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ABSTRACT. Difference equations in the complex domain of the form y(z+¢) —y(z) = ef(y(z))/y(z)
are considered. The step size € > 0 is a small parameter, and the equation has a singularity at y = 0.
Solutions near the singularity are described using composite asymptotic expansions. More precisely,
it is shown that the derivative v’ of the inverse function v of a solution (the so-called Fatou coordinate)
admits a Gevrey asymptotic expansion in powers of the square root of e, denoted by 7, involving
functions of y and of Y = y/n. This also yields Gevrey asymptotic expansions of the so-called Ecalle-
Voronin invariants of the equation which are functions of €. An application coming from the theory of
complex iteration is presented.

RESUME. On considére des équations aux différences dans le plan complexe de la forme y(z +
e) —y(z) = ef(y(z))/y(x). Le pas de discrétisation e > 0 est un petit paramétre, et I'équation a une
singularité en y = 0. On décrit les solutions prés de la singularité en utilisant des développements
asymptotiques combinés. Plus précisément, on montre que la dérivée v’ de la fonction réciproque
(appelée coordonnée de Fatou) v d’une solution admet un développement asymptotique Gevrey en
puissances de la racine carrée de ¢, notée 7, et faisant intervenir des fonctions de y etde Y = y/n.
On obtient également des développements asymptotiques Gevrey des invariants d’Ecalle-Voronin de
I’équation, qui sont des fonctions de . Une application venant de la théorie de I'itération complexe est
présentée.
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1. Introduction.

The main purpose of this article is to assemble two theories, which match each other
particularly well, in order to obtain new results on solutions of a difference equation with
singularity. The first theorydifference equations with small step size in the complex
domain is developed in [3]. It concerns equations of the form

Asy = f(Ia y,E) (11)

wheref : Q C C x CV x [0,¢0] — C is holomorphic inz andy and continuous ia,
¢ > 0 is a small parameter, anh. is the difference operator given by

Acy(z) = t(y(z +¢) —y(x)). (1.2)

The first main result of [3] is that, on horizontally convex domains, there exist solutions
of (1.1) close to any solution of the limiting differential equation

yl = f(xvya O) (13)

A domain ofC is calledhorizontally convexf, for all its pointsz, 2’ with Im 2 = Im 2/,
the segmenfz, 2’| is contained in it. More precisely, givap : D — CV a solution
of (1.2) holomorphic on some-domainD such tha{x, yo(z),e) € Q forallz € D and
all ¢ € [0,¢0], given an initial conditionzo, d(¢)), d : [0,e0] — C¥ continuous with
d(0) = yo(x0), and given a horizontally convex domalih compactly contained i, it
is shown in [3] that there exist €]0, £o] and a family of solutiong : Dx ]0,&1] — CV
of (1.1), continuous, holomorphic in, such thaty(xo, ) = d(e) andy(z,e) = yo(z) +
O(e)onH.

A second result of [3] is that two solutions of (1.1) which coincide at some point
of D are exponentially close one to each other on the domainThe last main result
is that, providedf is holomorphic ine in a complex neighborhood @f andd(¢) has
an asymptotic expansiaf(e) ~ > ., d,c" ase — 0, the above solutiong have an
asymptotic expansiol_, ., yn(z)e™ ase — 0 uniformly on D, where the coefficients
yn are holomorphic functions o and can be determined recursively as solutions of
certain initial value problems of the form

y’:L = g_g(xayO(x)vo)yn+Fn(xay0(x)a"-73/71—1(1'))’ yn(ffo) =d,. (14)

The second theory in the title of the present artictanposite asymptotic expansions
is developed in [4]. It deals with asymptotic expansions of functions of two variables
andn, using at the same time functions:ofind functions of the quouerﬂ

At the origin this theory was developed to study singularly perturbed differential equa-
tions of the form

ey = f(x)y +eP(z,y,¢) (1.5)
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near a turning point. Here @rning pointis a zero of the functiorf. Without loss, we
assume that this turning point is at the origia- 0. Let the integep > 2 be such that the
order of the zero of atz = 0isp — 1, and lety = £'/?. One of the main results of [4]
is that there exists a solutignof (1.5) defined foe in a sector

S(—=0,0,e0) ={e€C; |e]| <egpand — 6§ < arge < d}

and forz in a so-calledquasi-secto¥ («, 3, r, u|n|), p < 0 (hence depending dmy| =
|e|'/P), where

V(e,B,mp) ={z€C; —p < |z| <randa < argz < 8}

with p < 0, and that this solution has@mposite asymptotic expansi@nse for short)
in the following sense. There exist a diBg0, r), an infinite quasi-sectdr = V(a —
3, B+9, 00, 1), and holomorphic functions, : D(0,r) — Candg,, : V — C, g,, having
an asymptotic expansion without constant term at infinity, such that

y(z,€) ~1 Z (an(x) +9n(%))77"- (1.6)

n>0

The symbol~ means that a partial sum up to ord¥rgives an approximation of the
solution to order™, which is uniform in the whole domaia € S(—4,0,¢0), = €

Ve, 8,7, p|n|). Therefore, formula (1.6) provides an approximation of the solution at
the same time near the turning point and away from it, i.e. at distances ofpfoEn

the turning point as well as at distances of ortlefThe extra symbol means that we

also have estimates of Gevrey type for the remainders; some details can be found below
Theorem 2.4.

Inthe present article, we use this theoryefes in order to describe solutions of a dif-
ference equation with singularity. For the sake of simplicity, we considew#onomous
difference equation, i.e. with a right hand side depending only. &/e assume that the
equation has a singularity. Fixing this singularity0atve assume that = 0 is a simple
pole of the right hand side. In other words, we consider a difference equation of the form

Ay = _f(y)a a.7)
Y

wheref : U C C — C is holomorphic in a domai®y containing0, f(0) # 0, and our
purpose is to study the behavior of solutions of (1.7) hawnmal/lvalues. Observe that
the general theory described above applies on domains where the values of a solution are
bounded away frond, but this theory no longer applies near points where the solution
takes small values.

A new feature of this type of equations is that the limiting equations are of two dif-
ferent natures: Near the origin, tireer reduced equatid@.6) (see Section 2 below) is
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a difference equation, whereas far from the origin theer reduced equatid@.2) is a
differential equation. A natural question is whether an approximation of solutions of (1.7)
exists, using solutions of the outer reduced equation (2.2} fofrorder1 and solutions
of the inner reduced equation (2.6) foof orders, and which would be uniform, i.e. also
for all intermediater small with respect td and large with respect ta

OurcAses seem to be well adapted for this situation. It turns out, however, that we do
not obtaincAses for solutions of (1.7) but, except for a logarithmic term, for their inverse
functions, called~atou coordinatessiven a solutiory of (1.7), letv = v(z, ¢) denote the
inverse function of; with respect to the variable i.e. z = y(z,¢) < = = v(z,¢). Then
v is a solution of the Schroéder equation

v(z+ L&) = v(z) +e. (1.8)

An indication why things are much simpler in Fatou coordinates than for the solutions
themselves is the following. In the case of an autonomous equation of the form (1.7)
the existence of one solutignimplies the existence of a family of solutions: yfis a
solution of (1.7) and- € C is fixed, then the shifted functiop. : « — y(z + 7) is also

a solution (one could even chooseaperiodic function forr). If y has an asymptotic
expansion and depends om, then this expansion changes considerably under such a
shift. If v = v(z, €) is the inverse function af, then the inverse of the shifted solutign

is simplyv, : z — v(z,e) — 7; this changes the asymptotics not essentially.

In order to obtaircAses for the Fatou coordinates, we first construct solutions of (1.7),
denotedy, . .., y4, on some domainQ; which will be described in the sequel. Then we
prove that they are invertible; the inverse functions= y;l,j =1,...,4, are solutions
of the Schréder equation (1.8) defined on some domains containing quasi-sectors which
cover an annulugz € C; —uln| < |z| < r}, with somey < 0 < r with np = /2. It
turns out that the functlon§+1 ov; ! are of the fornid +p;, with p; periodic of penock
As a consequence we obtain exponentlally small estimates for the differénges v’
of the derivatives. Using a Ramis-Sibuya-type theorem we then obtaixsa for the
derivativev’ of the Fatou coordinate. By integration, this yieldssse for v, except for a
logarithmic term. Using some inversion OAsES, it might be possible to deducecase
for the solutiony itself, but thiscAase would contain powers ofog = of any order. To
sum up, an approximation of the solutigrwould be much more complicated than the
approximation of its inverse.

