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ABSTRACT. Difference equations in the complex domain of the form y(x+ε)−y(x) = εf(y(x))/y(x)

are considered. The step size ε > 0 is a small parameter, and the equation has a singularity at y = 0.
Solutions near the singularity are described using composite asymptotic expansions. More precisely,
it is shown that the derivative v′ of the inverse function v of a solution (the so-called Fatou coordinate)
admits a Gevrey asymptotic expansion in powers of the square root of ε, denoted by η, involving
functions of y and of Y = y/η. This also yields Gevrey asymptotic expansions of the so-called Ecalle-
Voronin invariants of the equation which are functions of ε. An application coming from the theory of
complex iteration is presented.

RÉSUMÉ. On considère des équations aux différences dans le plan complexe de la forme y(x +

ε)− y(x) = εf(y(x))/y(x). Le pas de discrétisation ε > 0 est un petit paramètre, et l’équation a une
singularité en y = 0. On décrit les solutions près de la singularité en utilisant des développements
asymptotiques combinés. Plus précisément, on montre que la dérivée v′ de la fonction réciproque
(appelée coordonnée de Fatou) v d’une solution admet un développement asymptotique Gevrey en
puissances de la racine carrée de ε, notée η, et faisant intervenir des fonctions de y et de Y = y/η.
On obtient également des développements asymptotiques Gevrey des invariants d’Écalle-Voronin de
l’équation, qui sont des fonctions de ε. Une application venant de la théorie de l’itération complexe est
présentée.

KEYWORDS : difference equation with small step size, composite asymptotic expansion, Gevrey
asymptotic, Fatou coordinate, Ecalle-Voronin invariants.

MOTS-CLÉS : Équation aux différences à petit pas, développement asymptotique combiné, asymp-
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1. Introduction.

The main purpose of this article is to assemble two theories, which match each other
particularly well, in order to obtain new results on solutions of a difference equation with
singularity. The first theory,difference equations with small step size in the complex
domain, is developed in [3]. It concerns equations of the form

∆εy = f(x, y, ε) (1.1)

wheref : Ω ⊆ C× CN × [0, ε0] → CN is holomorphic inx andy and continuous inε,
ε > 0 is a small parameter, and∆ε is the difference operator given by

∆εy(x) =
1
ε

(
y(x+ ε)− y(x)

)
. (1.2)

The first main result of [3] is that, on horizontally convex domains, there exist solutions
of (1.1) close to any solution of the limiting differential equation

y′ = f(x, y, 0). (1.3)

A domain ofC is calledhorizontally convexif, for all its pointsx, x′ with Imx = Imx′,
the segment[x, x′] is contained in it. More precisely, giveny0 : D → CN a solution
of (1.2) holomorphic on somex-domainD such that(x, y0(x), ε) ∈ Ω for all x ∈ D and
all ε ∈ [0, ε0], given an initial condition(x0, d(ε)), d : [0, ε0] → CN continuous with
d(0) = y0(x0), and given a horizontally convex domainH compactly contained inD, it
is shown in [3] that there existε1 ∈ ]0, ε0] and a family of solutionsy : D× ]0, ε1] → C

N

of (1.1), continuous, holomorphic inx, such thaty(x0, ε) = d(ε) andy(x, ε) = y0(x) +
O(ε) onH .

A second result of [3] is that two solutions of (1.1) which coincide at some point
of D are exponentially close one to each other on the domainD. The last main result
is that, providedf is holomorphic inε in a complex neighborhood of0 andd(ε) has
an asymptotic expansiond(ε) ∼ ∑

n≥0 dnε
n asε → 0, the above solutionsy have an

asymptotic expansion
∑

n≥0 yn(x)ε
n asε → 0 uniformly onD, where the coefficients

yn are holomorphic functions onD and can be determined recursively as solutions of
certain initial value problems of the form

y′n = ∂f
∂y (x, y0(x), 0)yn + Fn

(
x, y0(x), . . . , yn−1(x)

)
, yn(x0) = dn. (1.4)

The second theory in the title of the present article,composite asymptotic expansions,
is developed in [4]. It deals with asymptotic expansions of functions of two variablesx
andη, using at the same time functions ofx and functions of the quotientxη .

At the origin this theory was developed to study singularly perturbed differential equa-
tions of the form

εy′ = f(x)y + εP (x, y, ε) (1.5)
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near a turning point. Here aturning pointis a zero of the functionf . Without loss, we
assume that this turning point is at the originx = 0. Let the integerp ≥ 2 be such that the
order of the zero off atx = 0 is p− 1, and letη = ε1/p. One of the main results of [4]
is that there exists a solutiony of (1.5) defined forε in a sector

S(−δ, δ, ε0) = {ε ∈ C ; |ε| < ε0 and − δ < arg ε < δ}

and forx in a so-calledquasi-sectorV (α, β, r, µ|η|), µ < 0 (hence depending on|η| =
|ε|1/p), where

V (α, β, r, ρ) = {x ∈ C ; −ρ < |x| < r andα < argx < β}

with ρ < 0, and that this solution has acomposite asymptotic expansion(CAsE for short)
in the following sense. There exist a discD(0, r), an infinite quasi-sectorV = V (α −
δ, β+δ,∞, µ), and holomorphic functionsan : D(0, r) → C andgn : V → C, gn having
an asymptotic expansion without constant term at infinity, such that

y(x, ε) ∼ 1
p

∑

n≥0

(
an(x) + gn

(
x
η

))
ηn. (1.6)

The symbol∼ means that a partial sum up to orderN gives an approximation of the
solution to orderηN , which is uniform in the whole domainε ∈ S(−δ, δ, ε0), x ∈
V (α, β, r, µ|η|). Therefore, formula (1.6) provides an approximation of the solution at
the same time near the turning point and away from it, i.e. at distances of orderη from
the turning point as well as at distances of order1. The extra symbol1

p

means that we
also have estimates of Gevrey type for the remainders; some details can be found below
Theorem 2.4.

In the present article, we use this theory ofCAsEs in order to describe solutions of a dif-
ference equation with singularity. For the sake of simplicity, we consider anautonomous
difference equation, i.e. with a right hand side depending only ofy. We assume that the
equation has a singularity. Fixing this singularity at0, we assume thaty = 0 is a simple
pole of the right hand side. In other words, we consider a difference equation of the form

∆εy =
1

y
f(y), (1.7)

wheref : U ⊆ C → C is holomorphic in a domainU containing0, f(0) 6= 0, and our
purpose is to study the behavior of solutions of (1.7) havingsmallvalues. Observe that
the general theory described above applies on domains where the values of a solution are
bounded away from0, but this theory no longer applies near points where the solution
takes small values.

A new feature of this type of equations is that the limiting equations are of two dif-
ferent natures: Near the origin, theinner reduced equation(2.6) (see Section 2 below) is
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a difference equation, whereas far from the origin theouter reduced equation(2.2) is a
differential equation. A natural question is whether an approximation of solutions of (1.7)
exists, using solutions of the outer reduced equation (2.2) forx of order1 and solutions
of the inner reduced equation (2.6) forx of orderε, and which would be uniform, i.e. also
for all intermediatex small with respect to1 and large with respect toε.

Our CAsEs seem to be well adapted for this situation. It turns out, however, that we do
not obtainCAsEs for solutions of (1.7) but, except for a logarithmic term, for their inverse
functions, calledFatou coordinates. Given a solutiony of (1.7), letv = v(z, ε) denote the
inverse function ofy with respect to the variablex, i.e. z = y(x, ε) ⇔ x = v(z, ε). Then
v is a solution of the Schröder equation

v
(
z + ε f(z)

z

)
= v(z) + ε. (1.8)

An indication why things are much simpler in Fatou coordinates than for the solutions
themselves is the following. In the case of an autonomous equation of the form (1.7)
the existence of one solutiony implies the existence of a family of solutions: Ify is a
solution of (1.7) andτ ∈ C is fixed, then the shifted functionyτ : x 7→ y(x + τ) is also
a solution (one could even choose anε-periodic function forτ ). If y has an asymptotic
expansion andτ depends onε, then this expansion changes considerably under such a
shift. If v = v(z, ε) is the inverse function ofy, then the inverse of the shifted solutionyτ
is simplyvτ : z 7→ v(z, ε)− τ ; this changes the asymptotics not essentially.

In order to obtainCAsEs for the Fatou coordinates, we first construct solutions of (1.7),
denotedy1, . . . , y4, on some domainsΩj which will be described in the sequel. Then we
prove that they are invertible; the inverse functionsvj = y−1

j ,j = 1, . . . , 4, are solutions
of the Schröder equation (1.8) defined on some domains containing quasi-sectors which
cover an annulus{z ∈ C ; −µ|η| < |z| < r}, with someµ < 0 < r with η = ε1/2. It
turns out that the functionsvj+1◦v−1

j are of the formid+pj, with pj periodic of periodε.
As a consequence we obtain exponentially small estimates for the differencesv′j+1 − v′j
of the derivatives. Using a Ramis-Sibuya-type theorem we then obtain aCAsE for the
derivativev′ of the Fatou coordinate. By integration, this yields aCAsE for v, except for a
logarithmic term. Using some inversion ofCAsEs, it might be possible to deduce aCAsE

for the solutiony itself, but thisCAsE would contain powers oflog x of any order. To
sum up, an approximation of the solutiony would be much more complicated than the
approximation of its inverse.

We are particularly interested in the so-calledÉcalle-Voronin invariants[2, 7] of equa-
tion (1.7). These invariants are the Fourier coefficients of the periodic functionspj . They
play an important role in the theory of analytic equivalence of diffeomorphisms. The
CAsEs for theyj yield also Gevrey asymptotic expansions for these invariants.

