. Let us consider the situation where
all the features of S have the same correlation coefficient r with c, clearly rc,S = r. If
the elements of S are very strongly correlated, i.e. rf,f ′ ≈ 1 for each f, f ′ ∈ S, then
rS,S = 1 and Merit(S) = r. On the contrary, if the features in S are independent from
each other i.e rf,f ′ = 0 for f 6= f ′, then rS,S = k

k×k = 1
k because there are k diagonal

elements equal to 1 and a total of k2 elements. As a consequence, Merit(S) = k×r√
2k−1 .

This illustrates the fact that Merit(S) is high when features in S are highly correlated to
class c and not correlated to each other. In this paper, the feature selection process aims
at identifying a feature subset S with Merit as high as possible and superior to a certain
threshold. This process can be done according to algorithm 4 described by Hall. In this
algorithm, MAX represents the maximum number of levels to test when the best Merit
does not change. We took MAX = 5 in this article. In fact, when MAX is greater
than 5, there is no improvement in the results and the number of subsets tested increases,
which leads to increased computation time.

5. Experiments

5.1. Dataset description

Reference data have been provided by N. Barbier using a simulator of 3D forest mock-
ups "Allostand" as in [2] in order to roughly mimic in terms of tree densities and dbh dis-
tributions forest types that have been locally observed in three countries of Central Africa.
Canopy images were simulated from mock-ups using a radiative transfer model (DART,
[11]). DART is a software tool based on an approach that combines a ray-tracing model
and discrete ordinate methods to simulate, simultaneously in several wavelengths of the
optical domain, remotely sensed images of heterogeneous natural and urban landscapes.
DART software is made at CESBIO and can be downloaded for free at their website
http://www.cesbio.ups-tlse.fr/fr/dart.html.

The data is a set of gray scale square images of size 99 × 99 pixels, analogous to
1ha of forest in the field, with their corresponding AGB which is given in kilograms per
hectare.

– Congo dataset: 176 images. The AGB values for this dataset range from
68184kg/ha to 480649kg/ha with a mean of 255805kg/ha and a standard deviation
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Algorithm 1 Basic structure of working set algorithm
1: S ← ∅ . S is the Current best subset
2: MS ← 0 . MS is the Merit of the current subset S
3: term←MAX . Number of levels evaluated after the current subset
4: for k = 0 to n do . n is the number of items in the subset
5: if term > 0 then
6: Lk ← all sets of k features containing S
7: for all subset S′ ∈ Lk do
8: MeritS′ ← k×rS′,c√

k+k(k−1)×rS′,S′

9: MS′ ←MeritS′

10: if MS′ > MS then
11: S ← S′

12: MS ←MS′

13: end if
14: end for
15: if Size(S) = k then . Testing if the current subset S is in the current level k
16: term←Max
17: else
18: term← term− 1
19: end if
20: end if
21: end for
22: return S
of 93192kg/ha.

– Democratic Republic of Congo dataset: 105 images. The AGB values for this
dataset range from 55311kg/ha to 328223kg/ha with a mean of 167655kg/ha and a
standard deviation of 55476kg/ha.

– Central African Republic dataset 109 images. The AGB values for this dataset range
from 3259kg/ha to 523208kg/ha with a mean of 287586kg/ha and its standard devia-
tion is 103148kg/ha.

These datasets are used as original training examples.

5.2. Attribute selection

The original dataset has 67 features labeled F1, F2, . . . , F67 resulting from the r-
spectra calculation step. The attribute selection process applied on the Central Africa
Republic dataset produced 12 features. The same process applied on the Congo and the
Democratic Republic of Congo datasets produced respectively 14 and 31 features. These
features are used only for SVR and k-NN predictions. In the case of Random Forests,
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Dataset Number of selected attributes Number of subset explored Merit

Congo 14 854 0.791
DRC 31 1790 0.769
CAR 12 960 0.686

Table 1. Table of data and the parameters used for subset selection

prediction is performed on the entire dataset because the algorithm already includes a
feature selection.

5.3. Performance evaluation

In order to compare two classifiers, we must be able to compare their performances.
Ideally, the performance of a model is measured by the generalization error, i.e. the
error made on unforeseen examples. The problem is that we don’t have access to these
examples. A way of overcoming this difficulty is to use the error made on a test set as
estimate of the generalization error. In this approach, one can partition the original data
set into two disjoint subsets : a training set and a test set.

Cross-validation is a nice way to insure that each example is used once for training and
once for testing. For instance one can consider a partition of the data set into two subsets,
use one for training and one for testing. The roles of these subsets are then swapped so
that the training (resp. test) set becomes the test (resp. training) set. This 2-fold approach
can be generalized to obtain a k-fold cross-validation : this method partitions the dataset
into k equal-sized subsets. At the ith iteration, the ith subset is used as test set while
the union of the other subsets serves as training set. The performance of the classifier is
estimated by considering the average accuracy of the k models constructed during the k
runs. The advantage of this approach is that each example is used exactly once for testing
and k − 1 times for training. This ensures that the estimate of predictive accuracy is less
biased.