We are particularly interested in the so-calecklle-Voronin invariant2, 7] of equa-
tion (1.7). These invariants are the Fourier coefficients of the periodic fungijori$iey
play an important role in the theory of analytic equivalence of diffeomorphisms. The
CAsEs for they; yield also Gevrey asymptotic expansions for these invariants.

Application. In the last Section 7 we use our results in the special cagef= 1+ v,
i.e. the difference equation

Agy=1+21 (1.9)
Y
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This equation has also solutions on some infinite sectors;ehleas also Ecalle-Voronin
invariants at infinity. The purpose of Section 7 is to compare these invariants with the
Ecalle-Voronin invariants at the origin. This study shows in particular that the first Ecalle-
Voronin invariant at infinity, when extended to all arguments,dias an infinite number

of zeroes, which are asymptotically in an arithmetical sequence close to the imaginary
axis. Section 7 only sketches some ideas of proof; the complete proofs will appear in a
future article.

Equation (7.1) appears in [1] in the form of the iteration of the diffeomorpHism
Z — Z + 1+ b/Z tangent to the identity af = oo, i.e. withb = % andZ = Zinour
notation. The authors prove that the first Ecalle-Voronin invariant, denotég,bb), an
entire function ofb, has super-exponential growth @s$ tends to infinity which implies
that it has infinitely many zeros. Because of different normalizations, the link between
their invariant and ours contains an additional textp (27i blogb). This explains the
different growth of the two functions and this could also be used to prove the super-
exponential growth of,./,(b).

Beyond this last result, our motivation to study equation (2.1) was to illustrate our
theory ofcAsEs in a context where the reduced outer and inner equations are of different
kinds, here a differential outer equation and a difference inner equation. We believe that
our CAses can be useful for other types of functional equations, e.g. partial differential
equations or other functional equations where small (or large) parameters occur.

2. Statements of the main results.

We consider the difference equation with small step size (1.7) rewritten below for
convenience

z%yzéf@% 2.1)

wheref : U C C — C is holomorphic in a domaiy containing0, f(0) = %2 # 0,
e > 0 is a small parameter, andl, is the difference operator given by (1.2). Equation
(2.1) has two limiting equations. The first one is the so-cadletér reduced equation

yzéﬂm. 2.2)

obtained wher tends to). One easily checks that equation (2.2) has a unique solution
10, defined in a neighborhood 6f on the two-sheet Riemann surfateof the square
root, such that(xz) ~ ay/x asx — 0 onX. This solution is given implicitely by

x = ao(yo(x)), with

Yotdt
ao(y) = O (2.3)
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Our purpose is to study the behavior of solutions taking swadiles near: = 0. A
firstidea is to perform the change of variables: ¢ X, y = nY with n = /¢, i.e.

Y(X) = ;y(eX). (2.4)
This transforms (2.1) into the equation
1
AY = ?f(ﬁy)7 (2.5)

whose limit, ag) — 0, is the second limiting equation, thener reduced equation

2

«
1) = . .
Y(X+1) Y(X)+2Y(X) (2.6)
Givené$ > 0 small enough an& > 0 large enough, consider the sector
O (K, 0) ={X eC; |arg(X — K)| <7 — 4}, (2.7)

and letQ, (K, &) denote the image &, (K, §) by the functionX — aX'/2, see Figure
2.1 for a sketch. Herwg is the principal determination of the logarithm on (K, 0),
andX* = exp(alog X).

Figure 2.1. The sector 2, (K, §) and itsimage Q- (K, §) by X — aX'/? inthe case o > 0.

Concerning the inner reduced equation (2.6), we have the following result.

Proposition 2.1 . For all > 0 there existd< > 0 such that (2.6) has a unique solution
Y, defined o), = Q. (K, ¢) satisfying

Vi(X)=aX"?+ 22X 2log X + o(X~?), X — o0, X €.
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If K is large enough, then the functidfy has an inverse functiovi, : Q. (2K,25) —
04 (K, d) which satisfies

Vi(2) = (£)% = Llog (£) + 0(1),Q1 (2K, 26) 3 Z — (2.8)

[e3%

and the functional equation
v (Z n g—z) —V(Z2)+1 (2.9)

whenevel, andZ + % areinQ4(2K,29).

Remarks. 1. This kind of statement is very classical. For the sake of completeness,
heowever, a detailed proof is given in Section 3.

2. More precisely one has
YVi(X)=aX"?+2X 2 log X + O(X*?(log X)?), Q4 5 X — o0
and the derivative oY, satisfies
YVI(X)=9$X"2+0(X % ?(log X)?), Q4 > X — c0.

3. The functionV,. is a so-calledratou coordinatef (2.6).

By symmetry of (2.6), it follows that-Y, is the only solutionY” of (2.6) onQ*
satisfyingY (X) = —aX/2 — 2X~1/2log X + o(X~1/2). Its inverse is the function
Z — Vi (—Z) defined on-Q 1 (2K, 20); it also satisfies (2.9).

For K large enough, one proves in a similar way that there exists a unique function
Y_ definedorf)_ = {X € C; |arg(—X — K)| < w — ¢} satisfying

Vo(X)=aX?+ 2X ?log X + o(X'/?)asX — coin Q_,

and satisfying (2.6) for alX € Q_ such thatX + 1 € Q_. Herelog X is the analytic
continuation of the principal branch ona_ in the mathematically positive direction, i.e.
log X = log(—X)+mi. In the same way, we continue the roots analytically\oy'/? =
+i(—X)*/2. For K large enough, we have again an inveiée of Y_ defined on

Q_(2K,26) = i Q4 (2K, 26) that satisfies (2.9) and_(Z) = (£)° — L1og (£) + o(1).
In order to prove these statements, the proof in Section 2 has to be modified essentially
only at one point: The operatdr in (3.3) has to be defined using summation over all
X — n, n positive integer.
As another solution of (2.6), we consideY_. It is also defined of2_ and sat-
isfies —Y_ (X) = —aX/2 — 2X~1/2log X + o(X~1/?). Its inverse is the function
Z — V_(—Z) defined on-Q_ (2K, 29); it also satisfies (2.9). In this manner, we have
obtained four solutions of (2.6) and four solutions of (2.9) of particular interest.
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If K is large enough, the functioh, = V_ o Y, — id is defined (at least) on the
sector
I, ={X €C; |arg(X —iK) - 3| < 3 —36}.

Using (2.9), it is easily shown thdt, is 1-periodic. The choice of the branches of the
logarithms in Proposition 2.1 and the estimate (2.8) ensure®hdX) — 0 asZ;, >
X — oo. Therefore the Fourier series ®f. must have the following form

O (X) =D CFe?™nX for X €Iy, (2.10)
n=1
whereC; € C are constants.

Similarly, we treat the composition of the inverseof with —Y ~. The function
®_ =V, o(—Y_)—id is defined (at least) on the sector

I_={XeC,;

arg(X+iK)+g <g—35}.

It is also 1-periodic, but only bounded s > X — oo because of the choice of the
branches of the logarithms. Its Fourier series is thus

O (X)=> Cre X forX eI

n=0

HereC; = Z'; the other constants,;, n > 1 are closely related t6;, but the relation
is not interesting in our work. The other analogous compositions of the invers& of
with =Y+, respectively that of the inverse &t with —Y —, are identical tob* + id
with the above functiong* and yield no new constants.

The constant§’F are the so-calleécalle-Voronin invariantf2, 7] of equation (2.6).

Let us return to our original equation (2.1). We fix r,§ > 0. Letz(¢) € [—r, ir] be
such thatwrg(z(e) — Ke) = m — d and letQ; = Q(K,r, d, <) denote the interior of the
(non convex) hexagon with verticése, z(¢), ir, r, —ir, Z(¢) in this order; see Figure 2.2.
LetQy =Qy = -1 = {CC eC , —T € Ql} andﬂg = Q.

We will also use the image &2, by z — az'/2, denoted byQ,, and the domains
Q; =71Q1, j = 2, 3,4, obtained by rotations.

Our first main result is as follows; let us recall that= /2.