Application. In the last Section 7 we use our results in the special case off(y) = 1 + y,
i.e. the difference equation

∆εy = 1+
1

y
. (1.9)
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This equation has also solutions on some infinite sectors, hence has also Écalle-Voronin
invariants at infinity. The purpose of Section 7 is to compare these invariants with the
Écalle-Voronin invariants at the origin. This study shows in particular that the first Écalle-
Voronin invariant at infinity, when extended to all arguments ofε, has an infinite number
of zeroes, which are asymptotically in an arithmetical sequence close to the imaginary
axis. Section 7 only sketches some ideas of proof; the complete proofs will appear in a
future article.

Equation (7.1) appears in [1] in the form of the iteration of the diffeomorphismFb :
Z 7→ Z + 1 + b/Z tangent to the identity atZ = ∞, i.e. with b = 1

ε andZ = y
ε in our

notation. The authors prove that the first Écalle-Voronin invariant, denoted byCr/s(b), an
entire function ofb, has super-exponential growth as|b| tends to infinity which implies
that it has infinitely many zeros. Because of different normalizations, the link between
their invariant and ours contains an additional termexp (2πi b log b). This explains the
different growth of the two functions and this could also be used to prove the super-
exponential growth ofCr/s(b).

Beyond this last result, our motivation to study equation (2.1) was to illustrate our
theory ofCAsEs in a context where the reduced outer and inner equations are of different
kinds, here a differential outer equation and a difference inner equation. We believe that
our CAsEs can be useful for other types of functional equations, e.g. partial differential
equations or other functional equations where small (or large) parameters occur.

2. Statements of the main results.

We consider the difference equation with small step size (1.7) rewritten below for
convenience

∆εy =
1

y
f(y), (2.1)

wheref : U ⊆ C → C is holomorphic in a domainU containing0, f(0) = α2

2 6= 0,
ε > 0 is a small parameter, and∆ε is the difference operator given by (1.2). Equation
(2.1) has two limiting equations. The first one is the so-calledouter reduced equation

y′ =
1

y
f(y). (2.2)

obtained whenε tends to0. One easily checks that equation (2.2) has a unique solution
y0, defined in a neighborhood of0 on the two-sheet Riemann surfaceΣ of the square
root, such thaty0(x) ∼ α

√
x as x → 0 on Σ. This solution is given implicitely by

x = a0(y0(x)), with

a0(y) =

∫ y

0

t dt

f(t)
. (2.3)
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Our purpose is to study the behavior of solutions taking smallvalues nearx = 0. A
first idea is to perform the change of variablesx = εX , y = ηY with η =

√
ε, i.e.

Y (X) = 1
ηy(εX). (2.4)

This transforms (2.1) into the equation

∆1Y =
1

Y
f(ηY ), (2.5)

whose limit, asη → 0, is the second limiting equation, theinner reduced equation

Y (X + 1) = Y (X) +
α2

2Y (X)
. (2.6)

Givenδ > 0 small enough andK > 0 large enough, consider the sector

Ω+(K, δ) = {X ∈ C ; | arg(X −K)| < π − δ}, (2.7)

and letQ+(K, δ) denote the image ofΩ+(K, δ) by the functionX 7→ αX1/2, see Figure
2.1 for a sketch. Herelog is the principal determination of the logarithm onΩ+(K, δ),
andXa = exp(a logX).

δ
δ K0

δ
2

δ
2

0 α
√
K

Figure 2.1. The sector Ω+(K, δ) and its image Q+(K, δ) by X 7→ αX1/2 in the case α > 0.

Concerning the inner reduced equation (2.6), we have the following result.

Proposition 2.1 . For all δ > 0 there existsK > 0 such that (2.6) has a unique solution
Y+ defined onΩ+ = Ω+(K, δ) satisfying

Y+(X) = αX1/2 + α
8X

−1/2 logX + o(X−1/2), X → ∞, X ∈ Ω+.
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If K is large enough, then the functionY+ has an inverse functionV+ : Q+(2K, 2δ) →
Ω+(K, δ) which satisfies

V+(Z) =
(
Z
α

)2 − 1
2 log

(
Z
α

)
+ o(1), Q+(2K, 2δ) ∋ Z → ∞ (2.8)

and the functional equation

V
(
Z + α2

2Z

)
= V (Z) + 1 (2.9)

wheneverZ andZ + α2

2Z are inQ+(2K, 2δ).

Remarks. 1. This kind of statement is very classical. For the sake of completeness,
heowever, a detailed proof is given in Section 3.

2. More precisely one has

Y+(X) = αX1/2 + α
8X

−1/2 logX +O
(
X−3/2(logX)2

)
, Ω+ ∋ X → ∞

and the derivative ofY+ satisfies

Y ′
+(X) = α

2X
−1/2 +O

(
X−3/2(logX)2

)
, Ω+ ∋ X → ∞.

3. The functionV+ is a so-calledFatou coordinateof (2.6).

By symmetry of (2.6), it follows that−Y+ is the only solutionY of (2.6) onΩ+

satisfyingY (X) = −αX1/2 − α
8X

−1/2 logX + o(X−1/2). Its inverse is the function
Z 7→ V+(−Z) defined on−Q+(2K, 2δ); it also satisfies (2.9).

ForK large enough, one proves in a similar way that there exists a unique function
Y− defined onΩ− = {X ∈ C ; | arg(−X −K)| < π − δ} satisfying

Y−(X) = αX1/2 + α
8X

−1/2 logX + o(X−1/2) asX → ∞ in Ω−,

and satisfying (2.6) for allX ∈ Ω− such thatX + 1 ∈ Ω−. HerelogX is the analytic
continuation of the principal branch ontoΩ− in the mathematically positive direction, i.e.
logX = log(−X)+πi. In the same way, we continue the roots analytically byX±1/2 =
±i(−X)±1/2. For K large enough, we have again an inverseV− of Y− defined on

Q−(2K, 2δ) = i Q+(2K, 2δ) that satisfies (2.9) andV−(Z) =
(
Z
α

)2− 1
2 log

(
Z
α

)
+o(1).

In order to prove these statements, the proof in Section 2 has to be modified essentially
only at one point: The operatorT in (3.3) has to be defined using summation over all
X − n, n positive integer.

As another solution of (2.6), we consider−Y−. It is also defined onΩ− and sat-
isfies−Y−(X) = −αX1/2 − α

8X
−1/2 logX + o(X−1/2). Its inverse is the function

Z 7→ V−(−Z) defined on−Q−(2K, 2δ); it also satisfies (2.9). In this manner, we have
obtained four solutions of (2.6) and four solutions of (2.9) of particular interest.
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If K is large enough, the functionΦ+ = V− ◦ Y+ − id is defined (at least) on the
sector

I+ =
{
X ∈ C ;

∣∣arg (X − iK)− π
2

∣∣ < π
2 − 3δ

}
.

Using (2.9), it is easily shown thatΦ+ is 1-periodic. The choice of the branches of the
logarithms in Proposition 2.1 and the estimate (2.8) ensure thatΦ+(X) → 0 asI+ ∋
X → ∞. Therefore the Fourier series ofΦ+ must have the following form

Φ+(X) =
∞∑

n=1

C+
n e2πinX for X ∈ I+, (2.10)

whereC+
n ∈ C are constants.

Similarly, we treat the composition of the inverse ofY + with −Y −. The function
Φ− = V+ ◦ (−Y−)− id is defined (at least) on the sector

I− = {X ∈ C ;
∣∣∣arg (X + iK) +

π

2

∣∣∣ < π

2
− 3δ}.

It is also 1-periodic, but only bounded asI− ∋ X → ∞ because of the choice of the
branches of the logarithms. Its Fourier series is thus

Φ−(X) =

∞∑

n=0

C−
n e−2πinX for X ∈ I−.

HereC−
0 = πi

2 ; the other constantsC−
n , n ≥ 1 are closely related toC+

n , but the relation
is not interesting in our work. The other analogous compositions of the inverse of−Y −

with −Y +, respectively that of the inverse ofY + with −Y −, are identical toΦ± + id

with the above functionsΦ± and yield no new constants.
The constantsC±

n are the so-calledÉcalle-Voronin invariants[2, 7] of equation (2.6).

Let us return to our original equation (2.1). We fixK, r, δ > 0. Let z(ε) ∈ [−r, ir] be
such thatarg(z(ε) −Kε) = π − δ and letΩ1 = Ω(K, r, δ, ε) denote the interior of the
(non convex) hexagon with verticesKε, z(ε), ir, r,−ir, z(ε) in this order; see Figure 2.2.
LetΩ2 = Ω4 = −Ω1 = {x ∈ C ; −x ∈ Ω1} andΩ3 = Ω1.

We will also use the image ofΩ1 by x 7→ αx1/2, denoted byQ1, and the domains
Qj = ij−1Q1, j = 2, 3, 4, obtained by rotations.

Our first main result is as follows; let us recall thatη = ε1/2.

Theorem 2.2 . With the above notation, for allδ > 0 there existK,R, ε0, r > 0 with
Kε0 < r and four solutionsy1, y2, y3, y4 of (2.1), defined forε ∈ ]0, ε0] andx ∈ Ωj , such
thaty1(Kε, ε) = −y3(Kε, ε) = ηY+(K), y2(−Kε, ε) = −y4(−Kε, ε) = ηY−(−K),
and

∀ε ∈ ]0, ε0] ∀x ∈ Ω1,
∣∣y1(x, ε)− ηY+

(
x
ε

)∣∣ ≤ R|x| and
∣∣y3(x, ε) + ηY+

(
x
ε

)∣∣ ≤ R|x|,

∀ε ∈ ]0, ε0] ∀x ∈ −Ω1,
∣∣y2(x, ε) − ηY−

(
x
ε

)∣∣ ≤ R|x| and
∣∣y4(x, ε) + ηY−

(
x
ε

)∣∣ ≤ R|x|.
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2δ Kε

ir

−ir

z(ε)

z(ε)

r−r
0

√
Kε

√
r

√
ir

√
−ir

√

z(ε)

√

z(ε)

i
√
r

−i
√
r

0

δ

2

δ

2

Figure 2.2. Left: The domain Ω1 of existence of the solutions y1, y3 of (2.1). Right: The
image Q1 of Ω1 by x 7→ x1/2 (α = 1 here).