6. Results and Discussions

6.1. Results

For each classifier and each dataset, we used a ten-fold cross validation scheme to
estimate the error. The evaluation criterion is the average mean absolute error (AMAE) i.e.
the average of the absolute value of the difference between the real and the predicted AGB
values for all the images of the dataset. The results are presented in Table 2, Table 3 and
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Technique Parameters AMAE Gain

Original FOTO 56590
FOTO with SVR RBF Kernel 46103.74 18.53 %
FOTO with k-NN K=9 48344.67 14.57 %
FOTO with k-NN K=11 48232.02 14.77 %
FOTO with RF ntree=50 77554.91 -37.05 %
FOTO with Attribute selection + SVR RBF Kernel 45356.84 19.85 %
Attribute selection + k-NN K=5 45593.04 19.43 %
FOTO with Attribute selection + k-NN K=7 45280.02 19.99 %

Table 2. Results on Congo dataset

Technique Parameters AMAE Gain

Original FOTO 81890
FOTO with SVR RBF Kernel 66643.02 18.62 %
FOTO with k-NN K=3 72857.69 11.03 %
FOTO with k-NN K=5 70765.04 13.59 %
FOTO with RF ntree=50 67140.53 18.01 %
FOTO with Attribute selection + SVR RBF Kernel 66633.88 18.63 %
Attribute selection + k-NN K=5 71077.77 13.20 %
Attribute selection + k-NN K=3 70634.69 13.74 %

Table 3. Results on CAR dataset

Table 4 respectively for Congo, CAR (Central African Republic) and DRC (Democratic
Republic of Congo) datasets.

We see from these results that the FOTO method is improved by using Support Vector
for Regression with attribute selection. Depending on the dataset we can have an im-
provement of more than 19%. In fact the regression method must be selected according
to the dataset in presence. For some datasets, the linear regression can be a good choice
but for other datasets it can be a bad one.

For the Congo dataset, we obtained the major improvement with k-NN combined with
attribute selection using k = 7 and a gain of 19.99% followed, in the quality of result by
SVM with attribute selection with a gain of 19.85%

For the DRC dataset, the algorithms that yield the best improvements are SVM with
attribute selection and Random Forests (RF) with respective gains of 23.24% and 21.95%.
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Technique Parameters AMAE Gain

Original FOTO 39760
FOTO with SVR RBF Kernel 31458.90 20.88 %
FOTO with k-NN K=5 33608.78 15.47 %
FOTO with RF ntree=50 33079.94 21.95 %
FOTO with Attribute selection + SVR RBF Kernel 30519.11 23.24 %
Attribute selection + k-NN K=2 33608.78 15.47 %

Table 4. Results on DRC dataset

For the CAR dataset, the algorithms that yield the best improvement are SVM with
attribute selection and Random Forests with respective gains of 18.63% and 18.01%.

We notice from these results that the new algorithms presented here improve the orig-
inal FOTO Method except Random Forests applied to Congo dataset, where the FOTO
Method gives better results.

6.2. Discussions

In this work, we have explored some non-linear machine learning methods for biomass
estimation in tropical forest areas based on canopy image texture. The dataset was com-
posed of simulated images relating to three different forest types yielding diversified im-
age textures and canopy aspects (open vs. closed canopy, fine vs. coarse texture). The
relationship between tree biomass and crown dimensions is non-linear and the ensuing
relationship between stand biomass and features of canopy texture is liable to be non-
linear in many situations. We observed here that nonlinear methods applied on textural
indices yield better results compared to the linear method based on PCA and linear regres-
sion. Average prediction errors as presented in tables 2, 3 and 4 confirm this assertion. In
average, nonlinear methods have a gain of 19.50% compared to the linear method. Non-
linearity is then an important factor to be taken into account in biomass estimation using
canopy texture ordination.

PCA used by the FOTO method has the advantage to reduce the amount of information
useful to understand the phenomenon being studied but may frequently fail to produce
the most significant texture variables compared to what we have with attribute selection.
Attribute selection provides more suitable variables to depict texture.
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7. Conclusions

Assessing forest above-ground biomass (AGB) over extensive territories of poor ac-
cessibility is a challenging task. The FOTO method introduced by Couteron [6] and
Proisy et al. [22] has proved powerful to provide reliable biomass predictions from op-
tical canopy images in different regions in the tropics ([20, 24, 3]). In this paper, we
have explored the possibility of improving the performance of this method by non-linear
regression techniques. Experiments on simulated images of the canopy of the forests in
reference to local stand characteristics in DRC (Democratic Republic of Congo), CAR
(Central African Republic), and Congo demonstrate that our approach is robust and give
results with less errors than in linear regression used in FOTO. Accuracy gains of about
20% have been obtained using the proposed approach.
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