Theorem 2.2 . With the above notation, for al > 0 there existK, R, e, > 0 with
Keo < r and four solutiong , y2, ys, ya 0f (2.1), defined foe €0, ¢¢) andx € €}, such
thatyl (KE,E) = _y3(K‘€75) = 77Y+(K)r y2(—K576) = _y4(_K‘€76) = 77Y—(_K):
and

Ve €]0,e0] Vo € O, |yi(x,e) — Yy (2)] < Rlz| and |ys(z,e) + nYy (2)] < Rlz],

Ve €]0,e0) Vo € =, |y2(w,e) — nY_(%)| < Rlz| and |ya(z,€) + nY_(£)| < Rlz|.
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Figure 2.2. Left: The domain ©; of existence of the solutions y1,ys of (2.1). Right: The
image Q1 of Q; by z — 2'/? (o = 1 here).

The proof is in Section 5. Since the domains are no longer infinite, we cannot have

unigueness of the solutions anymore, but they are unique up to exponentially small terms.
We then prove the existence of the inverse functigns yj_l analogous to the above

Fatou coordinates. Precisely, fé; = Q(2K, 55 20, a) be defined a$);, with the con-

stants2K,, 5, and24 instead ofK, r,6. We assume < ;5. Let@l denote the image

of Q; by the functionX — aX!/2. As before, we also usﬁj = (=1)"1Q; and

Qj = i71Qy, j = 2,3,4. OnQ;, we use the principal value obg( = ) on the other

@J, we uselog(m]) = log(a—nzl 7y + 721m. Thus the branches of the logarithms are

the same on the intersecti(ﬁ}; N @jﬂ if 7 =1,2,3, butnoton @4 N @1.

Proposition 2.3 . With the above notation, if € {1,2,3,4}, » > 0 is small enough
andK > 0 is large enough then, for alle Q;, the equationy;(z,e) = z has a unique
solutionz € 2, denoted by: = v;(z,¢). This gives a holomorphic functiar; defined

forz € @j, e €]0, g9], the values of which are ;. It is a solution of
v(z—i—a@) =uv(z) +e. (2.11)
Moreover, we have

(MY (K),n*) = K =
v(—nYy (K),n?) = n, and vy(—nY_(—K),n*) = —Kn?,
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where K is the constant of Theorem 2.2, and there eXisty, > 0 such that for all
FAS] Qhﬁ77€]07nd

vi(zn?) =PV (%) < Rz, vs(z,m?) = PVi(=2)| < R|2[°,

[vae,m?) = V- (2)

The proof is analogous to that of Proposition 2.1; it will be omitted here.

For fixedz # 0 in the appropriate domains, the limit$(z, 0) = lim._,o v;(z,¢) are
solutions ofv’(z)@ = 1; this is obtained easily from (2.11) in the limit— 0. The
approximation conditions of the above proposition imply th&t, 0) = ao(z), whereag
is givenin (2.3).

The approximation conditions of the above proposition also imply that, for fixed
sufficiently large such thatZ is in the appropriate domaitim, o n~2v; (nZ, n?) is one
of the four functiond/, (+2).

Thus we haveouterapproximations (forz fixed) andinnerapproximations (forz
fixed) forv;. The most important result of our article refines these statements, not only
to the existence of full outer and inner expansions, but to full uniform expansions in the
whole domaingy;. This is achieved using so-calledmposite asymptotic expansions
(cases). We refer to [4] for a detailed discussion of this notion and its properties. Never-
theless, we will give explanations below the theorem. In the present article, we adopt the
notationt?, of [4] in case of two indices, with one index in superscript; we hope this will
not bring confusion to the reader with the usual powgrsi’—!, etc.

. and ‘v4(z,772) —nPV_ (=2

Theorem 2.4 . The Fatou coordinateg of (2.1) have composite asymptotic expansions
(cAses) of Gevrey ordes :

v(.0%) 1 ao(z) + S(n) o (55) S+ Y (an() +0(2)) 0 (212)

n>2

as0 < n — 0 uniformly for z € Q;, wherea,, are analytic onz| < r/2, a,(0) = 0
andb!, are holomorphic o’ =*Q (2K, 26), cf. above Proposition 2.1. The latter have
consistent asymptotic expansions of Gevrey oéjer

b, (Z) ~1 Y BumZ ™ asZ — .
m>1
Furthermore, the functiorts, T; admit asymptotic expansions of Gevrey orger
)~ > San™, Tyn )~ > Tin™,

n>1 n>2

the functionay is given in (2.3) and the functiori% bj anda,,, n odd, are identically
zero. Moreover, we havg; = —= T12 =T =0,130 =Tyo = —m
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By definition, (2.12) means that there existB, 1o > 0 such that, for ally €]0, ], all
z € @j,andallN € N, N > 2, one has

N—

v; (2,1%) = ao(z) — S(n) log (& (an(2) +52(2)) "

n=2

,_.

<

ABNT(1+ & )0
The statement on thig, means that there exist, B > 0 such that, for all integers >
2,M >1andallZ € #~1Q.(2K,26), one has

M-—1
v (Z Z By X ™™

m=1

|z/M < ABmTMp(Min ). (2.13)

Observe that the,,, B,,, andsS are independent gf, whereas thé/ and7; are not.

An important consequence of (2.12) (see [4], Proposition 3.7) is the existence of so-
called outer and inner expansions«gf of Gevrey order%. More precisely, for every
1 6]0, %[

v;(z,7°) ~1 ao(2) + 5(n) log (2) = S()logn +Ty(n) + >_du(z)y"  (2.14)

n>2
asn > 0, n — 0 uniformly for z € @j with |z| > ry, whered,(z) = an(z) +

Z B, _m.mz" ", and for everyK; > 2K

vi(nZ,m") ~1 S(n)log (3 )+ > W2 (2.15)

n>2

asn > 0,7 — 0 uniformly for nZ € Q; with 2K < |Z| < K, wherehi (Z) =
W (Z)+ 3 Anemm Z™ if a;(2) = 3,00 Ajk2". Here we use thaty (z) = O(2?)
and thus we also haw#y; = Ap; = 0.

The proof of Theorem 2.4 is given in Section 6. In fact we first prove, using the main
result of [4], that the derivatives;(z, ¢) of the Fatou coordinates hagases of Gevrey
order%; here no logarithm appears. Because of the initial conditions of Proposition 2.3,
we conclude fow; by integration; in the casg= 1 for example, we have (with = 7?)

vl(z,e):Ks+/ v1(¢,e) dC.

nY4 (K)

The integration of & ASE is again treated in [4]; the logarithms appear because each term
analogous t@? (Z) in this CAsE contains a multiple of /Z in its expansion.
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Remark.The right hand side of (2.12) is a composite formal series solution of (2.11). It
can be shown that this determines the formal expression except fitis will be done on
an example in Section 7. The (Gevrey) asymptotic expansidfig 9j are determined by
the initial conditions of they; (see below (2.11)) and the corresponding initial conditions
(on a formal level) for the right hand sides of (2.12). Then Tecan be chosen by
the Borel-Ritt-Gevrey theorem as any functions having these asymptotic expansions of
Gevrey ordet,.

The additive constants;(n) in the expansions depend upon the initial conditions of
thew;; especially they depend upon the choicgt. To avoid problems in the sequel,
we want to normalize our solutions of (2.11) such that their Gevrey asymptotic expansions
are uniquely determined by the equations and normalize the solutions of (2.1) accordingly
—thus the functions are determined by the equation up to exponentially small terms. More
precisely, we putfoj =1, ...,4

vi(z,m%) = vi(z,0°) = Ti(m), v} (z,n°) = y;(@+T;(n),n°). (2.16)

Observe that is inverse toy; and that the domains of; andv7 are the same, whereas
the domain ofy; is obtalned by shifting that of;. Here it is important thaf’;(n) =
O(n?) and thus the domain of: is essentially of the same type @s. In the sequel, we

can assume without loss in generality thatre defined of2; andv; are defined onQJ
as defined above, providéd is sufficiently large ana > 0 is sufﬁcently small.
It is easy to check that the functiops = vj ; oyj —id, j = 1, ..4,% aree-

periodic inz. A priori these functions are defined on the sgfs) ' (@j+1) ={z ¢

Q5 yj(z) € ij+1}. Their periodicity allows to continue them analytically to some strip

{z € C; Ke < (1) ""Imz < 7} with someK, 7 > 0. The Fourier coefficients;,,
of these functions, determined by

pj(iZ?,E) — chn(€)€2ﬂinz/s

neZ

are called Ecalle-Voronin invariants of (2.1). It turns out ihatis exponentially small if
(—1)7~'n is negative. For the other Ecalle-Voronin invariants we have

Corollary 2.5 . If (—=1)J~1k > 0, then the functior;;, admits an asymptotic expansion

350 @jknn™ in powers ofy = £'/2, whereaj, is closely related to the first Ecalle-
Voronin invariants of (2.6) defined in (2.10). More precisely, these are asymptotic expan-

1. They also depend upon the choice of the branch of log ain .
2. Here and in the sequel, the index j + 1 is taken modulo 4, i.e. v} = v} etc.
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sions of Gevrey orde]ﬁ' in n with closely related estimates, i.e. there eisBB > 0 such
that, for all positive integerd/, k,

N-1

cik(e) — Z @jknn"

n=2

< ABNTET(1+ ).