The proof is in Section 5. Since the domains are no longer infinite, we cannot have
uniqueness of the solutions anymore, but they are unique up to exponentially small terms.

We then prove the existence of the inverse functionsvj = y−1
j analogous to the above

Fatou coordinates. Precisely, letΩ̃1 = Ω
(
2K, r2 , 2δ, ε

)
be defined asΩ1, with the con-

stants2K, r
2 , and2δ instead ofK, r, δ. We assumeε0 ≤ r

4K . Let Q̃1 denote the image

of Ω̃1 by the functionX 7→ αX1/2. As before, we also usẽΩj = (−1)j−1Ω̃1 and
Q̃j = ij−1Q̃1, j = 2, 3, 4. On Q̃1, we use the principal value oflog( z

αη ); on the other

Q̃j , we uselog( z
αη ) = log( z

αη i
1−j) + j−1

2 πi. Thus the branches of the logarithms are

the same on the intersectioñQj ∩ Q̃j+1 if j = 1, 2, 3, butnoton Q̃4 ∩ Q̃1.

Proposition 2.3 . With the above notation, ifj ∈ {1, 2, 3, 4}, r > 0 is small enough
andK > 0 is large enough then, for allz ∈ Q̃j , the equationyj(x, ε) = z has a unique
solutionx ∈ Ωj, denoted byx = vj(z, ε). This gives a holomorphic functionvj defined
for z ∈ Q̃j , ε ∈]0, ε0], the values of which are inΩj . It is a solution of

v
(
z + ε f(z)

z

)
= v(z) + ε. (2.11)

Moreover, we have

v1(ηY+(K), η2) = Kη2, v2(ηY−(−K), η2) = −Kη2,
v3(−ηY+(K), η2) = Kη2, and v4(−ηY−(−K), η2) = −Kη2,
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whereK is the constant of Theorem 2.2, and there existR, η0 > 0 such that for all
z ∈ Q̃j, η ∈]0, η0]

∣∣∣v1(z, η2)− η2V+(
z
η )
∣∣∣ ≤ R |z|3 ,

∣∣∣v3(z, η2)− η2V+(− z
η )
∣∣∣ ≤ R |z|3 ,

∣∣∣v2(z, η2)− η2V−(
z
η )
∣∣∣ ≤ R |z|3 , and

∣∣∣v4(z, η2)− η2V−(− z
η )
∣∣∣ ≤ R |z|3 .

The proof is analogous to that of Proposition 2.1; it will be omitted here.
For fixedz 6= 0 in the appropriate domains, the limitsvj(z, 0) = limε→0 vj(z, ε) are

solutions ofv′(z) f(z)z = 1; this is obtained easily from (2.11) in the limitε → 0. The
approximation conditions of the above proposition imply thatvj(z, 0) = a0(z), wherea0
is given in (2.3).

The approximation conditions of the above proposition also imply that, for fixedZ
sufficiently large such thatηZ is in the appropriate domain,limη→0 η

−2vj(ηZ, η
2) is one

of the four functionsV±(±Z).
Thus we haveouter approximations (forz fixed) andinner approximations (forZ

fixed) for vj . The most important result of our article refines these statements, not only
to the existence of full outer and inner expansions, but to full uniform expansions in the
whole domainsQ̃j . This is achieved using so-calledcomposite asymptotic expansions
(CAsEs). We refer to [4] for a detailed discussion of this notion and its properties. Never-
theless, we will give explanations below the theorem. In the present article, we adopt the
notationbjn of [4] in case of two indices, with one index in superscript; we hope this will
not bring confusion to the reader with the usual powersηn, ij−1, etc.

Theorem 2.4 . The Fatou coordinatesvj of (2.1) have composite asymptotic expansions
(CAsEs) of Gevrey order12 :

vj(z, η
2) ∼ 1

2
a0(z) + S(η) log

(
z
αη

)
+ Tj(η) +

∑

n≥2

(
an(z) + bjn

(
z
η

))
ηn (2.12)

as0 < η → 0 uniformly for z ∈ Q̃j , wherean are analytic on|z| < r/2, an(0) = 0
andbjn are holomorphic onij−1Q+(2K, 2δ), cf. above Proposition 2.1. The latter have
consistent asymptotic expansions of Gevrey order1

2

bjn(Z) ∼ 1
2

∑

m≥1

BnmZ−m asZ → ∞.

Furthermore, the functionsS, Tj admit asymptotic expansions of Gevrey order1
2 :

S(η) ∼ 1
2

∑

n≥1

Snη
2n, Tj(η) ∼ 1

2

∑

n≥2

Tjnη
n,

the functiona0 is given in (2.3) and the functionsbj0, b
j
1 andan, n odd, are identically

zero. Moreover, we haveS1 = − 1
2 , T12 = T22 = 0, T32 = T42 = 1

2πi.
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By definition, (2.12) means that there existA,B, η0 > 0 such that, for allη ∈]0, η0], all
z ∈ Q̃j, and allN ∈ N, N ≥ 2, one has

∣∣∣∣∣vj(z, η
2)− a0(z)− S(η) log

(
z
αη

)
− Tj(η)−

N−1∑

n=2

(
an(z) + bjn

(
z
η

))
ηn

∣∣∣∣∣ ≤

ABNΓ
(
1 + N

2

)
ηN .

The statement on thebjn means that there existA,B > 0 such that, for all integersn ≥
2,M ≥ 1 and allZ ∈ ij−1Q+(2K, 2δ), one has

|Z|M
∣∣∣∣∣b

j
n(Z)−

M−1∑

m=1

BnmX−m

∣∣∣∣∣ ≤ ABn+MΓ
(
M+n

2 + 1
)
. (2.13)

Observe that thean, Bnm andS are independent ofj, whereas thebjn andTj are not.
An important consequence of (2.12) (see [4], Proposition 3.7) is the existence of so-

called outer and inner expansions ofvj of Gevrey order12 . More precisely, for every
r1 ∈]0, r

2 [

vj(z, η
2) ∼ 1

2
a0(z) + S(η) log

(
z
α

)
− S(η) log η + Tj(η) +

∑

n≥2

dn(z)η
n (2.14)

as η > 0, η → 0 uniformly for z ∈ Q̃j with |z| > r1, wheredn(z) = an(z) +
n−2∑

m=1

Bn−m,mz−m, and for everyK1 > 2K

vj(ηZ, η
2) ∼ 1

2
S(η) log

(
Z
α

)
+ Tj(η) +

∑

n≥2

hj
n(Z)ηn (2.15)

asη > 0, η → 0 uniformly for ηZ ∈ Q̃j with 2K < |Z| < K1, wherehj
n(Z) =

bjn(Z) +
∑n

m=1 An−m,mZm if aj(z) =
∑

k>0 Ajkz
k. Here we use thata0(z) = O(z2)

and thus we also haveA00 = A01 = 0.
The proof of Theorem 2.4 is given in Section 6. In fact we first prove, using the main

result of [4], that the derivativesv′j(z, ε) of the Fatou coordinates haveCAsEs of Gevrey
order 12 ; here no logarithm appears. Because of the initial conditions of Proposition 2.3,
we conclude forvj by integration; in the casej = 1 for example, we have (withε = η2)

v1(z, ε) = Kε+

∫ z

ηY+(K)

v′1(ζ, ε) dζ.

The integration of aCAsE is again treated in [4]; the logarithms appear because each term
analogous tobjn(Z) in this CAsE contains a multiple of1/Z in its expansion.
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Remark.The right hand side of (2.12) is a composite formal series solution of (2.11). It
can be shown that this determines the formal expression except forTj ; this will be done on
an example in Section 7. The (Gevrey) asymptotic expansions ofTj(η) are determined by
the initial conditions of thevj (see below (2.11)) and the corresponding initial conditions
(on a formal level) for the right hand sides of (2.12). Then theTj can be chosen by
the Borel-Ritt-Gevrey theorem as any functions having these asymptotic expansions of
Gevrey order12 .

The additive constantsTj(η) in the expansions depend upon the initial conditions of
thevj ; especially they depend upon the choice ofK 1. To avoid problems in the sequel,
we want to normalize our solutions of (2.11) such that their Gevrey asymptotic expansions
are uniquely determined by the equations and normalize the solutions of (2.1) accordingly
– thus the functions are determined by the equation up to exponentially small terms. More
precisely, we put forj = 1, ..., 4

v∗j (z, η
2) = vj(z, η

2)− Tj(η), y∗j (x, η
2) = yj(x+ Tj(η), η

2). (2.16)

Observe thatv∗j is inverse toy∗j and that the domains ofvj andv∗j are the same, whereas
the domain ofy∗j is obtained by shifting that ofyj . Here it is important thatTj(η) =

O(η2) and thus the domain ofy∗j is essentially of the same type asΩj . In the sequel, we

can assume without loss in generality thaty∗j are defined onΩj andv∗j are defined oñQj

as defined above, providedK is sufficiently large andr > 0 is sufficently small.
It is easy to check that the functionspj = v∗j+1 ◦ y∗j − id , j = 1, ...4, 2 are ε-

periodic inx. A priori these functions are defined on the sets
(
y∗j
)−1

(
Q̃j+1

)
= {x ∈

Ωj ; y
∗
j (x) ∈ Q̃j+1}. Their periodicity allows to continue them analytically to some strip{

x ∈ C ; K̃ε < (−1)j−1Imx < r̃
}

with someK̃, r̃ > 0. The Fourier coefficientscjn
of these functions, determined by

pj(x, ε) =
∑

n∈Z

cjn(ε)e
2πinx/ε

are called Écalle-Voronin invariants of (2.1). It turns out thatcjn is exponentially small if
(−1)j−1n is negative. For the other Écalle-Voronin invariants we have

Corollary 2.5 . If (−1)j−1k > 0, then the functioncjk admits an asymptotic expansion∑
n≥2 ajknη

n in powers ofη = ε1/2, whereajk2 is closely related to the first Écalle-
Voronin invariants of (2.6) defined in (2.10). More precisely, these are asymptotic expan-

1. They also depend upon the choice of the branch of log
(

z
αη

)

.

2. Here and in the sequel, the index j + 1 is taken modulo 4, i.e. v∗
5
= v∗

1
etc.
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sions of Gevrey order12 in η with closely related estimates, i.e. there existA,B > 0 such
that, for all positive integersN , k,

∣∣∣∣∣cjk(ε)−
N−1∑

n=2

ajknη
n

∣∣∣∣∣ ≤ ABN+k Γ
(
1 + N

2

)
ηN .

If the branches of the logarithms are chosen as above Theorem 2.4 forQ̃j , then we have
a1k2 = C+

k , a2,−k,2 = C−
k , a3k2 = e−kπ2

C+
k anda4,−k,2 = ekπ

2

C−
k for positive integer

k.

Idea of the proof.We indicate it only forj = 1. We have

c1k(ε) =
1
ε

∫ x+ε

x

e−2πikξ/ε (v∗2 ◦ y∗1(ξ, ε)− ξ) dξ.

If k < 0, then we can choose anyx in the strip with positive imaginary part (independent
of ε) and we obtain thatc1k is exponentially small. Ifk > 0, then the change of unknown
ξ = εT ,x = εX , with some fixedX such thatε[X,X+1] is in the domain ofv2◦y1(., ε),
yields

c1k(ε) =

∫ X+1

X

e−2πikT
(
v∗2 ◦ y∗1(εT, ε)− εT

)
dT.

Now we use (2.16) and the inner expansions (2.15) forv1 andv2. Since the operations of
composition and inversion are compatible with Gevrey asymptotic expansions, this yields
a uniform asymptotic expansion of Gevrey order1

2 for v∗2 ◦ y∗1(εT, ε) − εT . The result
follows easily integrating the expansion term by term.

Remark.Observe that the functions̃pj = vj+1◦yj−id defined using the non-normalized
vj , yj satisfy p̃j(x, ε) = pj(x − Tj(η), ε) + Tj+1(η) − Tj(η) and hence their Fourier
coefficients̃cjn(ε) are related to the abovecjn(ε) by

c̃j0(ε) = cj0(ε) + Tj+1(η) − Tj(η),

c̃jn(ε) = exp(−2πinTj(η)/ε) cjn(ε) if n 6= 0.
(2.17)

3. The reduced inner equation: Proof of Proposition 2.1.

The change of unknownY (X)2 = α2X + α2

4 logX + U(X) in (2.6) yields the
equation

U(X + 1) = U(X) + α2

4 h
(
X,U(X)

)
(3.1)

with
h(X,U) =

(
X + 1

4 logX + α−2U
)−1 − log

(
1 + 1

X

)
. (3.2)
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Observe that, ifU is a solution of (3.1) satisfyingU(X) = o(1) asΩ+(K, δ) ∋ X → ∞,
thenh

(
X,U(X)

)
∼ − logX

4X2 asΩ+(K, δ) ∋ X → ∞. By (3.1),U is of the same order
as the antiderivative ofh tending to 0 asX → ∞, i.e.U is of order logX

X .
This leads us to introduce the following space. LetE denote the Banach vector space

of functionsU holomorphic onΩ+ such thatXU(X)
logX is bounded, endowed with the norm

‖U‖ = sup
X∈Ω+

∣∣∣∣
XU(X)

logX

∣∣∣∣ .

GivenL > 0 large enough, letB′(0, L) denote the closed ball ofE of center0 and radius
L, i.e.B′(0, L) = {U ∈ E ; ‖U‖ ≤ L}.

Using thatX+n ∈ Ω+ for all X ∈ Ω+ and alln ∈ N, we now rewrite (3.1) in a fixed
point formU = TU , with

TU(X) = −α2

4

∑

n≥0

h
(
X + n, U(X + n)

)
(3.3)

whereh is defined in (3.2). This latter sum converges for allX ∈ Ω+ and allU ∈ E since
h
(
X,U(X)

)
= O

(
X−2 logX

)
.

Lemma 3.1 . For all δ > 0 and allL ≥ |α|2
2 sin2(δ/2) , there existsK > 0 such that

T : B′(0, L) → B′(0, L) is a contraction.

Proof. As already seen, we have, for any fixedL > 0 and anyU ∈ B′(0, L),

h
(
X,U(X)

)
∼ − logX

4X2
as Ω+ ∋ X → ∞,

hence, forK large enough, we have

∀U ∈ B′(0, L) ∀X ∈ Ω+,
∣∣h
(
X,U(X)

)∣∣ ≤
∣∣X−2 logX

∣∣ . (3.4)

Now we use, for anyX ∈ Ω+, that the quotientX+n
|X|+n can be written as a convex combi-

nation of X
|X| and1, namely

X + n

|X |+ n
=

|X |
|X |+ n

.
X

|X | +
n

|X |+ n
.1,

hence has at least distanceµ = sin δ
2 from the origin. As a consequence, we have

∀X ∈ Ω+ ∀n ∈ N, µ(|X |+ n) ≤ |X + n| ≤ |X |+ n. (3.5)

If K sin δ ≥ 1, we can also estimate, for allX ∈ Ω+ and alln ∈ N,

| log(X + n)| ≤ π + ln(|X |+ n).
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With (3.3), (3.4) and (3.5), this yields

|TU(X)| ≤ |α|2
4µ2

∑

n≥0

π + ln(|X |+ n)

(|X |+ n)2
. (3.6)

By a comparison of the sum and an integral, we estimate the sum of the right hand side
of (3.6) by

ln |X |+ π

|X |2 +

∫ +∞

|X|

π + ln t

t2
dt ≤ 2 ln |X |

|X | ,

if K is large enough. Thanks to the condition onL in the statement, we then obtain
|TU(X)| ≤ L ln |X|

|X| for allX ∈ Ω+, i.e. ‖TU‖ ≤ L. ThereforeT(B′(0, L)) ⊆ B′(0, L).

Now let U,W ∈ B′(0, L) ⊂ E . Using that
∣∣X + 1

4 logX + α−2U(X)
∣∣ ≥ 1

2 |X | if
U ∈ B′(0, L), X ∈ Ω+, and ifK is large enough, we estimate similarly
∣∣h
(
X,U(X)

)
− h

(
X,W (X)

)∣∣

=

∣∣∣∣∣
α−2

(
W (X)− U(X)

)
(
X + 1

4 logX + α−2U(X)
)(
X + 1

4 logX + α−2W (X)
)
∣∣∣∣∣

≤ 4α−2|X |−2
∣∣U(X)−W (X)

∣∣

≤ 4α−2|X |−3| logX | ‖U −W‖

hence
∣∣TU(X)−TW (X)

∣∣ ≤ µ−3‖U −W‖
∑

n≥0

(|X |+ n)−3
(
π + ln(|X |+ n)

)
. (3.7)

By a comparison of the sum and an integral, we estimate the sum of the right hand side
of (3.7) by

|X |−3(π + ln |X |) +
∫ +∞

|X|
t−3(π + ln t)dt ≤ 2|X |−2 ln |X | ≤ 2|X |−2| logX |,

if K is large enough, hence
∣∣TU(X)−TW (X)

∣∣ ≤ 2|X |−1µ−3‖U−W‖ |X |−1| logX |.
ChoosingK such that2|X |−1µ−3 ≤ 1

2 for all X ∈ Ω+, we then obtain‖TU −TW‖ ≤
1
2‖U −W‖, showing thatT is a contraction inB′(0, L).

Let us now return to the proof of Proposition 2.1. By lemma 3.1,there exists a (unique)
solutionU+ of (3.1) in the ballB′(0, L) of E . Then the functionY+ given byY+(X) =(
α2X + α2

4 logX + U+(X)
)1/2

is a solution of (2.6) that satisfies

Y+(X) =
(
α2X + α2

4 logX +O
(
logX
X

))1/2
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= αX1/2
(
1 + logX

8X +O
((

logX
X

)2)
+O

(
logX
X2

))
.

If Y1 is another solution of (2.6) satisfyingY1(X) = αX1/2+ α
8X

−1/2 logX+o(X−1/2)

asΩ+ ∋ X → ∞, then the functionU1 given byY 2
1 (X) = α2X + α2

4 logX +U1(X) is
a solution of (3.1) that satisfiesU1(X) = o(1). It follows thatU1 = TU1, with T given
by (3.3) andh given by (3.2), henceh

(
X,U1(X)

)
= − (1+o(1)) logX

4X2 , henceU1 ∈ E ,
henceU1 ∈ B′(0, L) for someL > 0 large enough, henceU1 = U+ by Lemma 3.1.

For a proof of the statement on the derivativeY ′
+, we changeK into K + 1 and we

use Cauchy’s formula

ϕ′(X) =
1

2πi

∫

|z−X|=sin δ

ϕ(z)

(z −X)2
dz

applied to the function

ϕ : X 7→ Y+(X)− αX1/2 − α
8X

−1/2 logX.

Sinceϕ(z) = O
(
X−3/2(logX)2

)
uniformly for all z such that|z − X | = sin δ, we

obtainϕ′(X) = O
(
X−3/2(logX)2

)
as well, hence the wanted estimate forY ′

+.

Remark.Modifying δ if necessary, we can also prove that

Y ′
+(X) = α

2X
−1/2 + α

8 (X
−1/2 logX)′ +O

(
(X−3/2(logX)2)′

)
, Ω+ ∋ X → ∞.

In order to prove the statements on the inverse functionV+(Z) we show first

Lemma 3.2 . If K > 0 is large enough, then for everyZ ∈ Q+(2K, 2δ) there exists a
uniqueX ∈ Ω+(K, δ) such thatY+(X) = Z.