If the branches of the logarithms are chosen as above Theorem 2),fdren we have
atge = Cf,as,_po = Cp , agk = e*k’TzC’,j anday, 2 = e’”z(}k_ for positive integer
k.

Idea of the proof\We indicate it only forj; = 1. We have

xr+e
en@ =1 [ eI 0y (e) - ) e

If £ < 0, then we can choose amyin the strip with positive imaginary part (independent
of ) and we obtain that; ;, is exponentially small. It > 0, then the change of unknown
¢ =T,z = eX, with some fixedX such that[X, X +1]is in the domain of oy, (., €),
yields

X+1 ‘
c1x(e) = / e 2™ (v3 o yi (eT,e) — eT) dT.
X
Now we use (2.16) and the inner expansions (2.15)f@ndwvs. Since the operations of
composition and inversion are compatible with Gevrey asymptotic expansions, this yields

a uniform asymptotic expansion of Gevrey or(%efor vs o yj(eT,e) — eT. The result
follows easily integrating the expansion term by term. 0

Remark.Observe that the functio§ = v, oy, —id defined using the non-normalized
vj,y; satisfyp;(z,e) = pj(x — Tj(n),e) + Tj+1(n) — T;(n) and hence their Fourier
coefficientsz;,, (¢) are related to the abovg, (<) by

co(e) = cjole) +Tja(n) — Tj(n),

Cin(e) = exp(—2minT;(n)/e) cjn(e) if n # 0.

(2.17)

3. The reduced inner equation: Proof of Proposition 2.1.

The change of unknowi (X)? = o?X + O‘TzlogX + U(X) in (2.6) yields the
equation
UX +1) = U(X) + 2 h(X,U(X)) (3.1)
with )
MX,U)=(X+1logX +a7?U)  —log(1++). (3.2)
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Observe that, it/ is a solution of (3.1) satisfying (X ) = o(1) as24 (K, ) 5 X — oo,
thenh (X, U(X)) ~ —8% asQ (K,5) > X — oo. By (3.1),U is of the same order
as the antiderivative df tending to 0 as¥ — oo, i.e.U is of order®s=.

This leads us to introduce the following space. Eetenote the Banach vector space

of functionsU holomorphic o2, such that%(? is bounded, endowed with the norm

XU (X
1= s [F2G2).
XeQy OgX

Given L > 0 large enough, |eB’(0, L) denote the closed ball ¢f of center and radius
LieB(0,L)={Uc€&; |U| <L}

Using thatX +n € Q4 forall X € O, andalln € N, we now rewrite (3.1) in a fixed
point formU = TU, with

TU(X) = -2 Y h(X +n,U(X +n)) (3.3)
n>0

whereh is defined in (3.2). This latter sum converges forle Q. and allU € £ since
h(X,U(X)) = O(X ?log X).

Lemma3.1l. Forallé6 > 0andallL > #‘(Z/g) there existsk > 0 such that
T: B'(0,L) — B'(0, L) is a contraction.

Proof. As already seen, we have, for any fixed> 0 and anyU € B'(0, L),

log X
h(X,U(X)) ~ =525 8 Q45 X = o0,
hence, forK large enough, we have
YU € B'(0,L) VX € Qy, |h(X,U(X))| < |X ?logX|. (3.4)

Now we use, for an € Q, that the quotien% can be written as a convex combi-

nation of% and1, namely

X +n X X n

_ = 1,
X|+n | X|+n |X|] |X|+n

hence has at least distance= sing from the origin. As a consequence, we have
VX eQrVneN, pu(|X|+n)<|X+n|<|X|+n. (3.5)
If K'sino > 1, we can also estimate, forall € Q. and alln € N,

|log(X +n)| < 7+ In(|X|+ n).
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With (3.3), (3.4) and (3.5), this yields

la]* <~ 7+ In(|X] +n)

12 2 (X] + )2

ITU(X)| < (3.6)

By a comparison of the sum and an integral, we estimate the sum of the right hand side
of (3.6) by

+oo

1n|X|;i—7T+/ 7r—|—21ntdt§211(1|X|7
|X] BY t | X|

if K is large enough. Thanks to the condition 6nin the statement, we then obtain

ITU(X)| < L4 forall X € Q4 ie. | TU|| < L. Thereforel(8'(0, L)) C B'(0, L).

Now letU, W € B'(0,L) C &. Using that| X + ;log X + o 2U(X)| > 3|X]| if
UeB(0,L), X €Qy,andif K is large enough, we estimate similarly

[P (X, U (X)) = (X, W(X))]

o ?(W(X) - U(X))
(X + Flog X +a2U(X)) (X + g log X + a=?W(X))

IN

4072 X|?|U(X) = W(X)|
40721 X[|log X| |U — W

IN

hence

I TU(X) = TW(X)| < 52U =W Y (X[ +n) (v +In(X|+n). (3.7
n>0

By a comparison of the sum and an integral, we estimate the sum of the right hand side
of (3.7) by

“+00
|X|_3(7r+1n|X|)+/ t73(m + Int)dt < 2|X|?In|X| < 2|X]|7?1log X|,
|X|

if K is large enough, hend@U (X)) — TW (X)| < 2|X|~'u=3|U =W || | X|~!|log X|.
ChoosingK such tha| X |~'n =3 < 1 forall X € €, we then obtaif TU — TW|| <
$|lU — W ||, showing thafT is a contraction ir3’ (0, L). 0

Let us now return to the proof of Proposition 2.1. By lemma thére exists a (unique)
solutionU,. of (3.1) in the ballB’(0, L) of £. Then the functiorY,. given byY, (X) =
(02X + 0‘72 log X + UJF(X))I/2 is a solution of (2.6) that satisfies

1/2
Y, (X) = (a2X+ O‘szgX—i—(’)(lO%(X)) /
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= aXx'/? (1 +leX 0 ((“’%X)Q) +O(1‘}%§)) :

If Y1 is another solution of (2.6) satisfying (X) = aX'/2+2X ~1/2log X +0(X ~1/2)
asQ; > X — oo, then the functiord/; given byY?(X) = a2 X + 0‘72 log X + Uy (X) is
a solution of (3.1) that satisfié$, (X) = o(1). It follows thatU; = TUj, with T given
by (3.3) andh given by (3.2), hencé (X, U, (X)) = —%, henceU; € €&,
hencel/; € B/(0, L) for someL > 0 large enough, hendé, = U, by Lemma 3.1.

For a proof of the statement on the derivatlvg, we changeX’ into K + 1 and we
use Cauchy’s formula

/ 1 o(2)

X)=— LA
(p( ) 2mi |z—X|=sin§ (Z_X)2 ‘

applied to the function
0 X = Yi(X)—aX'?—2x712]og X.

Sincep(z) = O(X~3/2(log X)?) uniformly for all z such thalz — X| = siné, we
obtaing’ (X) = O(X ~3/2(log X)?) as well, hence the wanted estimate Ygr. 0

Remark.Modifying ¢ if necessary, we can also prove that
VI(X)=9X"?+ 2(X 2 log X) + O((X 2 (log X)?)'), Q4 > X — cc.
In order to prove the statements on the inverse fundtiof?Z) we show first

Lemma3.2. If K > 0 is large enough, then for eve#yy € Q. (2K, 2)) there exists a
uniqueX € Q4 (K, ) suchthat’, (X) = Z.