Proof. It suffices to show that for everyU ∈ Ω+(2K, 2δ) there is a uniqueX ∈ Ω+(K, δ)
such thatα−2Y+(X)2 = U . By the estimate we proved above, we have

α−2Y+(X)2 = X + 1
4 logX + o(1), X → ∞. (3.8)

This suggests to apply Rouché’s theorem tof(X) = α−2Y+(X)2 −U andg(X) = X −
U . Clearlyg has exactly one zero inΩ+(K, δ). If we show that|f(X)− g(X)| < |g(X)|
on the boundary ofΩ+(K, δ), then the hypotheses of Rouché’s theorem are satisfied and
we obtain the wanted statement thatf has a unique zero inΩ+(K, δ). The fact that we
work with infinite domains is not a problem here, because we can (for givenU ) add a
circular arc|X | = L, |arg(X)| ≤ π − δ with large radiusL to the boundary and the
condition|f(X)− g(X)| =

∣∣1
4 logX + o(1)

∣∣ < |X − U | = |g(X)| is satisfied there.
So we want to show that, ifK is large enough, then
∣∣α−2Y+(X)2 −X

∣∣ < |X − U | for U ∈ Ω+(2K, 2δ) andX ∈ ∂Ω+(K, δ). (3.9)
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By (3.8) andlogX
|X| → 0 asX → ∞ on∂Ω+(K, δ), it is sufficient to show that

|X − U | ≥ |X | sin δ for U ∈ Ω+(2K, 2δ) andX ∈ ∂Ω+(K, δ), (3.10)

if K is sufficiently large. In order to show this estimate, we consider, for everyX on the
rayarg(X −K) = π − δ, its projectionUP (X) on the rayarg(U − 2K) = π − 2δ. Let
C denote the intersection of the opposite raysarg(X −K) = −δ andarg(U − 2K) =
−2δ. Since the triangle(K, 2K,C) is isosceles at2K, we have|X | < |X − C| and
|X − UP (X)| = |X − C| sin δ for everyX on the rayarg(X −K) = π− δ. To sum up,
we have, for allU ∈ Ω+(2K, 2δ) and allX with arg(X −K) = π − δ

|X − U | ≥ |X − UP (X)| = |X − C| sin δ ≥ |X | sin δ.

By symmetry, the same inequality holds forX on the other half of∂Ω+(K, δ), i.e.X
with arg(X −K) = −π + δ, and (3.10) is finally proved.

Lemma 3.2 shows the existence of an inverse functionV+ : Q+(2K, 2δ) → Ω+(K, δ).
Using a classical statement on holomorphic functions (see e.g. [6], Section 10.33) we
prove thatV+ is holomorphic. SinceY+(X) = αX1/2(1+o(1)), we first obtainV+(Z) =(
Z
α

)2
(1+o(1)) by replacingX = V+(Z). The estimate forY+(X) yields more precisely

Z
α = V+(Z)1/2 + 1

8V+(Z)−1/2 log (V+(Z)) + o(V+(Z)−1/2)

and thusV+(Z) =
(
Z
α

)2 − 1
2 log

(
Z
α

)
+ o(1). The functional equation forV+ follows

immediately from the difference equation (2.6) ofY+ replacingX = V+(Z).

4. A bounded inverse of ∆ε on a bounded domain.

Givenδ, ε0 > 0 small enough, letS = S
(
− δ

2 ,
δ
2 , ε0

)
denote the sector

S = {ε ∈ C ; | arg ε| < δ, |ε| < ε0}.

As before,µ = sin δ
2 and Ω1 is described in Figure 2.2. ThenΩ1 has the following

property: For allx ∈ Ω1 there exists a pathγx : [0, 1] → Ω1 ∪ {−ir, ir,Kε}, joining
−ir andir and passing throughx, which is(µ, d)-ascending for alld ∈

[
− δ

2 ,
δ
2

]
in the

following sense: Ifs < t thenIm
(
(γx(t) − γx(s))e

−id
)
≥ µ|γx(t) − γx(s)|. In factγx

can be chosen piecewise polygonal.
AssumeK ≥ 1

2 andε0 ≤ 2r, and let

Ω̃ = Ω1(ε) +
[
− ε

2 ,
ε
2

]
=

{
x+ τ ; x ∈ Ω1(ε), − ε

2 ≤ τ ≤ ε
2

}
.

Let H0 denote the space of bounded holomorphic functions onΩ̃, endowed with the
supremum norm. Observe that, for allε ∈ S and allx ∈ Ω̃, we haveK2 |ε|µ ≤ |x| ≤ 2r.
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Given x0 ∈ cl(Ω̃), depending onε or not, letSx0
denote the integration operator

defined bySx0
f(x) =

∫ x

x0

f(t)dt.

We reproduce below some results of [3], in particular Theorem 2 and its extension for
ε complex described in Section 5 of [3]. These results can be gathered in the following
statement.

Proposition 4.1 . There exists a bounded linear operatorUε : H0 → H0, satisfying
‖Uε‖ ≤ 5

µ2 , such that, for allx0 ∈ cl(Ω̃), the operatorV0
ε = Sx0

−εUε is a right inverse

of ∆ε, i.e. we have∆εV
0
εf(x) = f(x) for all f ∈ H0 and allx ∈ Ω̃ ∩ (Ω̃− ε).

In the sequel we present an extension of this result for other normed spaces. Givena ∈ R,
letHa denote the same space asH0 of bounded holomorphic functions iñΩ, but endowed
with the norm‖f‖a := supx∈Ω̃ |x−af(x)| < +∞}. Observe that, ifa, b ∈ R, f ∈ Ha,
andg ∈ Hb, thenfg ∈ Ha+b and‖fg‖a+b ≤ ‖f‖a‖g‖b‖.

Observe also that, ifa < b andf ∈ Hb, thenf ∈ Ha and

‖f‖a ≤ r̃b−a‖f‖b, (4.1)

with r̃ = r + ε0
2 . As a consequence, because we can reduceε0 andr if necessary, in a

sumf + g with f ∈ Ha andg ∈ Hb, a < b, we will keep in mind thatg can be neglected,
roughly speaking.

Given a bounded linear operatorF : Ha → Hb, we denote by‖F‖ba its norm, i.e. the
best constant such that

‖Ff‖b ≤ ‖F‖ba‖f‖a for all f ∈ Ha. (4.2)

The main result of this section is the following.

Theorem 4.2 . For anya ∈ R \ {−1}, there exists a linear operatorVε : Ha → Ha+1

with the following properties.
(i) Vε is a right inverse of∆ε, i.e. we haveVεf(x+ε)−Vεf(x) = εf(x) for all f ∈ Ha

and allx ∈ Ω̃ ∩ (Ω̃− ε).
(ii) Vε is bounded uniformly with respect toε. More precisely,‖Vε‖a+1

a is bounded by
a constantL(a,K, r, δ) depending only ona, K, r, andδ.
(iii) In the casea < −1, we haveVεf(r) = 0 for all f ∈ Ha. In the casea > −1, we
haveVεf(Kε) = 0 for all f ∈ Ha.

Remark. In the casea = −1, one cannot expect a bound independent ofε for any
Vε : H−1 → H0. Indeed, this would give a bound for someSx0

at least on the interval
[Kε, r], i.e. a bound for an antiderivative of1/x independent ofε on this interval, which
is impossible.
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Idea of proof.Givena ∈ R\{−1} andh ∈ Ha, we have to solve equation∆εu = h, u ∈
Ha+1. In order to use Proposition 4.1, we make the change of unknownu(x) = xav(x).
This yields equation

∆εv = −cav + k, v ∈ H1 (4.3)

with

ca(x) =
(x+ ε)a − xa

ε(x+ ε)a
and k(x) = (x+ ε)−ah(x) ∈ H0.

We then consider the right inverseV0
ε of ∆ε given by Proposition 4.1, with a choice of

x0 depending upon whethera < −1 or a > −1. Precisely, ifa < −1, then we choose
V

0
ε = Sr − εUε, and ifa > −1, then we chooseV0

ε = SKε − εUε. Actually, Lemma
4.3 below says that, in both cases,S is bounded uniformly with respect toε. The tedious
and lengthy proof is omitted.

Lemma 4.3 .
(a) If a > −1, thenSKε : Ha → Ha+1 is bounded by a constant depending only ona
andδ.

(b) If a < −1, thenSr : Ha → Ha+1 is bounded by a constant depending only ona and
δ.

In the sequel,S alone will denote eitherSr or SKε. As a consequence, a solution of
equation

v = V
0
ε(k − cav) = (S− εUε)(k − cav)

will be a solution of (4.3). Passing on the left hand side the main part depending onv of
the right hand side, we now rewrite this latter equation in the form

v + S(cav) = εUε(cav) +V
0
εk.

We then construct a right inverseTa of the operatorid + Sca : v 7→ v + S(cav)
which is bounded in norm by a constant independent ofε. Now the operatorv 7→
v − Ta

(
εUε(cav)

)
from H1 to H1; is close to identity, hence has an inverse, denoted

by P. Lastly, a solution of (4.3) is given byv = PTεV
0
εk. The complete proofs will

appear in a forthcoming article.

5. Proof of Theorem 2.2.

We prove the statement only fory1. The symmetries imply the statement fory2 and
the proof fory3, y4 is analogous. Before the proof, we have to introduce some notation.
Sety+(x) = ηY+

(
x
ε

)
; in this manner,y+ is a solution of

∆εy+ =
α2

2y+
. (5.1)
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By Proposition 2.1, there exists a constantC > 0, depending only onδ, such that forK
large enough,η0 andr small enough, and allx ∈ Ω1,

|y+(x)−αx1/2| ≤ C
∣∣x−1/2ε log x

ε

∣∣ and |y′+(x)−α
2 x

−1/2| ≤ C
∣∣x−3/2ε(log x

ε )
2
∣∣.

(5.2)
In particular, the functionsx 7→ x−1/2y+(x) andx 7→ x1/2y′+(x) are bounded above and
below by constants independent ofε.
The notationσε stands for the shift operator given byσε(x) = x + ε. This operator will
be used in the following Leibniz-type rule:

∆ε(fg) = (∆εf)g + (f ◦ σε)(∆εg).

LetCj = Cj(ε) denote the constants

C1 = ‖y′+‖−1/2 and C2 = ‖1/(y′+ ◦ σε)‖1/2. (5.3)

Givena ∈ R \ {−1} andf ∈ Ha andr > 0, the closed ball of centerf and radiusr is
denoted byB′

a(f, r), andB is the closed ball

B = B′
1/2

(
y+,

∥∥y+

2

∥∥
1/2

)
⊂ H1/2, (5.4)

The functiong is defined by

g(0) = f ′(0) andg(y) = 1
y

(
f(y)− f(0)

)
for y 6= 0. (5.5)

Our last notations are

G = sup
y∈B′

+

‖g(y)‖0 and G′ = sup
y∈B′

+

‖g′(y)‖0, (5.6)

R = 2C1C2‖Vε‖3/21/2G and r0 =

(‖y+‖1/2
2R

)2

(5.7)

with the notation of (4.2), and

BR = B′
1(0, R) ⊂ H1. (5.8)

Reducing if needed the constantsε0 andr which defineS andΩ1, we assume that̃r =
r + ε0

2 ≤ r0. In this manner, for allu ∈ BR ⊂ H1, we haveu ∈ H1/2 and

‖u‖1/2 ≤ r̃1/2‖u‖1 ≤ r̃1/2R ≤ r
1/2
0 R =

∥∥y+

2

∥∥
1/2

,

hencey+ + u ∈ B.
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Let us now begin the proof. The change of unknowny1 = y+ + u yields∆εy+ +
∆εu = 1

y++uf(y+ + u). Using (5.1) and usingg given by (5.5), we obtain

∆εu =
α2

2(y+ + u)
− α2

2y+
+ g(y+ + u) = − −α2u

2(y+ + u)y+
+ g(y+ + u).

We rewrite this equation as follows

∆εu = −α2u

2y2+
+

α2u2

2(y+ + u)y2+
+ g(y+ + u). (5.9)

In a first time, we consider the following linear equation

∆εu = −α2u

2y2+
+ k. (5.10)

In order to solve (5.10), first observe that the derivativey′+ is a solution of the associated

homogeneous equation. Indeed, differentiating (5.1) yields∆εy
′
+ = −α2y′

+

2y2
+

. We then

use the method of variation of constant, i.e. the changeu = y′+v. Since

∆εu = (∆εy
′
+)v + (y′+ ◦ σε)∆εv = −α2y′+

2y2+
v + (y′+ ◦ σε)∆εv,

equation (5.10) yields forv the equation∆εv = k
y′

+
◦σε

. This latter equation can be solved

using the operatorVε given by Theorem 4.2.
We therefore consider the operatorTε : H0 → H1 given by

Tεk = y′+ ·Vε

( k

y′+ ◦ σε

)
.

To sum up, the operatorTε solves (5.10), i.e.u = Tεk is a solution of this equation.

Lemma 5.1 . The operatorTε : H0 → H1 is bounded uniformly with respect toε.
Precisely, we have

‖Tε‖10 ≤ C1C2‖Vε‖3/21/2,

with C1, C2 given by (5.3).

Proof. Let k ∈ H0; then k
y′

+
◦σε

∈ H1/2, henceVε

(
k

y′

+
◦σε

)
∈ H3/2, henceTεk ∈ H1,

and

‖Tεk‖1≤C1

∥∥∥Vε

( k

y′+ ◦ σε

)∥∥∥
3/2

≤C1‖Vε‖3/21/2

∥∥∥ k

y′+ ◦ σε

∥∥∥
1/2

≤C1C2‖Vε‖3/21/2 ‖k‖0.

Let us now return to equation (5.9). Recall thatBR is defined in (5.8).
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Lemma 5.2 . If r > 0 andε0 > 0 are small enough andK is large enough then, for all
ε ∈ ]0, ε0[, the map

Mε : BR → BR, u 7→ Tε

( α2u2

2(y+ + u)y2+
+ g(y+ + u)

)

is a contraction.

Proof. Letu ∈ BR andr, ε0 be such that̃r = r + ε0
2 ≤ r0. We havey+ + u ∈ B, hence

‖g(y+ + u)‖0 ≤ G. We also have α2u2

2(y++u)y2
+

∈ H1/2 and

∥∥∥ α2u2

2(y+ + u)y2+

∥∥∥
1/2

≤ α2
(
‖u‖1

)2 (‖ 1
y+

‖1/2
)3 ≤ α2R2

(
‖ 1
y+

‖1/2
)3
,

hence, by (4.1),

∥∥∥ α2u2

2(y+ + u)y2+

∥∥∥
0
≤

∥∥∥ α2u2

2(y+ + u)y2+

∥∥∥
1/2

r̃1/2 ≤ G if r̃ ≤ G2
(
α2R2

(
‖ 1
y+

‖1/2
)3)−2

.

SinceR = 2C1C2‖Vε‖3/21/2G ≥ ‖Tε‖10 G, this proves thatMε(u) ∈ BR. We prove
similarly thatMε is a contraction.

To conclude, the unique fixed pointu∗ of Mε in BR is a solution of (5.9). Moreover,
since we are in the casea = 1

2 > −1 of Theorem 4.2(iii), we haveu∗(Kε) = 0. Therefore
the functiony1 = y+ + u∗ satisfies the conditions of Theorem 2.2.

6. Fatou coordinates: Proof of Theorem 2.4.

We begin this section with some auxiliary results, which are useful not only for this
section but also for Section 7. The proofs are straightforward but the details are a bit
cumbersome.

To simplify notation, we do not indicate theε-dependence of most functions. At some
instances during the proofs, the domains must be reduced slightly, for example to allow a
derivative of a bounded function to still be bounded. For the sake of simplicity, we will
also not indicate this here.

Lemma 6.1 . For j = 1, 2, let yj : Dj → C be solutions of (2.1) on domainsDj not
containing 0. We suppose thatyj(x) = y0(x) + O(ε) uniformly for x ∈ Dj and that
D1 ∩ D2 is connected. Letb+, resp.b− ∈ R denote the maximum, resp. minimum, of
Imx onD1 ∩D2.

Then, for anyδ small enough, there exists anε-periodic functionp : S → C defined
on the stripS = {x ∈ C ; b−+δ < Imx < b+−δ} and satisfyingy2(x) = y1

(
x+p(x)

)

for all x ∈ D1 ∩D2 ∩ S.
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By Rouché’s theorem, it can be proved thaty1 is locally invertible; letv1 denote such a
local inverse. The functionp is then simply given byp(x) = v1(y2(x)) − x. As bothy1
andy2 are close toy0, we havep(x) = O(ε). Since both satisfy (2.1), theε-periodicity
of p follows.

Corollary 6.2 . With the notation of Lemma 6.1, letΩ ⊆ (D1∪D2)∩S be a horizontally
convex domain (i.e.x, x′ ∈ Ω andImx = Imx′ imply [x, x′] ⊂ Ω). Then the solution
y2 can be analytically continued onΩ by the formula of Lemma 6.1.

Of course,y2 is still a solution of (2.1) onΩ. By symmetry,y1 can also be analytically
continued onΩ by the formulay1(x) = y2

(
x+q(x)

)
with theε-periodic functionq(x) =

v2(y1(x))− x.

Corollary 6.3 . With the above notation, there exists a functions = s(ε) such that the
functionR : Ω → C, x 7→ y1(x)− y2

(
x+ s(ε)

)
is exponentially small. More precisely,

if d(x) = min(Imx− b− + δ, b+ − Imx− δ), then we haveR(x) = O
(
e−2πd(x)/ε

)
.

The functions is simply the constant termc0 in the Fourier expansion ofp

p(x) =
∑

ν∈Z

cνe
2πiνx/ε.

The functions is called theshift in Section 7. The next result is based on general results
of [3].

Corollary 6.4 . Let D1 ⊂ D2 be horizontally convex domains. Assume that there exists
a solutiony1 : D1 → C of (2.1) and that the solutiony0 = a−1

0 of (2.2) is defined onD2.
Let b+, resp.b− ∈ R denote the maximum, resp. minimum, ofImx onD1.

Then, for any compact subsetK of D2 and anyδ > 0, there existsε0 > 0 such that,
for all ε ∈ ]0, ε0], y1 can be analytically continued ontoK ∩ S, with

S = {x ∈ C ; b− + δ < Imx < b+ − δ}.

Actually, by Theorem 7 of [3], there exists a solutiony2 onK. Therefore, by Corollary 6.2
above,y1 can be continued onK ∩ S.

Proof of Theorem 2.4. A consequence of Proposition 2.3 and of the estimate forV+ in
Proposition 2.1 is that, ifγ > 0 arbitrarily small is fixed, then forr small enough andK
large enough, the functionv1 satisfies

∀u ∈ Q̃1, (1− γ)
∣∣ u
α

∣∣2 ≤ |v1(u)| ≤ (1 + γ)
∣∣ u
α

∣∣2. (6.1)

Now we consider other arguments forη (and thus ofε = η2). It can be shown that
Theorem 2.2 and Proposition 2.3 are also valid if the interval]0, ε] is replaced by a sector
with sufficiently small opening angle bisected by the positive real axis.
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Then let(Sl)
L
l=1 be a good covering of the origin (in theη-plane) by sectors of opening

at most2δ. Since eachη-sectorSl can be reduced to a sector bisected by the positive real
axis using a rotation, the previous results can be carried over toSl. As such a rotation
changesα to exp(2πi l/L)α, this leads to functionsvjl , j = 1, ..., 4 on domainsQj

l =
exp(2πi l/L)Qj, Qj defined above Theorem 2.2, that are analogous to the functions of
Proposition 2.3; especially they satisfy (2.11) and are inverse to solutionsyjl of (2.1).