Proof. It suffices to show that for evely € Q. (2K, 24) thereis auniqu& € Q4 (K, 0)
such thatv=2Y, (X)? = U. By the estimate we proved above, we have

a?Y (X)? =X + 1log X + o(1), X — oo. (3.8)

This suggests to apply Rouché’s theorenf &' ) = a=2Y, (X)? — U andg(X) = X —
U. Clearlyg has exactly one zero i (K, ). If we show that f(X) — g(X)| < |g(X)|
on the boundary of?, (K, ), then the hypotheses of Rouché’s theorem are satisfied and
we obtain the wanted statement ttfahas a unique zero ift (K, ). The fact that we
work with infinite domains is not a problem here, because we can (for gijeadd a
circular arc|X| = L, |Jarg(X)| < m — ¢ with large radiusL to the boundary and the
condition|f(X) — g(X)| = | log X + o(1)| < |X — U| = |¢(X)| is satisfied there.

So we want to show that, K is large enough, then

|o?Y(X)? — X | < |X —U| forU € Q4 (2K,26) andX € 9Q4(K,6). (3.9)
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By (3.8) and'f4+ — 0 as X — oo 0ndQ (K, ), itis sufficient to show that

| X —U| > |X|sind forU € Q4 (2K,26) andX € 0Q4 (K, 9), (3.10)

if K is sufficiently large. In order to show this estimate, we consider, for e¥eon the
rayarg(X — K) = m — ¢, its projectionUp(X) on the rayarg(U — 2K) = m — 26. Let

C denote the intersection of the opposite rays(X — K) = —§ andarg(U — 2K) =

—24. Since the trianglé K, 2K, C) is isosceles a2 K, we have|X| < |X — C| and
|X —Up(X)| =|X — C|sin¢ for everyX on the rayarg(X — K) = 7w — 4. To sum up,
we have, forallU € Q4 (2K,26) and allX with arg(X — K) =7 — 4

X -U|>|X -Up(X)| =|X —C|sind > | X]|sind.
By symmetry, the same inequality holds f&r on the other half 0D, (K, ¢), i.e. X
with arg(X — K) = —7 + 6, and (3.10) is finally proved. 0

Lemma 3.2 shows the existence of an inverse fundtion @+ (2K, 25) — Q4 (K, 9).
Using a classical statement on holomorphic functions (see e.g. [6], Section 10.33) we
prove that/, is holomorphic. Sinc&, (X) = aX'/2(1+0(1)), we first obtain/, (Z) =

(g)2 (1+0(1)) by replacingX = V. (Z). The estimate fo¥, (X) yields more precisely
Z v (2)? 4+ LV (2) 2 log (Vi(2)) + o(Vi(2)71/?)

and thusV, (2) = (g)2 — 2log (£) + o(1). The functional equation fov,. follows
immediately from the difference equation (2.6)6f replacingX = V, (Z2).

4. A bounded inverse of A. on a bounded domain.

Givend, eo > 0 small enough, lef = S( — 3,3, ) denote the sector

S={eeC; |arge| <9, |g] < eo}.
As before,u = sin% and Q, is described in Figure 2.2. Then; has the following
property: For all: € ; there exists a path, : [0,1] — Q; U {—ir,ir, Ke}, joining
—ir andir and passing through, which is(u, d)-ascending for alll € [ - %, %] in the
following sense: Ifs < ¢ thenIm ((7v,(t) — v2(s))e ™) > p|va(t) — 72(s)|. In facty,

can be chosen piecewise polygonal.
AssumeK > 1 ande, < 2r, and let

Q=) +[-5 5 ={e+7;2eW(), —s<T<Eh

Let #, denote the space of bounded holomorphicjunctionf)orendowed with the
supremum norm. Observe that, foralt S and allz € 2, we haveX ||y < [z] < 2r.
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Givenzy € cl(f2), depending orx or not, letS,, denote the integration operator
defined byS,., f () :/ ft)dt.

xr
We reproduce below some results of [3], in particular Theorem 2 and its extension for
e complex described in Section 5 of [3]. These results can be gathered in the following
statement.

Proposition 4.1. There exists a bounded linear operdtby : Ho — Ho, satisfying
|0 < %, such that, for alkq € c1(R2), the operatoN? = S,., —eU. is aright inverse

of A, i.e. we have\ . VO f(z) = f(x) forall f € Ho and allz € 2N (Q — ¢).

In the sequel we present an extension of this result for other normed spacesa Givien
let H, denote the same spacefds of bounded holomorphic functions §&, but endowed
with the norm|| f||, := sup, g [z~ f(z)| < +oo}. Observe that, it b € R, f € H,,
andg € Hy, thenfg € Haors and|| fgllars < | /llallglsl.

Observe also that, if < bandf € Hy, thenf € H, and

1 £lla < 77N b, (4.1)

with 7 = r 4 5. As a consequence, because we can redy@ndr if necessary, in a
sumf + g with f € H, andg € H;, a < b, we will keep in mind thay can be neglected,
roughly speaking.

Given a bounded linear operatbr: H, — Hy, we denote by F'||® its norm, i.e. the
best constant such that

IEfllo < [Fligl|flla forall f € #Ha. (4.2)
The main result of this section is the following.

Theorem 4.2 . Foranya € R\ {—1}, there exists a linear operal¥r. : H, — Ha11
with the following properties.

(i) V. isarightinverse oA\, i.e. we hav& . f(z+¢e)— V. f(z) = ef(x) forall f € H,
andallz € QN (2 —e).

(i) V. is bounded uniformly with respect to More precisely||V.||2*! is bounded by
a constanL(a, K, r,0) depending only on, K, r, ands.

(iii) Inthe cases < —1, we haveV_f(r) = 0 forall f € H,. Inthe case. > —1, we
haveV.f(Ke)=0forall f € H,.

Remark. In the casea = —1, one cannot expect a bound independent é6r any
V. :H_1 — Ho. Indeed, this would give a bound for sorig, at least on the interval
[Ke,r], i.e. abound for an antiderivative of z independent of on this interval, which
is impossible.

ARIMA journal



Composite Asymptotic Expansions and Difference Equations - 81

Idea of proofGivena € R\ {-1} andh € #,, we have to solve equatiah.u = h, u €
Ha+1. In order to use Proposition 4.1, we make the change of unkngwn= z%v(z).
This yields equation
Acv=—cov+k, vEH (4.3)
with P
ealz) = (x+e)—=x
e(x+e)e

We then consider the right inver3& of A. given by Proposition 4.1, with a choice of
xo depending upon whether< —1 ora > —1. Precisely, ifa < —1, then we choose
VY =8, — U, and ifa > —1, then we choos®? = Sk, — ¢U.. Actually, Lemma
4.3 below says that, in both cas&sis bounded uniformly with respect to The tedious
and lengthy proof is omitted.

and k(x) = (x +¢) *h(x) € Ho.

Lemma4.3.
@) If a > —1, thenSk. : H, — Ha+1 iS bounded by a constant depending onlyaon
and).

(b) If a < —1, thenS,. : H, — Hq+1 IS bounded by a constant depending onlyacamd
J.

In the sequelS alone will denote eitheS,. or Sk.. As a consequence, a solution of
equation
v="V2k—cv) = (S —eU.)(k — cov)

will be a solution of (4.3). Passing on the left hand side the main part dependingfon
the right hand side, we now rewrite this latter equation in the form

v+ S(cav) = eU(cav) + V2.

We then construct a right inversE, of the operatoid + Sc, : v — v 4+ S(cav)
which is bounded in norm by a constant independent.ofNow the operaton +—
v—T, (6U5(cav)) from #H; to H;; is close to identity, hence has an inverse, denoted
by P. Lastly, a solution of (4.3) is given by = PT. VY. The complete proofs will
appear in a forthcoming article.

5. Proof of Theorem 2.2.

We prove the statement only fgg. The symmetries imply the statement fgrand
the proof forys, y4 is analogous. Before the proof, we have to introduce some notation.
Setyy () = nYy (f) in this mannery.. is a solution of

o

Acyy = O (5.1)
Y+
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By Proposition 2.1, there exists a constaht> 0, depending only oi, such that fork’
large enoughyy andr small enough, and all € 4,

lyi(x)—az'/?| < Cla™?elogZ| and |y (x)— S22 < Clz™* 2e(log 2)?|.
(5.2)

In particular, the functions — z~1/2y, (z) andz — 2'/2y/, (z) are bounded above and

below by constants independentzof

The notatiory. stands for the shift operator given by(x) = x + . This operator will

be used in the following Leibniz-type rule:

A(fg) = (Acf)g+ (f o 0:)(Acg).
Let C; = C;(e) denote the constants
Ci =¥ ll—1j2 and Co=|1/(¥) 0oe)l2 (5.3)

Givena € R\ {1} andf € H, andr > 0, the closed ball of centef and radius- is
denoted by3/, (f, r), andB is the closed ball

B= By (. |15 0) € e 5.4)

The functiong is defined by

9(0) = f(0) andg(y) = 4 (f(y) — f(0)) fory # 0. (5.5)
Our last notations are
G = sup [lg(y)o and G"= sup |lg'(y)llo, (5.6)
yeB!, yeBY
R =2C,C,|V.|*2G and o= (2357 (5.7)
h/2 2R
with the notation of (4.2), and
Bgr = 8/1(0, R) C H;. (5.8)

Reducing if needed the constaatsandr which defineS and(2;, we assume that =
r+ % < ro. In this manner, for all. € Br C H1, we haveu € H, , and

~ ~ 1/2
llljo <72 uly <F2R <rg?R = %], s

hencey; +u € B.
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Let us now begin the proof. The change of unknawn= y, + u yields Ay, +

Acu = wlﬂf(yJr + u). Using (5.1) and using given by (5.5), we obtain
042 042 —a2u
Au=———— 49yt tu)=—5——-— +9(y+ +u).
T 20y ) 2yy v+ 2(y+ +wy+ W+
We rewrite this equation as follows
a2u a2u2
A= -5+ ————5 +9(y+ +u). (5.9)
: 27 T 3y, T Tt
In a first time, we consider the following linear equation
2
Au= -2 g (5.10)
2yJr

In order to solve (5.10), first observe that the derivatiyes a solution of the associated
homogeneous equation. Indeed, differentiating (5.1) yieldg’, = —°‘ y* We then
use the method of variation of constant, i.e. the changey/, v. Since

o2yl
2yJr

Agu = (Aayg—)v + (yg- 00:)Av = — v+ (y+ 00e)Av,
equation (5.10) yields far the equatiom\.v = TR . This latter equation can be solved
+

using the operatdV. given by Theorem 4.2.
We therefore consider the opera®y : Ho — H; given by

Tgkzy;-vg(#).

Y, 00¢
To sum up, the operatdr. solves (5.10), i.eu = Tk is a solution of this equation.

Lemmab.1. The operatol'. : Ho — Hi is bounded uniformly with respect ta
Precisely, we have

3/2
IT 5 < C1Ca|[Ve|[33,

with Cy, Cs given by (5.3).

Proof. Letk € Ho; then T € Hy/2, henceV, ( 00_5) € Hs /2, henceT.k € Hy,

and

1Tkl <G|V ()|, , < OIVARE |, SCrCVRfE I
L ooe/llzy2 V2 Iy oo lliy2 1/2

ad
Let us now return to equation (5.9). Recall tifaf is defined in (5.8).
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Lemmab.2. Ifr > 0 andey > 0 are small enough anll is large enough then, for all
e €]0,¢e¢[, the map

a?u?

MEZBR%BR,UHTE( )2+g(y++u))

2(y+ +uw)yi
is a contraction.

Proof. Letu € Br andr, ¢q be such that = r + 5 < ro. We havey, + u € B, hence
a2u2
lg(y+ +w)llo < G- We also have &ty € My and

2 3

3
Hm“lm o*(|lu ||) (Hﬁ”l/z) SOZQRQ(HﬁHl/z),

hence, by (4.1),

2 2 2
< | A2 <6 it <GP (a?R? Y
H2 y++u)y+H HQ y+—|—u)y+H1/2 - "= ( (H HI/Q)

SinceR = 20102|\V5|\i’§§G > ||IT.||3 G, this proves thaM.(u) € Br. We prove
similarly thatM, is a contraction. 0

To conclude, the unique fixed poiat of M. in B is a solution of (5.9). Moreover,
since we are in the case= % > —1 of Theorem 4.2(jii), we have*(Ke) = 0. Therefore
the functiony; = y+ + u* satisfies the conditions of Theorem 2.2.

6. Fatou coordinates: Proof of Theorem 2.4.

We begin this section with some auxiliary results, which are useful not only for this
section but also for Section 7. The proofs are straightforward but the details are a bit
cumbersome.

To simplify notation, we do not indicate thedependence of most functions. At some
instances during the proofs, the domains must be reduced slightly, for example to allow a
derivative of a bounded function to still be bounded. For the sake of simplicity, we will
also not indicate this here.

Lemma6.l. Forj = 1,2, lety; : D; — C be solutions of (2.1) on domairis; not
containing 0. We suppose thaf(x) = yo(z) + O(e) uniformly forx € D; and that
D, N Dy is connected. Léi™, resp.b~ € R denote the maximum, resp. minimum, of
Imxz onDy N Ds.

Then, for anys small enough, there exists afperiodic functiorp : S — C defined
onthestripS = {z € C; b~ +6 < Imz < b* — 4} and satisfyingj: (z) = y1 (z+p(x))
forallz € DN DyNS.
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By Rouché’s theorem, it can be proved thatis locally invertible; letv; denote such a
local inverse. The functiop is then simply given by(z) = v1(y2(x)) — z. As bothy;
andy- are close tgyy, we havep(z) = O(e). Since both satisfy (2.1), theperiodicity
of p follows.

Corollary 6.2 . With the notation of Lemma 6.1, 1€t C (D, UD>)NS be a horizontally
convex domain (i.ex,z’ € Q andlmxz = Ima’ imply [x,2'] C Q). Then the solution
y2 can be analytically continued &h by the formula of Lemma 6.1.

Of courseyy, is still a solution of (2.1) orf2. By symmetry,y; can also be analytically
continued orf2 by the formulay, (z) = y2 (2 +¢(z)) with thee-periodic functiony () =
v2(y1 (@) — @

Corollary 6.3 . With the above notation, there exists a functios s(e) such that the
functionR : Q — C, z — y1(z) — y2(x + s()) is exponentially small. More precisely,
if d(z) = min(Imz — b~ + 6,b* — Imz — §), then we havé?(z) = O (e~ 2md@)/¢),

The functions is simply the constant teriay in the Fourier expansion of

p(l’) — ZCVeZTriVm/E.

VEZ

The functions is called theshiftin Section 7. The next result is based on general results
of [3].

Corollary 6.4 . Let D1 C Dy be horizontally convex domains. Assume that there exists
a solutiony, : D; — C of (2.1) and that the solutiog = a, ! of (2.2) is defined o1Ds.
Letbt, respb~ € R denote the maximum, resp. minimum,laf x on D, .

Then, for any compact subskt of Dy, and any > 0, there exists, > 0 such that,
forall e €10, 20|, y1 can be analytically continued onto N S, with

S={zeC;b +d<Imz<b" —d}.

Actually, by Theorem 7 of [3], there exists a solutignon K. Therefore, by Corollary 6.2
abovey; can be continued oA N S.

Proof of Theorem 2.4. A consequence of Proposition 2.3 and of the estimaté’fom
Proposition 2.1 is that, iy > 0 arbitrarily small is fixed, then for small enough an&
large enough, the function satisfies

‘2

VueQr, (1-7)|2° <fur(u)| < (1 +7)|2 (6.1)

Now we consider other arguments fpi(and thus o = 72). It can be shown that
Theorem 2.2 and Proposition 2.3 are also valid if the intdfial] is replaced by a sector
with sufficiently small opening angle bisected by the positive real axis.
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Thenlet(S;)E , be agood covering of the origin (in theplane) by sectors of opening
at most29. Since eachy-sectorS; can be reduced to a sector bisected by the positive real
axis using a rotation, the previous results can be carried ovér. tés such a rotation
changesy to exp(2mil/L)e, this leads to functions/, j = 1,...,4 on domaing); =
exp(2mil/L)Q;, Q; defined above Theorem 2.2, that are analogous to the functions of
Proposition 2.3; especially they satisfy (2.11) and are inverse to soluﬁcquz.l).