Next we show that, on the intersectionsQj
l ∩Qj

l+1, we have

∣∣
(
vjl+1

)′
(z)−

(
vjl

)′
(z)

∣∣ ≤ K exp
(
− α

|η|2
)

(6.2)

whereas, on the intersectionsQj
l ∩Qj+1

l , we have

∣∣
(
vj+1
l

)′
(z)−

(
vjl

)′
(z, ε)

∣∣ ≤ K|η| exp
(
− α

∣∣ z
η

∣∣2) (6.3)

with some positive constantsK,α.
For the proof, fixj, l. Applying Corollary 6.3 toyjl andyjl+1, we obtain the existence

of some functions = s(ε) such thatyjl (x) − yjl+1

(
x + s(ε)

)
is O

(
e−α/|ε|) on the

intersection of their domains, with some constantα. This implies that(vjl+1 − vjl )(z) −
s(ε) is alsoO

(
e−α/|ε|) onQj

l ∩Qj
l+1. Now we obtain (6.2) by differentiation.

For the proof of (6.3), we have to refine Corollary 6.3 and its proof foryjl andyj+1
l .

The functionp defined byp(x) = (vj+1
l ◦ yjl )(x)− x is ε-periodic and bounded on some

strip one boundary of which passes at a distance ofK |ε| from the origin. Using the
Fourier series forp, its constant termc0 and estimates for the other coefficients, we prove
thatp(x)− c0(ε) = O

(
|ε| e−µ|x|/|ε|) with some positiveµ. The factorε comes from the

estimate forvjl near the origin and the corresponding estimates for Fourier coefficients.
Carrying this over tovj+1

l andvjl , we obtain that

(vj+1
l − vjl )(z)− c0(ε) = O

(
|ε| e−µ̃|z|2/|ε|

)

with some positive constant̃µ. Here some estimate analogous to (6.1) has been used.

Differentiation yields(vj+1
l − vjl )

′(z) = O
(
|z| e−µ̃|z|2/|ε|

)
. This finally gives (6.3) for

any positiveα < µ̃.
The estimates (6.2) and (6.3) are exactly the important hypotheses of the Main The-

orem 4.1 of the memoir [4]. We obtain composite asymptotic expansions (CAsEs) of
Gevrey order 1 for the functionswj

l = (vjl )
′. Especially, we obtainCAsEs forv′j = (vj0)

′:
3

v′j(z, ε) ∼ 1
2

∞∑

n=0

(
An(z) +Bj

n(
z
η )
)
ηn (6.4)

3. Starting here, we have to indicate the dependence of functions on ε again.
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where the functionsAn are holomorphic on some disk centered at the origin,Bj
n are

holomorphic onij−1Q+(2K, 2δ) and have consistent asymptotic expansions of Gevrey
order 12

Bj
n(Z) ∼ 1

2

∑

m≥1

DnmZ−m asZ → ∞.

We refer to the explanations below Theorem 2.4 for details.
Finally, we use the initial conditions forvj . In the casej = 1 (the others are analo-

gous), we have

v1(z, ε) = Kε+

∫ z

ηY+(K)

v′1(ζ, ε) dζ.

Now we separate the leading term of eachB1
n, i.e. we writeB1

n(Z) = Dn1Z
−1+C1

n(Z),
C1

n(Z) = O
(
Z−2

)
and integrate (6.4) term by term (for details see [4]). We usean(z) =∫ z

0

An(ζ) dζ, b1n(Z) =

∫ Z

∞
C1

n(u) du and we collect the terms independent ofz in Tj .

Thus we finally obtain the wantedCAsE for v1.
The statement onbj0 andbj0 follows from the factorη in (6.3): Theorem 4.1 of [4]

applies to the family1η (v
j
l )

′, j = 1, ..., 4, l = 1..., L. The leading terma0(z) can be
determined using the Schröder equation (7.4). The fact that the right hand side of the
outer expansion (2.14) is a formal solution of (7.4) implies that it contains only powers of
ε = η2.

7. Application.

We present in this section an informal study of equation (1.9), rewritten below for
convenience:

∆εy = 1+
1

y
. (7.1)

It is well known that, for fixedε > 0, the difference equation (7.1) has solutions
holomorphic on sectors with vertex at infinity. The dependence onε, however, is not clear.
We start our study with the subsequent proposition. We use the notation of the somewhat
similar study of the inner reduced equation of Section 3. In particularΩ+(K, δ) is defined
in (2.7) and shown on Figure 2.1.

Proposition 7.1 . Fix ε0 > 0. For all δ > 0 there existsK > 0 such that (7.1) has a
unique solutiony∞+ defined forε ∈ ]0, ε0], x ∈ Ω+(K, δ) holomorphic with respect tox
satisfying

y∞+ (x, ε) = x+ log x+ o(1) asx → ∞ in Ω+(K, δ). (7.2)

Similarly, there is a unique solutiony∞− on−Ω+(K, δ) satisfyingy∞− (x, ε) = x+log x+
o(1) asx → ∞ in −Ω+(K, δ). On−Ω+(K, δ) we use the branch of the logarithm given
by log x = log(−x) + πi; onΩ+(K, δ) we use the principal value.
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The proof is similar to that of Proposition 2.1 and is omitted.If K is sufficiently large,
then the solutionsy∞± have inverse functionsv∞± also called Fatou coordinates. These are
holomorphic functions of their first variable in some domain containing infinite sectors
±Ω+(K̃, δ̃) with someK̃ > K, δ̃ > δ. They satisfy

v∞± (z, ε) = z − log z + o(1) asz → ∞ (7.3)

and the functional equation

v
(
z + ε

(
1 + 1

z

))
= v(z) + ε. (7.4)

The formulav∞− ◦ y∞+ − id defines two functionsp∞± on the sectorI+ introduced
above (2.10), respectively onI− = −I+. They are bounded andε-periodic and hence
there exist Fourier expansions

p∞± (x, ε) =
∞∑

n=0

c∞n± e2πinx/ε (7.5)

with functionsc∞n± : ]0, ε0] → C which we callÉcalle-Voronin invariants of (7.1) at∞.
The choice of the branches of the logarithms in Proposition 7.1 implies thatc∞0+ = 0 and
c∞0− = −2πi.

We want to study the relation between these invariants of (7.1) at infinity and its
Écalle-Voronin invariants near 0 introduced above Corollary 2.5 which will be denoted
by c0jn(ε).

To this purpose, we first prove thatv∞+ can be continued up to the domaiñQ1 of our
local solutionv∗1 given by Proposition 2.3 and by (2.16). The outer reduced equation of
(7.1) isy′ = 1 + 1

y , whose solutions are implicitely given by

y − log(1 + y) = x+ C. (7.6)

Then Corollary 6.4 shows thaty∞+ can be continued along the level linesa0(y) = y −
log(1 + y) = t + Ci, t ∈ [t1, t2], for any t1, t2, C ∈ R, t1 < t2, C 6= 0. As a
consequence,v∞+ can be continued analytically onto any compact set included in the dark
region displayed on Figure 7.1 top right, wherea0 is locally invertible. In particularv∞+
can be continued on the set

{
z ∈ Q̃1 ; |z| > r1

}
for an arbitraryr1 ∈ ]0, r[. We then

apply Lemma 6.1 toy1 andy∞+ . This allows to continuev∞+ on Q̃1 in its whole. By
Corollary 6.3, there existss = s(ε) = O(ε) such that the functionv∞+ − v∗1 − s(ε) is

exponentially small in any compact subset ofQ̃1. We call this functions theshift in the
sequel. We will now compare some asymptotic expansions ofv∗1 andv∞+ .

Therefore, we first indicate how to prove thatv∞+ does have an asymptotic expansion.
For this, we consider all arguments ofε. Using (7.5), we prove that(v∞+ )′ and(v∞− )′ are
exponentially close one to each other onI+ andI−, and then we apply Ramis-Sibuya’s
theorem (classical, see for example [4], Lemma 4.4).
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Figure 7.1. In dark, the level lines y − log(1 + y) = (t + C)eiθ , t ∈ R, in the regions Dθ ,
sucessively for θ = −

π
2
+ 0.1,−π

4
, 0, π

4
, π
2
− 0.2, π

2
.

In this manner, we obtain that(v∞+ )′ and(v∞− )′ have a common asymptotic expansion
ŵ(z, ε) =

∑
n≥0 wn(z)ε

n which is of Gevrey order 1, uniformly forz ∈ Q+(2K, 2δ),
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resp. z ∈ Q−(2K, 2δ) = iQ+(2K, 2δ). By integration, we finally obtain the desired
expansion forv∞+ .

We can precisely describêw: Using the Schröder equation (7.4), expanding its left
hand side by the Taylor formula, and cancelling the termsv(z), we obtain forŵ the
equation ∑

n≥0

εn

(n+ 1)!

(
1 + 1

z

)n
ŵ(n)(z, ε) = 1− 1

1 + z
,

from whichwn can be determined recursively. Since, for any rational functionf , (1 +
1
z

)n
f (n)(z) has the same valuation in1 + z as f , we obtain that(1 + z)wn(z) is a

polynomial in 1
z . More precisely, we obtain with some constantswnν

wn(z) =
1

1 + z

2n−1∑

ν=n

wnνz
−ν . (7.7)

Using a partial fraction expansion and integrating, we obtain forv∞+ an expansion of the
form

v∞+ (z, ε) ∼1 z − q(ε) log(1 + z) +
(
q(ε)− 1

)
log z +

∑

n≥1

vn(z)ε
n + C(ε) (7.8)

whereC(ε), q(ε) are formal series inε, andvn is a polynomial of degree at most2n− 2

in 1
z without constant term, i.e.vn(z) =

2n−2∑

ν=1

vnνz
−ν .