Next we show that, on the intersectio$ N Q7 ,, we have

| (U'ljﬂ)/ (2) — (U'lj)/ (2)] < Kexp (- #) (6.2)

whereas, on the intersectio@$ N @7+, we have

’ (Uf“)/ (2) — (U'lj)/ (z,s)’ < K|n|exp ( - a’%f) (6.3)

with some positive constanfs, a.

For the proof, fixj, [. Applying Corollary 6.3 tOylj andy{+1, we obtain the existence
of some functions = s(¢) such thaty/ (z) — /., (z + s(¢)) is O (e~/I¥l) on the
intersection of their domains, with some constanfThis implies thaiv/, ; — v})(z) —
s(e) is alsoO (e=/I=l) on Q] N @7, ,. Now we obtain (6.2) by differentiation.

For the proof of (6.3), we have to refine Corollary 6.3 and its proofjfoandy; .
The functionp defined byp(z) = (v} 0 y/)(z) — z is e-periodic and bounded on some
strip one boundary of which passes at a distanc& ¢f| from the origin. Using the
Fourier series fop, its constant term, and estimates for the other coefficients, we prove
thatp(z) — co(e) = O (|| e~#I=I/Il) with some positive:. The factor= comes from the

estimate for;] near the origin and the corresponding estimates for Fourier coefficients.
Carrying this over tay "' andv], we obtain that

(0! = v])(2) = co(e) = O (e /)

with some positive constant. Here some estimate analogous to (6.1) has been used.

Differentiation yields(v) ™' — v/)/(z) = O (|z| e*mz‘z/‘d). This finally gives (6.3) for
any positivex < fi.

The estimates (6.2) and (6.3) are exactly the important hypotheses of the Main The-
orem 4.1 of the memoir [4]. We obtain composite asymptotic expansionse$) of

Gevrey order 1 for the functions] = (v/)’. Especially, we obtaicAsEs forv; = (vg)":
3

o0

j(z.6) ~1 3 (An(z) + Bg(g)) g (6.4)

n=0

3. Starting here, we have to indicate the dependence of functions on ¢ again.
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where the functionsd,, are holomorphic on some disk centered at the orig#j, are
holomorphic oni’~*Q, (2K, 26) and have consistent asymptotic expansions of Gevrey
order

Bi(Z)~1 Y DumZ ™ asZ — cc.

2 >
We refer to the explanations below Theorem 2.4 for details.
Finally, we use the initial conditions far;. In the casgj = 1 (the others are analo-

gous), we have

Ul(z,s):Ks—i—/ v1(¢,e) dC.
nY4 (K)
Now we separate the leading term of edgh i.e. we writeBL, (Z) = D, Z~ '+ CL(Z),
C}(Z) = O (Z7?) and integrate (6.4) term by term (for details see [4]). Wea)se) =
z Z
An(Q)d¢, b (Z) = C}(u) du and we collect the terms independentdh 7.

Thus we finally obtain the wantethse for v;.

The statement ot and b}, follows from the factor; in (6.3): Theorem 4.1 of [4]
applies to the family}](vf)’,j =1,..,4,1 = 1...,L. The leading term(z) can be
determined using the Schroéder equation (7.4). The fact that the right hand side of the
outer expansion (2.14) is a formal solution of (7.4) implies that it contains only powers of
€= ng.

7. Application.

We present in this section an informal study of equation (1.9), rewritten below for
convenience:

Ay=1+12. (7.1)
Y

It is well known that, for fixed= > 0, the difference equation (7.1) has solutions
holomorphic on sectors with vertex at infinity. The dependencg bowever, is not clear.
We start our study with the subsequent proposition. We use the notation of the somewhat
similar study of the inner reduced equation of Section 3. In partiéuldi, §) is defined
in (2.7) and shown on Figure 2.1.

Proposition 7.1 . Fix ey > 0. For allé > 0 there existd > 0 such that (7.1) has a
unique solutiorys® defined for: €10,¢0], x € Q4 (K, §) holomorphic with respect to
satisfying

Y3 (z,e) = v +logx + o(1) asx — oo iN Q4 (K, 6). (7.2)

Similarly, there is a unique solutiqy® on—Q (K, ¢) satisfyingy> (z,e) = z+log z +
o(1) asz — oo in —Q4 (K, 0). On—§Q4 (K, §) we use the branch of the logarithm given
bylog x = log(—z) + wi; onQ 4 (K, §) we use the principal value.
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The proof is similar to that of Proposition 2.1 and is omittéfd K is sufficiently large,
then the solutiong$® have inverse functions® also called Fatou coordinates. These are
holomorphic functions of their first variable in some domain containing infinite sectors
+Q, (K, S) with someK > K, § > 6. They satisfy

v (z,e) =z —logz + o(1) asz — oo (7.3)
and the functional equation
v(z+e(l+1)) =v(2)+e. (7.4)

The formulav> o y$° — id defines two functiong® on the sectorZ, introduced
above (2.10), respectively éh. = —Z,. They are bounded andperiodic and hence
there exist Fourier expansions

P e) = 3 g el (7.5)
n=0

with functionscsS, :]0, 0] — C which we callEcalle-Voronin invariants of (7.1) ab.
The choice of the branches of the logarithms in Proposition 7.1 impliesghat 0 and
cyo = —2mi.

We want to study the relation between these invariants of (7.1) at infinity and its
Ecalle-Voronin invariants near 0 introduced above Corollary 2.5 which will be denoted
by cg-n (e). -

To this purpose, we first prove thal® can be continued up to the domap of our
local solutionv} given by Proposition 2.3 and by (2.16). The outer reduced equation of
(7.1)isy’ =1+ % whose solutions are implicitely given by

y—log(l+y)=z+C. (7.6)

Then Corollary 6.4 shows thgt® can be continued along the level linegy) = v —
log(l1+y) = t+ Ci, t € [t1,ta], for anyty,t2,C € R, t; < 2, C # 0. As a
consequence;® can be continued analytically onto any compact set included in the dark
region displayed on Figure 7.1 top right, whexgis locally invertible. In particulap?®

can be continued on the sft € Q1 |z > r1} for an arbitraryr; €]0,7[. We then

apply Lemma 6.1 tg; andyS°. This allows to continue$® on @, in its whole. By
Corollary 6.3, there exists = s(¢) = O(e) such that the function?® — vi — s(e) is
exponentially small in any compact subset@f. We call this functions the shiftin the
sequel. We will now compare some asymptotic expansion$ ahdv?®.

Therefore, we first indicate how to prove thgt does have an asymptotic expansion.
For this, we consider all argumentsafUsing (7.5), we prove thgvs°)" and(v>°)" are
exponentially close one to each otherbnandZ_, and then we apply Ramis-Sibuya’s
theorem (classical, see for example [4], Lemma 4.4).
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resp. z € Q_(2K,26) = iQ(2K,24). By integration, we finally obtain the desired
expansion fow?®.

We can precisely descrie: Using the Schroder equation (7.4), expanding its left
hand side by the Taylor formula, and cancelling the tetrfry, we obtain forw the
equation

en n 1
= (1+H"g —1—
nzzo(n—i—l)!( +2) 0" (z0) 1+2’
from whichw,, can be determined recursively. Since, for any rational funcfiofi +
1)"f™(2) has the same valuation ih+ z as f, we obtain that(l + z)w,(z) is a
polynomial in%. More precisely, we obtain with some constamnts,

2n—1
wp(2) 1—|—z Z W2 Y. (7.7)
Using a partial fraction expansion and integrating, we obtainforan expansion of the
form
v (2,6) ~1 2 — q(e)log(1+ 2) + (q(e) — 1) log 2+ > vn(2)e" +C(e)  (7.8)

n>1

whereC(¢), q(¢) are formal series ia, andu,, is a polynomial of degree at maat — 2
2n—2

in % without constant term, i.es, (z) = Z V2 V.

v=1
The estimate (7.3) yield§ = 0. The Schrdder equation permits also to determgine
explicitely. Actually, the right hand side, denoted @yof (7.8) can be rewritten in the
form

U(z,e) = —q(e) log(1 + z) + Z hn(2)e

n>0
where the functions,, are holomorphicin a neighborhoodof= —1. Sincev is a formal
solution of (7.4), we obtain

—q(e)log (1 + £ —s—i—Z( n(z+e(l+1 )))"

For the value: = —1, this gives
—&

1) oy

We will use later oy () = 1—540(?). We want to compare the former expansion (7.8)
with the outer expansion af;. In our example, the outer expansion (2.14) rewritten for
vf = v, — 11 becomes

vi (2,7%) ~15m)

(7.9)

(7.10)

n>0
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with d,,(z) = an(z Z B, —m.mz" ™, ay holomorphic in a neighborhood df.

Sincea, (0) = 0 by Theorem 2.44,, has no constant term. Now a comparison of (7.8)
and (7.10) gives (witls = 7?)

S(m) =q(e) =1, dn=a,+uv,, anda,= a,log(l+z)
with some constant,,. Concerning the shift, we obtain
5(2) = S(n)log(v2n) + O(e™%) = 3(a(e) — 1) log(22) + O(e~*%).

In the same manner, we can continge ontoQ, and compare the expansions.6f and
of the local solution;. Regarding the Ecalle-Voronin invarianfs, , we finally obtain in
a similar way as for (2.17) firgt=° (z, €) = p1(z — s(¢), €) wherep; = v3 o (v}) ™! —id
and thus

X (e) =}, () exp (— nmilEl= q(s) ! log(2e¢)).
In this manner, we obtain an asymptotic expansion of Gevrey ordercgfor

%, (e) exp (nmil () log(25 ~1 Zalnke /2, (7.11)
2

A careful analysis shows that the former discussion can be extended to all argunzents of
exceptarge = 7. In other words, for any > 0, the expansion (7.11) is valid uniformly
fore e S’(— 37” +40,% —6,50).

As shows the picture on bottom right of Figure 7.1, which correspondsste = 7,
something happens for this value: There is a loop surroundihghat is parametrized
by y —log(1 +y) = —it, 0 < t < 2 real, wherey ~ (2t)'/2¢37/4 for smallt. This
makes it impossible to continu€® andv> analytically to acommonset of points at a
distanceO(n) from the origin on the ‘left hand’ side of the origin (on the right hand side,
there is no problem — this correpondsitg e = — 7). Therefore we need an intermediate
solutionv,, of Schréder’s equation (7.4) deflned in a neighborhood of the above loop.

In order to construct such a solution, recall that the solutions of the outer reduced
equation of (7.1) are given implicitly by (7.6). We are interested in the solufidahat
parametrizes the above loop fore | — 27i, 0. It satisfiesyo(z) — log (1 + yo(x)) = =
andyo(x) ~ —/2z for smallz, arg x close to—7Z. It can be continued analytically to
some domain containing the open segnjen2ri, 0[, for example some open rhomhtis
with vertices), — 5 — i, —27i, 8 —iw. By Theorem 7 of [3], for every compact subgét
of G there exists a holomorphic solutign of (7.1) defined in some neighborhoodsf
satisfyingy, (z) = yo(z) + O(e). We choosek as a rhombus with verticesdi, —3 —

i, (6 — 2m)i, B —im, 0 > 0,0 < B < B.

For every smalb > 0, there is a (also smallj > 0 such thaty, is injective onk. As

Yo 1S @ holomorphic function close @, this is also true foy,, if ¢ is sufficiently small.
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Thusy,, has an inverse functios, that must be a solution of (7.4) and is closeg@iven
by ap(z) = z — log(1 + z) ony(K) =: M. Observe thal/ contains no reals close to
0 because of the injectivity. For convenience Mé{ = {z € M ; £Im z > 0}. Observe
that herdog(1 + z) is close ta) if z € M is small, whereas it is close fori if z € M_

is small.

Nearz = 0, four solutions of (7.4) can be constructed as indicated in Section 6, i.e.
analogously to Proposition 2.3. Lej : Q; — C, j = 1,...,4, denote these solutions
with Q; = ¢(21=D7/4Q, whereQ is the image of2(M, r, ) (with certainM, r,y > 0)
by z — z'/2 introduced above Theorem 2.2. The dom@itis shown on Figure 2.2 (it
has the nam&); there). Sincerg e = 7, the domaing)y, . .., Q4 are now rotated by an
angle of} compared to the caseg e = 0 of Proposition 2.3.

Analogously to the beginning of this sectigin? = v>° o y° — id can be defined in
some sectof, = {z € C; |arg(—z — L)| < 5 — &}, whereL, > 0. It can be shown
by analytic continuation that. > 0 can be chosen small. Thef® can be analytically
continued by periodicity fronT;. to the half planed;, = {z € C; Rex < —L} with
small positiveL. If L is small enough, thei/; has a nonempty intersection with the
above rhombud<. On K NZ,, we can writev™ o y3°* = (v>° 0 yy) 0 (v4 0 Y°) =
(id + pa—) o (id + pa+) With somes-periodic functiong, . .

Now these functions,+ can be studied as before by continuing v3° analytically.

If 5 is small enough, thef/, has a nonempty intersection with., whereas\/_ has
nonempty intersection witlp;. We can continue,, analytically fromM/ to all of Q-,

if r is small enough. In order to still have a well defined function, we restrict this con-
tinuation to the intersectio); = {z € Q2 ; Imz > 0} of Q5 with the upper half
plane. Similarly, we analytically continue, from A/_ to all of ;. As beforev3® can

be continued analytically t@; andv>° can be continued analytically ;.

There exist shifts, () such that, (z) — v3(2) — sa+(€), resp.va(z) — vi(z) —
sa—(¢) are exponentially small 0Q3, resp.QQ; . We have shown above tha j_o(z)
v}(z) — s(e) is exponentially small fos(e) = £ (q(e) — 1) log(2e) = —5 log(2¢)(1
o(1)). Analogouslyv>(z) — v} (z) — 5() turns out to be exponentlally small f@(’e)
%(q(a) - 1) log(2¢) — 2wi g(e). This yieldsp,_(z,€) = p3 (:1: — Sa—(€), ) +35(e) -
Sa—(g) + O(e=IEl) andpa(z,€) = p1(z — s(€),€) — s(€) + sar(e) + Oe~/I#N)
wherep;, ps are the Ecalle-Voronin invariants of (7.1) aads some positive constant.
Because ofd + p = (id + pa—) o (id + pa ), we have altogethér

+

pX(x) =pi(z—s) +p3(z —s+p1(x — 8) + Sat — Sa—) + Sat — Sa— + 5 — 5.

As we know thatp;(x) are exponentially close to the sums of the positive powers of
ermie/e e 10, oo cine?™ /e, j = 1,3, we can express the Fourier coefficients of
p<° by those ofp1, p3 except for exponentially small terms. Especially we find

cﬁ(&_) _ 672771' s(e)/e (0171(5) 4 C371(€) 6271'1' (c1,0+sa+fsa,)(s)/s) 4 O( c/|5)

4. We omit the dependence upon ¢ here.
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The facts thavy and v; have the same outer expansion (2.14) and that they are Gevrey,
imply thatc; o(e) is exponentially small and it remains to determing — s,—. This is

done again using a Gevrey expansionofind the outer expansionsaf, v;. Because of

the different determinations &dg(1+z) on M4, we find that(sq+ — so— ) (€) = 2mi q(€)

and thus that altogether

€2 (e) = e~ (a(e) =) log(2e) /¢ (61,1(6) Fesa(e)e i q(s)/s) Lok, (7.12)

wherec; 1, j = 1,3 are the Ecalle-Voronin invariants of (7.1) at the origin which, accord-
ing to Proposition 2.5, have Gevr@yasymptotic expansions

¢ja(e) ~1 Z ajinn",j = 1,3,
n>2

wherea;12 = Cfr, asjzy = e*’TZC’f and Cf“ is the first Ecalle-Voronin invariant for
the inner reduced equation (2.6), cf (2.10). It can be shown numerically that it does not
vanish.

Since(q(e) — 1) /¢ is bounded, we see the;. vanishes exponentially close to values
of e where the sum of the two terms in the parenthesis vanishes. Our asymptotic expres-
sion implies that there is a sequence of sigh xcny and that (except for some integer
shift) they satisfy

Ek_l ~1 ﬁ(k + %) + % + Zﬂlk_lm
>1

with certain coefficients;.
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