The estimate (7.3) yieldsC = 0. The Schröder equation permits also to determineq
explicitely. Actually, the right hand side, denoted byv̂, of (7.8) can be rewritten in the
form

v̂(z, ε) = −q(ε) log(1 + z) +
∑

n≥0

hn(z)ε
n,

where the functionshn are holomorphic in a neighborhood ofz = −1. Sincêv is a formal
solution of (7.4), we obtain

−q(ε) log
(
1 + ε

z

)
= ε+

∑

n≥0

(
hn(z)− hn

(
z + ε

(
1 + 1

z

)) )
εn.

For the valuez = −1, this gives

q(ε) =
−ε

log(1− ε)
. (7.9)

We will use later onq(ε) = 1− ε
2+O(ε2). We want to compare the former expansion (7.8)

with the outer expansion ofv∗1 . In our example, the outer expansion (2.14) rewritten for
v∗1 = v1 − T1 becomes

v∗1(z, η
2) ∼ 1

2
S(η) log

(
z√
2 η

)
+

∑

n≥0

dn(z)η
n (7.10)
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with dn(z) = an(z) +

n−2∑

m=1

Bn−m,mz−m, an holomorphic in a neighborhood of0.

Sincean(0) = 0 by Theorem 2.4,dn has no constant term. Now a comparison of (7.8)
and (7.10) gives (withε = η2)

S(η) = q(ε)− 1, dn = av + vn, and an = αn log(1 + z)

with some constantαn. Concerning the shifts, we obtain

s(ε) = S(η) log(
√
2 η) +O

(
e−c/ε

)
= 1

2

(
q(ε)− 1

)
log(2ε) +O

(
e−c/ε

)
.

In the same manner, we can continuev∞− ontoQ̃2 and compare the expansions ofv∞− and
of the local solutionv∗2 . Regarding the Écalle-Voronin invariantsc∞n+, we finally obtain in
a similar way as for (2.17) firstp∞+ (x, ε) = p1(x− s(ε), ε) wherep1 = v∗2 ◦ (v∗1)−1 − id

and thus
c∞n+(ε) = c01n(ε) exp

(
− nπi q(ε)−1

ε log(2ε)
)
.

In this manner, we obtain an asymptotic expansion of Gevrey order 1 forc∞n+:

c∞n+(ε) exp
(
nπi q(ε)−1

ε log(2ε)
)
∼ 1

2

∑

n≥2

a1nkε
k/2. (7.11)

A careful analysis shows that the former discussion can be extended to all arguments ofε,
exceptarg ε = π

2 . In other words, for anyδ > 0, the expansion (7.11) is valid uniformly
for ε ∈ S

(
− 3π

2 + δ, π
2 − δ, ε0

)
.

As shows the picture on bottom right of Figure 7.1, which corresponds toarg ε = π
2 ,

something happens for this value: There is a loop surrounding−1 that is parametrized
by y − log(1 + y) = −i t, 0 < t < 2π real, wherey ∼ (2t)1/2e3π/4 for small t. This
makes it impossible to continuev∞+ andv∞− analytically to acommonset of points at a
distanceO(η) from the origin on the ‘left hand’ side of the origin (on the right hand side,
there is no problem – this correponds toarg ε = −π

2 ). Therefore we need an intermediate
solutionvα of Schröder’s equation (7.4) defined in a neighborhood of the above loop.

In order to construct such a solution, recall that the solutions of the outer reduced
equation of (7.1) are given implicitly by (7.6). We are interested in the solutiony0 that
parametrizes the above loop forx ∈ ] − 2πi, 0[. It satisfiesy0(x) − log

(
1 + y0(x)

)
= x

andy0(x) ∼ −
√
2x for smallx, arg x close to−π

2 . It can be continued analytically to
some domain containing the open segment]−2πi, 0[, for example some open rhombusG
with vertices0,−β− iπ,−2πi, β− iπ. By Theorem 7 of [3], for every compact subsetK
of G there exists a holomorphic solutionyα of (7.1) defined in some neighborhood ofK

satisfyingyα(x) = y0(x) + O(ε). We chooseK as a rhombus with vertices−δi,−β̃ −
πi, (δ − 2π)i, β̃ − iπ, δ > 0, 0 < β̃ < β.

For every smallδ > 0, there is a (also small)̃β > 0 such thaty0 is injective onK. As
yα is a holomorphic function close toy0, this is also true foryα if ε is sufficiently small.
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Thusyα has an inverse functionvα that must be a solution of (7.4) and is close toa0 given
by a0(z) = z − log(1 + z) onyα(K) =: M . Observe thatM contains no reals close to
0 because of the injectivity. For convenience, letM± = {z ∈ M ; ±Im z > 0}. Observe
that herelog(1 + z) is close to0 if z ∈ M+ is small, whereas it is close to2πi if z ∈ M−
is small.

Nearz = 0, four solutions of (7.4) can be constructed as indicated in Section 6, i.e.
analogously to Proposition 2.3. Letvj : Qj → C, j = 1, ..., 4, denote these solutions
with Qj = e(2j−1)πi/4Q, whereQ is the image ofΩ(M, r, γ) (with certainM, r, γ > 0)
by x 7→ x1/2 introduced above Theorem 2.2. The domainQ is shown on Figure 2.2 (it
has the nameQ1 there). Sincearg ε = π

2 , the domainsQ1, . . . , Q4 are now rotated by an
angle ofπ4 compared to the casearg ε = 0 of Proposition 2.3.

Analogously to the beginning of this section,p∞+ = v∞− ◦ y∞+ − id can be defined in
some sectorI+ =

{
x ∈ C ; |arg(−x− L)| < π

2 − δ
}

, whereL, δ > 0. It can be shown
by analytic continuation thatL > 0 can be chosen small. Thenp∞+ can be analytically
continued by periodicity fromI+ to the half planeHL = {x ∈ C ; Rex < −L} with
small positiveL. If L is small enough, thenHL has a nonempty intersection with the
above rhombusK. OnK ∩ I+, we can writev∞− ◦ y∞+ = (v∞− ◦ yα) ◦ (vα ◦ y∞+ ) =
(id + pα−) ◦ (id + pα+) with someε-periodic functionspα±.

Now these functionspα± can be studied as before by continuingvα, v
∞
± analytically.

If δ is small enough, thenM+ has a nonempty intersection withQ2, whereasM− has
nonempty intersection withQ3. We can continuevα analytically fromM+ to all of Q2,
if r is small enough. In order to still have a well defined function, we restrict this con-
tinuation to the intersectionQ+

2 = {z ∈ Q2 ; Im z > 0} of Q2 with the upper half
plane. Similarly, we analytically continuevα from M− to all of Q−

3 . As beforev∞+ can
be continued analytically toQ1 andv∞− can be continued analytically toQ4.

There exist shiftssα±(ε) such thatvα(z) − v∗2(z) − sα+(ε), resp.vα(z) − v∗3(z) −
sα−(ε) are exponentially small onQ+

2 , resp.Q−
3 . We have shown above thatv∞+ (z) −

v∗1(z) − s(ε) is exponentially small fors(ε) = 1
2

(
q(ε) − 1

)
log(2ε) = − ε

4 log(2ε)
(
1 +

o(1)
)
. Analogouslyv∞− (z)− v∗4(z)− s̃(ε) turns out to be exponentially small fors̃(ε) =

1
2

(
q(ε) − 1

)
log(2ε) − 2πi q(ε). This yieldspα−(x, ε) = p3

(
x − sα−(ε), ε

)
+ s̃(ε) −

sα−(ε) + O
(
e−c/|ε|) andpα+(x, ε) = p1

(
x − s(ε), ε

)
− s(ε) + sα+(ε) + O

(
e−c/|ε|)

wherep1, p3 are the Écalle-Voronin invariants of (7.1) andc is some positive constant.
Because ofid + p∞+ = (id + pα−) ◦ (id + pα+), we have altogether4

p∞+ (x) = p1(x− s) + p3
(
x− s+ p1(x − s) + sα+ − sα−

)
+ sα+ − sα− + s̃− s.

As we know thatpj(x) are exponentially close to the sums of the positive powers of
e2πix/ε, i.e. to

∑
n≥0 cjne

2πinx/ε, j = 1, 3, we can express the Fourier coefficients of
p∞+ by those ofp1, p3 except for exponentially small terms. Especially we find

c∞1+(ε) = e−2πi s(ε)/ε
(
c1,1(ε) + c3,1(ε) e

2πi (c1,0+sα+−sα−)(ε)/ε
)
+O

(
e−c/|ε|).

4. We omit the dependence upon ε here.
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The facts thatv∗1 and v∗2 have the same outer expansion (2.14) and that they are Gevrey,
imply thatc1,0(ε) is exponentially small and it remains to determinesα+ − sα−. This is
done again using a Gevrey expansion ofvα and the outer expansions ofv∗2 , v

∗
3 . Because of

the different determinations oflog(1+z) onM±, we find that(sα+−sα−)(ε) = 2πi q(ε)
and thus that altogether

c∞1+(ε) = e−πi (q(ε)−1) log(2ε)/ε
(
c1,1(ε) + c3,1(ε) e

−4π2 q(ε)/ε
)
+O(e−c/|ε|), (7.12)

wherecj,1, j = 1, 3 are the Écalle-Voronin invariants of (7.1) at the origin which, accord-
ing to Proposition 2.5, have Gevrey-1

2 asymptotic expansions

cj,1(ε) ∼ 1
2

∑

n≥2

aj1nη
n, j = 1, 3,

wherea112 = C+
1 , a312 = e−π2

C+
1 andC+

1 is the first Écalle-Voronin invariant for
the inner reduced equation (2.6), cf (2.10). It can be shown numerically that it does not
vanish.

Since(q(ε)− 1)/ε is bounded, we see thatc∞1+ vanishes exponentially close to values
of ε where the sum of the two terms in the parenthesis vanishes. Our asymptotic expres-
sion implies that there is a sequence of such(εk)k∈N and that (except for some integer
shift) they satisfy

εk
−1 ∼1

1
2πi

(
k + 1

2

)
+ 1

4 +
∑

l≥1

βlk
−l/2

with certain coefficientsβl.
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